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Abstract— Fusion of toroidal information, such as correlated
angles, is a problem that arises in many fields ranging from
robotics and signal processing to meteorology and bioinfor-
matics. For this purpose, we propose a novel fusion method
based on the bivariate von Mises distribution. Unlike most
literature on the bivariate von Mises distribution, we consider
the full version with matrix-valued parameter rather than
a simplified version. By doing so. we are able to derive
the exact analytical computation of the fusion operation. We
also propose an efficient approximation of the normalization
constant including an error bound and present a parameter
estimation algorithm based on a maximum likelihood approach.
The presented algorithms are illustrated through examples.

I. INTRODUCTION

Many applications involve the consideration of correlated
angles or other periodic quantities. For example, the direction
a person’s head is facing and the direction the torso is facing
are highly correlated. Other examples are the wind direction
at two different measurement locations or at two different
times, the orientation of two joints of a robotic arm, or the
phase of a signal received over multiple paths.

Motivated by the large number of highly relevant problems
in a variety of areas, we propose a novel method for the
fusion of measurements of correlated angles in this paper.
Because each angle can be represented by a point on the
unit circle, we consider the Cartesian product of two unit
circles, which is given by the torus.

As most commonly used distributions such as the Gaussian
distribution are defined on Rn, they are not suitable to repre-
sent uncertainty on the torus (although they can still be used
to locally approximate a toroidal distribution). Consequently,
it is important to consider probability distributions defined
on the torus. We resort to the field of directional statistics
[1], a subfield of statistics that deals with distributions on
certain manifolds, the torus being one example. One suitable
toroidal distribution is the bivariate von Mises distribution
(see Fig. 1), which was proposed by Mardia in [2] and [3]
(see also [1, Sec. 3.7.1]). This distribution constitutes a
generalization of the univariate von Mises distribution [4], a
commonly used distribution on the unit circle. Special cases
of the bivariate von Mises distribution were considered by
Rivest [5], Singh et al. [6], and Mardia et al. [7], [8]. A
possible generalization to higher dimensions was discussed
in [9].
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Fig. 1: Samples on the torus drawn from three bivariate von
Mises distributions with different parameters.

The bivariate von Mises distribution is not the only
toroidal probability distribution capable of representing cor-
relations. An interesting alternative is the bivariate wrapped
normal distribution (see, for example, [10]). We previously
investigated the applicability of this distribution for recursive
filtering in [11]. Although the bivariate wrapped normal has a
number of nice properties and is well-suited for propagation
of information, it is not closed under multiplication, which
makes the fusion operation difficult and computationally ex-
pensive. Some other distributions can be found in literature,
such as a bivariate distribution with von Mises marginals1

[12], a model based on Fourier series [13], and a distribution
induced by a Möbius transformation [14].

The contributions of this paper can be summarized as
follows. First, we present a series representation for the
normalization constant of the bivariate von Mises distribution
that can be used to efficiently approximate its value with
fairly low computational cost. There has been some previous
work on the normalization constant for certain special cases,
but our method is to the authors’ knowledge the first result
for the general bivariate von Mises. Second, we propose a
parameter estimation scheme based on maximum likelihood
estimation of the distribution’s parameters. Third, we prove
that the general form of the bivariate von Mises distribution is
closed under multiplication and present an efficient algorithm
to analytically calculate the product of two bivariate von
Mises distributions. This method allows efficient Bayesian
fusion on the torus.

1The bivariate von Mises distribution counterintuitively does not have von
Mises marginals in general.



II. BIVARIATE VON MISES DISTRIBUTION

Before we introduce the bivariate von Mises distribution,
we briefly review the properties of the univariate von Mises
distribution [4]. Its probability density function (pdf) is given
by

f(x;µ, κ) =
1

2πI0(κ)
exp(κ cos(x− µ)) ,

where x ∈ [0, 2π), µ ∈ [0, 2π) and κ ≥ 0. The normalization
constant contains I0(κ), the modified Bessel function of the
first kind [15, Sec. 9.6]. The parameter µ determines the
location of the mode of the distribution, whereas κ is a
concentration parameter that represents the uncertainty.

