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Abstract— One of the challenges in shape tracking is how
to deal with associating measurements to sources in the shape,
while also taking to account parameters such as shape curvature
and noise characteristics. Partial Information Models (PIMs)
introduce a new approach that addresses this issue. The idea
is to reparametrize each measurement into two components,
one which depends on the position of its source on the shape,
and another which depends on how well it fits in the shape.
This allows for the derivation of a partial likelihood which
combines the strengths of probabilistic approaches and distance
minimization techniques. We propose an implementation of
PIMs using level-sets, which allow for a close approximation
of the distribution of distances we expect for a given shape. In
turn, this can be used to develop estimators that are highly
robust against high noise and occlusions.

I. INTRODUCTION

The idea of shape fitting is to find the set of shape
parameters that best fit a list of given point measurements. In
general, the shape is an extended object, or in other words,
measurements are assumed to be generated from multiple
point sources on the boundary of the shape. The problem is
that, in general, these measurements are noisy, so that there
is no guarantee that they lie on the boundary of the target
shape. The usual approach to solve this issue is to associate
each measuremement in some way to sources on the shape,
which allows for the derivation of a value or metric to be
minimized or maximized.

Thus, shape fitting techniques can be categorized by taking
into account two aspects: the shapes they consider, and the
way they deal with the aforementioned association problem.
For the first, there are approaches that deal with conics [1],
[2], rectangles [3], line segments [3], and many others. For
the second, we can subdivide this class into approaches that
consider multiple sources probabilistically [3], [4], while
others consider only a single best-fitting source [5], [6] which
minimizes some metric. From the latter, a common approach
is to minimize the sum of square Euclidian distances between
measurements and their closest points [5], [7], also denoted as
least squares approaches. As these techniques do not require
a probabilistic modeling, they have the advantage of allowing
for easier and robust implementations. However, as they do
not exploit information about source selection and the noise
characteristics, they have a problem of estimation bias [2],
[8] that needs to be treated carefully, as it increases rapidly
with high levels of noise.

In this paper we will address the problem of shape fitting
using Partial Information Models [8]. The idea is that, by
carefully reparametrizing the received measurements, we
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can exploit partial likelihoods [9] in order to minimize the
distances between measurements and the shape, while still
taking into account noise properties and shape information.
To achieve this, we will use level-sets to reconstruct the
probability density of the distances we expect for a given
shape in the presence of isotropic Gaussian noise. This allows
for estimators that remove estimation bias almost completely
while also remaining robust even in cases of very high noise.

This paper is structured in the following way. First, we
will detail the problem formulation in Sec. II. Then, we will
describe the shape models we will use for the derivation
in Sec. III. After that, our contribution will be presented in
Sec. IV. Following this, the implementation details will be
explored in Sec. V. Sec. VI will present the evaluation, and
then Sec. VII concludes the paper.

II. PROBLEM FORMULATION

In this work we are concerned with tracking an extended
target shape, based on incoming point measurements Y =
{y

0
, · · · , y

n
} in Cartesian coordinates. The boundary of

the target shape is treated as the set of points Sx, which
we assume is a finite, closed and orientable curve. The
parameters of this shape are contained in the state vector x.
Each measurement y

i
is assumed to have been generated by

the following random process. First, a measurement source
zi ∈ Sx is selected from the shape boundary. Then, this
source is corrupted by an additive noise term vi, which is
Gaussian distributed in the form of

vi ∼ N (0,Cv,i) , (1)

yielding the measurement y
i
. In this paper, we will focus

on isotropic noise, i.e., Cv,i = σ2
v,i · I, where σ2

v,i may be
different for each measurement. Furthermore, we assume that
the noise term vi is independent from the state and between
measurements. Probabilistically, this generative model can be
described using the probability density p(y

i
|x). For multiple

measurements, we can extend this to

p(Y |x) =

n∏
i=0

p(y
i
|x) , (2)

which allows us to treat each measurement individually. In
the following, the subindex i will be dropped unless needed.

III. SHAPE MODELS

A shape model describes the extended target Sx, and more
importantly, it tells us how to associate a measurement y to
its possible sources. The main problem is that the true source
is generally not known due to the noise term. This leads to
an association problem, as we can only find how y is related
to the state x by associating it to one or more sources. For



simplicity, we will focus on curves in two-dimensional space,
i.e., where sources and measurements are both in R2.

In the following, we will discuss the parametric represen-
tation of the shape Sx. Then, the remainder of this section
will discuss how to deal with the measurement association.

A. Arc Length Parametrization

In order to discuss the shape Sx, first we will need a proper
way to describe all points that belong to the curve. Let zx(s),
for s ∈ R, be an arbitrary regular arc length parametrization
of the shape boundary (Fig. 1). Or in other words, zx(s) is
differentiable, does not jump backwards, and between zx(0)
and zx(s) we will traverse an arc with length s. Hence,
assuming that the Sx has a total length of sT , we can see
that for s ∈ [0, sT ] the function zx(s) iterates through all
possible sources. In the following, we will denote s as the
source parameter.

For the mathematical derivation we will require the
following properties of an arc length parametrization. It can
be seen that z′x(s), i.e., its derivative vector in function of
s, determines the tangent at the position s. Analogously, we
can define nx(s) as the function which returns the normal
at s, obtained by rotating z′x(s) either π

2 or −π2 so that it
points outside. Furthermore, we can exploit the fact that Sx
is parametrized by arc length to obtain the following results.
On the one hand, we know that ‖z′x(s)‖ = 1 for all s, where
‖·‖ is the Euclidian norm, from which it also follows that
‖nx(s)‖ = 1. On the other hand, it also holds that n′x(s) is
always orthogonal to nx(s).

Fig. 1: Parametrization for the curve in black. For a given
parameter s, the function zx(s) selects the corresponding
source. The tangent at this point is z′x(s), and the normal is
nx(s) and points outwards. Light blue is the shape interior.

Thus, we can visualize the generative model from Sec. II
in the following way. First, we randomly draw a parameter
s according to a distribution p(s |x) defined in [0, sT ]. This
yields the source zx(s). Second, this source is corrupted by
the Gaussian noise term v according to (1). From this, we
obtain the measurement equation

y = zx(s) + v , (3)

which, for a given s, can be described probabilistically as

p(y | s,x) = N (y − zx(s); 0,Cv) .

Note that the arc length representation is only important
for the mathematical derivation. As we will see later, the
implementation can use any arbitrary parametrization.

B. Spatial Distribution Model

A Spatial Distribution Model (SDM) [10] addresses the
association problem by associating the measurement y to all
of its possible sources zx(s), by marginalizing s in the form
of

p(y |x) =

sT∫
0

N (y − zx(s); 0,Cv) · p(s |x) ds . (4)

Note, however, that this requires p(s |x) to be explicitly
known. Otherwise, a common approximation is to assume that
sources are selected uniformly from Sx, i.e., p(s |x) = 1

sT
for s ∈ [0, sT ].

C. Greedy Association Model

In many cases, such as when occlusions are present,
there is no straightforward way to obtain p(s |x), and an
assumption of a uniform distribution may not yield good
results. An alternative approach is to consider for each
received measurement only a single source, i.e., the source
which we believe to have generated it. As generally we cannot
know the true source due to the noise term, we approximate
it by the best-fitting source which minimizes some sort of
distance metric. Thus, our approach is as follows. First, for
a specific measurement ỹ, we find the best fitting source πỹ .
Then, we