The bivariate von Mises (BVM) distribution is defined by
the probability density function

f(x;µ, κ,A)

= C(κ,A) · exp

(
κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)

(1)

+

[
cos(x1 − µ1)
sin(x1 − µ1)

]T
A

[
cos(x2 − µ2)
sin(x2 − µ2)

])
,

where x ∈ [0, 2π)2, µ ∈ [0, 2π)2,

A =

[
a1,1 a1,2
a2,1 a2,2

]
∈ R2×2 ,

and C(κ,A) > 0 is the normalization constant2. We discuss
the calculation of C(κ,A) in detail in Sec. III. The param-
eter µ once again controls the location of the distribution,
whereas κ controls the concentration. Additionally, there is
the parameter A that influences the correlation of the two
angles. It is important to emphasize that A is an arbitrary
2× 2 matrix, i.e., it does not need to be symmetric, positive
definite, or invertible. To illustrate the influence of the matrix
A, we depict several examples of the resulting pdf in Fig. 2.
As can be seen, the pdf can become bimodal for certain
choices of A, which is typically not intended3. Also, it is
noteworthy that there are four parameters, the entries of
A, parameterizing the correlation. This may seem surprising
as intuitively a single scalar parameter should be sufficient
(similar to the bivariate wrapped normal distribution [11]).

The marginals of the BVM distribution with matrix pa-
rameter can be obtained according to

f(x1) =

∫ 2π

0

f(x1, x2)dx2

= C · exp(κ1 cos(x1 − µ1))

·
∫ 2π

0

exp(α cos(x2)) exp(β sin(x2))dx2

= C · exp(κ1 cos(x1 − µ1)) · 2πI0(
√
α2 + β2)

2Some authors use a slightly different (but equivalent) parameterization,
in which angles are represented by unit vectors, see e.g., [16, eq. (2.10)]

3The exact condition when the density is bimodal are not yet known for
the general case of a bivariate von Mises distribution. Bimodality conditions
for the sine and cosine models are given in [7, Theorem 2,3]

where

α = κ2 + cos(x1 − µ1)a11 + sin(x1 − µ1)a21 ,

β = sin(x1 − µ1)a22 + cos(x1 − µ1)a12 .

Note that the marginals are VM distributed if A is a
zero-matrix, but not in general. This result constitutes a
generalization of the results by Singh et al. [6, eq. (2.2)]
and Mardia et al. [7, eq. (5)].

Several special cases of the bivariate von Mises distri-
bution have been considered in literature, in which A was
restricted to fulfill certain properties. Jupp et al. have dis-
cussed a distribution, where A is a multiple of an orthogonal
matrix [17, eq. (3·3)]. Another subclass was discussed by
Rivest [5], in which A is restricted to be a diagonal matrix,
i.e., a1,2 = a2,1 = 0. Later, further special cases of Rivest’s
model were considered by Singh et al. [6] and Mardia
et al. [7]. Singh et al. proposed the sine model, where
a1,1 = a1,2 = a2,1 = 0 and only a2,2 ∈ R can be chosen.
Analogously, Mardia et al. proposed the cosine model, where
a1,2 = a2,1 = a2,2 = 0 and only a1,1 ∈ R can be chosen.
Both models are compared in [7]. Several interesting results
have been published for these special cases, e.g., solutions for
the normalization constant, bimodality conditions, marginals,
parameter estimation schemes, etc.

However, very little is known about the general bivariate
von Mises distribution, as it is more difficult to analyze
than its special cases. In this paper, we seek to address
this deficiency and present several results for the general
bivariate von Mises distribution. The following sections will
be devoted to deriving an approximation of the normalization
constant, presenting a maximum likelihood estimator, and
proposing a method for Bayesian fusion.

III. NORMALIZATION CONSTANT

In this section, we derive a method for calculating the
normalization constant of a bivariate von Mises distribution.
Some authors such as Singh et al. [6], Rivest [5], and
Jupp et al. [17] have previously derived the normalization
constant for certain special cases of the bivariate von Mises
distribution but their solutions do not apply to the more
general distribution with matrix parameter A.

A. Series Representation

Obviously, the normalization constant is independent of
the location of the distribution, i.e., we do not need to
consider the value of µ. By rewriting the exponential function
using its power series representation [15, 4.2.1], we obtain

C(κ,A)−1 =

∫ 2π

0

∫ 2π

0

exp

(
κ1 cos(x1) + κ2 cos(x2)

+

[
cos(x1)
sin(x1)

]T
A

[
cos(x2)
sin(x2)

])
dx1dx2
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Fig. 2: Bivariate von Mises distributions with µ = [2, 3]T , κ = [0.7, 1.3]T , for different correlation matrices A. Note that
both x1 and x2 are 2π-periodic.

=

∞∑
n=0

1

n!

∫ 2π

0

∫ 2π

0

(
κ1 cos(x1) + κ2 cos(x2)

+

[
cos(x1)
sin(x1)

]T
A

[
cos(x2)
sin(x2)

])n
dx1dx2

=

∞∑
n=0

sn(κ,A)

n!
, (2)

where we define for n ∈ N0

sn(κ,A)

=

∫ 2π

0

∫ 2π

0

(
κ1 cos(x1) + κ2 cos(x2)

+ cos(x1)a1,1 cos(x2) + cos(x1)a1,2 sin(x2)

+ sin(x1)a2,1 cos(x2) + sin(x1)a2,2 sin(x2)
)n
dx1dx2 .

The term sn(κ,A) can be calculated analytically for arbitrary
n, but the solution gets complicated for large values of n.
We give solutions for the first few terms in the Appendix.
In the case of low concentrations, it is sufficient to consider
only the first couple of terms of the power series, as the
summands quickly converge to zero.

B. Error Bound

We can prove an error bound of this approximation by
considering the inequality for the n-th term

|sn(κ,A)|

≤
∫ 2π

0

∫ 2π

0

|κ1 + κ2 + a1,1 + a1,2 + a2,1 + a2,2|ndx1dx2

= |4π2(κ1 + κ2 + a1,1 + a1,2 + a2,1 + a2,2)|n .

Note that this bound is not tight. To simplify the notation,
we define the abbreviation

t = 4π2(κ1 + κ2 + a1,1 + a1,2 + a2,1 + a2,2).

Now, we only consider summands 0 to N−1 for calculation
of the normalization constant. Then, the absolute value of
the truncated part of the series can be bounded according to∣∣∣∣∣

∞∑
n=N

sn(κ,A)

n!

∣∣∣∣∣ ≤
∞∑
n=N

∣∣∣∣ tnn!
∣∣∣∣

=

∞∑
n=0

|t|N+n

(N + n)!

= |t|N
∞∑
n=0

|t|n

(N + n)!

≤ |t|
N

N !

∞∑
n=0

|t|n

n!

=
|t|N

N !
exp(t)→N→∞ 0 .

Thus, the error decreases for fixed t when the number of
summands N is chosen large enough. As can be seen from
this bound, the proposed approximation is mostly suitable for
situations where the concentration is small, i.e., the uncer-
tainty is high. In cases where the concentration is high, other
approximations may need to be found, e.g., approximations
based on the similarity of von Mises distributions of high
concentration to the Gaussian distributions.



IV. PARAMETER ESTIMATION

For many practical problems, it is essential to be able
to estimate the parameters of a distribution based on a set
of samples. In this section, we propose an algorithm based
on the concept of maximum likelihood estimation (MLE)
to address this problem. The related problem of parameter
estimation for the bivariate wrapped normal distribution is
discussed in [18]

A. Maximum Likelihood Approach

We assume that n independent samples x(1), . . . , x(n) ∈
[0, 2π)2 on the torus are given. Then, the likelihood of
obtaining these samples is given by

L(µ, κ,A) =

n∏
j=1

f(x(j);µ, κ,A) ,

and we seek to obtain the parameters µ, κ,A that maximize
L(µ, κ,A). For this purpose, we consider the log-likelihood

log(L(µ, κ,A) =

n∑
j=1

log(f(x(j);µ, κ,A))

= n log(C(κ,A)) +

n∑
j=1

κ1 cos(x
(j)
1 − µ1)

+ κ2 cos(x
(j)
2 −µ2) +

[
cos(x

(j)
1 −µ1)

sin(x
(j)
1 −µ1)

]T
A

[
cos(x

(j)
2 −µ2)

sin(x
(j)
2 −µ2)

]

and obtain the parameters according to

arg max
µ,κ,A

log(L(µ, κ,A)

s. t. κ1 > 0, κ2 > 0

Unfortunately, a closed-form solution of this problem does
not seem to exist. Therefore, we use a numerical optimization
algorithm to find the best solution. As this is a non-convex
optimization problem, we cannot guarantee to find the global
optimum, but starting with a well-chosen initial value seems
to be sufficient to obtain a good local optimum in practice.

In order to obtain the initial value for the optimization, we
propose the following method. First, we observe that if A is
a zero matrix, the marginals∫ 2π

0

f(x;µ, κ,A)dx1 ,

∫ 2π

0

f(x;µ, κ,A)dx2

are von Mises distributions with parameters µ1, κ1 and
µ2, κ2, respectively. Therefore, we fit von Mises distributions
to the marginals of the samples using moment matching (see
[19]) and use their parameters to obtain an initial estimate
for µ and κ. This is equivalent to obtaining µ from the first
trigonometric moment of the samples (see [11]). The matrix
A is then initialized with a zero matrix.

B. Derivatives

Some optimization algorithms allow the user to specify
the derivatives of the value function in order speed up the
optimization process. For this reason, we derive analytical
expression for the derivatives in this section. The derivatives
of the log-likelihood can be calculated as follows. Deriving
with respect to µ1 yields

∂

∂µ1
log(L(µ, κ,A) =

n∑
j=1

(
κ1 sin(x

(j)
1 − µ1)

+

[
sin(x

(j)
1 − µ1)

− cos(x
(j)
1 − µ1)

]T
A

[
cos(x

(j)
2 − µ2)

sin(x
(j)
2 − µ2)

])
and the derivative with respect to µ2 can be obtained analo-
gously. The derivative with respect to κl (l = 1, 2) is given
by

∂

∂κl
log(L(µ, κ,A)

= −nC(κ,A)

(
∂

∂κl

(
C(κ,A)−1

))
+

n∑
j=1

cos(x
(j)
l − µl) ,

where the derivative of the inverse normalization constant is
given by

∂

∂κl
(C(κ,A)−1) =

∞∑
n=0

∂
∂κl

sn(κ,A)

n!
.

The derivative of sn can be calculated analytically because
sn is a polynomial for all n (see Appendix). If we differen-
tiate with respect to a1,1, we obtain

∂

∂a1,1
log(L(µ, κ,A)

= −n
∂

∂a1,1

(
C(κ,A)−1

)
C(κ,A)−1

+

n∑
j=1

cos(x
(j)
1 −µ1) cos(x

(j)
2 −µ2) ,

where

∂

∂a1,1
(C(κ,A)−1) =

∞∑
n=0

∂
∂a1,1

sn(κ,A)

n!
.

Once again, the derivative of sn can be calculated analyti-
cally. The other entries of A can be obtained in a similar
way.

V. BAYESIAN FUSION

Now that we have shown how to estimate the parameters
of a single bivariate wrapped normal distribution, we address
the questions of how to fuse several of these densities. In
order to perform Bayesian fusion of multiple densities, we
need to derive a way to calculate the product of two bivariate
von Mises densities. The reason is that according to Bayes’
theorem, we have

f(x|z) = f(z|x) · f(x)
f(z)

∝ f(z|x) · f(x) ,



M(µ) =


cos(µ1) cos(µ2) − sin(µ1) cos(µ2) − cos(µ1) sin(µ2) sin(µ1) sin(µ2)
sin(µ1) cos(µ2) cos(µ1) cos(µ2) − sin(µ1) sin(µ2) − cos(µ1) sin(µ2)
cos(µ1) sin(µ2) − sin(µ1) sin(µ2) cos(µ1) cos(µ2) − sin(µ1) cos(µ2)
sin(µ1) sin(µ2) cos(µ1) sin(µ2) sin(µ1) cos(µ2) cos(µ1) cos(µ2)


Fig. 3: Matrix required for Bayesian fusion of bivariate von Mises densities.

i.e., if we assume f(z|x) and f(x) to be distributed according
to bivariate von Mises distributions, we can obtain f(x|z) as
the (renormalized) product of the two.

Before we calculate the product, we first consider the
probability density function (1) and rewrite the matrix mul-
tiplication, which yields

f(x;µ, κ,A) = C · exp(κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)

+ cos(x1 − µ1)a11 cos(x2 − µ2)

+ cos(x1 − µ1)a12 sin(x2 − µ2)

+ sin(x1 − µ1)a21 cos(x2 − µ2)

+ sin(x1 − µ1)a22 sin(x2 − µ2)) .

By using the addition theorems for sine and cosine, we can
reformulate the exponent as

κ1 cos(µ1) cos(x1) + κ2 cos(µ2) cos(x2)

+ κ1 sin(µ1) sin(x1) + κ2 sin(µ2) sin(x2)

+ cos(x1) cos(x2) ·M(µ)1,: · a
+ sin(x1) cos(x2) ·M(µ)2,: · a
+ cos(x1) sin(x2) ·M(µ)3,: · a
+ sin(x1) sin(x2) ·M(µ)4,: · a ,

where a = [a1,1, a2,1, a1,2, a2,2]
T is the vectorized form

of A and M(µ)j,: refers to the j-th row of M(µ), which is
given in Fig. 3.

Now we consider two bivariate von Mises distributions
f(x;µX , κX ,AX) and f(x;µY , κY ,AY ) with parameters
µX , κX ,AX and µY , κY ,AY , respectively. We seek to
obtain the parameters µZ , κZ ,AZ of a third bivariate von
Mises distribution f(x;µZ , κZ ,AZ), such that

f(x;µX , κX ,AX) · f(x;µY , κY ,AY ) ∝ f(x;µZ , κZ ,AZ)

For this purpose, we consider the exponent of the product
and use the method of equating the coefficients to obtain the
system of eight equations

κX1 cos(µX1 ) + κY1 cos(µY1 ) = κZ1 cos(µZ1 ) , (3)

κX1 sin(µX1 ) + κY1 sin(µY1 ) = κZ1 sin(µZ1 ) , (4)

κX2 cos(µX2 ) + κY2 cos(µY2 ) = κZ2 cos(µZ2 ) , (5)

κX2 sin(µX2 ) + κY2 sin(µY2 ) = κZ2 sin(µZ2 ) , (6)

M(µX)1,:a
X +M(µY )1,:a

Y = M(µZ)1,:a
Z , (7)

M(µX)2,:a
X +M(µY )2,:a

Y = M(µZ)2,:a
Z , (8)

M(µX)3,:a
X +M(µY )3,:a

Y = M(µZ)3,:a
Z , (9)

M(µX)4,:a
X +M(µY )4,:a

Y = M(µZ)4,:a
Z . (10)

The equations (3)–(6) can be solved to obtain µZ and κZ ,
which yields

κZ1 =
√

(mC
1 )

2 + (mS
1 )

2 ,

κZ2 =
√

(mC
2 )

2 + (mS
2 )

2 ,

µZ1 = atan2(mS
1 ,m

C
1 ) ,

µZ2 = atan2(mS
2 ,m

C
2 ) ,

where

mC
1 = κX1 cos(µX1 ) + κY1 cos(µY1 ) ,

mS
1 = κX1 sin(µX1 ) + κY1 sin(µY1 ) ,

mC
2 = κX2 cos(µX2 ) + κY2 cos(µY2 ) ,

mS
2 = κX2 sin(µX2 ) + κY2 sin(µY2 ) .

Effectively, this corresponds to the multiplication formula for
univariate von Mises distributions in each dimension.

The last four equations can be simplified to

M(µZ) · aZ = M(µX) · aX +M(µY ) · aY ,

which can be solved by inverting M(µZ)

aZ = M(µZ)−1(M(µX) · aX +M(µY ) · aY ) (11)

to obtain aZ , and thus AZ . It can be shown that detM(µ) =
1, irrespective of µ. Hence, M(µ) is always invertible and
(11) can always be solved.

It is worth mentioning that our result for the product of two
bivariate von Mises densities also shows that the restricted
versions discussed by Singh et al. [6] and Mardia et al. [7]
are, in general, not closed under multiplication because an
entry of A can be non-zero after multiplication, even if it
was zero before, depending on M(µ).

VI. EXAMPLES

In this section, we give some examples of how the
proposed methods can be applied.

A. Parameter Estimation Example

The following example illustrates the parameter estimation
method discussed in Sec. IV. For this purpose, we use the
wind data set from the R package circular [20]. This data set
was also discussed in [21]. It contains measurements of the
wind direction measured by a meteorological station at Col
De La Roa, Italy, from January 29th, 2001 to March 31st,
2001. For each day, we consider the measurements obtained
at 3:00 am and at 3:15 am. In this way, we obtain 62 two-
dimensional samples defined on the torus.



bivariate von Mises

bivariate wrapped normal

Fig. 4: Parameter estimation example. The samples are
shown in red and the value of the probability density function
is given by the color of the background. Note that both the
x and y axes are 360◦-periodic.

Then, the maximum likelihood estimation procedure pro-
posed in Sec. IV was used to obtain the parameters of a
bivariate von Mises distribution. For comparison, we also
obtained the parameters of a bivariate wrapped normal dis-
tribution using numerical MLE [18], because this distribution
is also a common model for toroidal data. The resulting
densities are depicted in Fig. 4.

It can be seen that both distributions are able to repre-
sent the obvious correlation between the two measurements.
However, the bivariate von Mises seems to reflect the true
underlying density more closely because it is able to reflect
the asymmetric distribution of the samples as a result of the
additional degrees of freedom. This is illustrated by the fact
that the log-likelihood of the BVM distribution is higher (-
147.3259) than the log-likelihood of the BWN distribution
(-164.5940). In future work, a rigorous goodness of fit test
could be used to better quantify this result.

B. Fusion Example

In this example, we consider two bivariate von Mises
distributions f(x;µX , κX ,AX) and f(x;µY , κY ,AY ) with
parameters

µX = [2, 4]T , κX = [0.7, 0.2]T , AX =

[
0 0
0 −0.3

]

and

µY = [1.5, 5]T , κY = [0.1, 2]T , AY =

[
0 0
0 0

]
,

respectively. By applying the Bayesian fusion formulas
given in Sec. V, we obtain the parameters of the product
f(x;µZ , κZ ,AZ), which are given by

µZ = [1.9392, 4.9203]T ,

κZ = [0.7892, 2.1148]T ,

AZ =

[
0.0145 0.0110
−0.2383 −0.1813

]
.

This example is visualized in Fig. 5. As shown in Sec. V,
this result does not involve any approximation, i.e.,

f(x;µZ , κZ ,AZ) ∝ f(x;µX , κX ,AX) · f(x;µY , κY ,AY ) .

Observe that all entries of AZ are non-zero, even though
AX had just one non-zero entry and AY was a zero matrix.
This illustrates the fact that the sine model considered by
Singh et al. [6] is not closed under multiplication.

VII. CONCLUSION

In this paper, we have presented a number of results on the
bivariate von Mises distribution. In particular, we have pro-
posed a series representation of the approximation constant
that allows the efficient computation of an approximation.
Furthermore, we have discussed parameter estimation based
on a maximum likelihood approach. Finally, we have shown
that the bivariate von Mises distribution is closed under mul-
tiplication and given an algorithm to calculate the parameters
of the renormalized product in closed form. This allows
efficient Bayesian fusion of bivariate von Mises densities,
which facilitates their use in a variety of fusion problems on
the torus.

Future work may include an extension of the discussed
methods to the n-torus (see also [9]), and the derivation of
a convolution (or more general propagation) algorithm to
create a recursive filter as was developed for the bivariate
wrapped normal distribution [11]. Moreover, further investi-
gation of the normalization constant may be of interest, as it
may be possible to represent it as a series of Bessel functions,
similar to the results for the special cases given in [5], [6],
and [7].

An implementation of the algorithms proposed in this
paper is available as part of the MATLAB library
libDirectional [22], a library dedicated to directional
statistics and estimation involving directional quantities.

APPENDIX

The first terms of sn(κ,A) in (2) are given by

s0(κ,A) = 4π2 ,

s1(κ,A) = 0 ,

s2(κ,A) = π2(a21,1 + a21,2 + a22,1 + a22,2 + 2κ21 + 2κ22) ,

s3(κ,A) = 6κ1κ2a1,1π
2 ,



f(x;µX , κX ,AX) f(x;µY , κY ,AY ) f(x;µZ , κZ ,AZ)

Fig. 5: Fusion example. The density on the left is multiplied with the density in the middle to obtain the density on the
right. On the top, the densities are visualized on the torus, whereas on the bottom, the same densities are visualized as a
function on the plane.
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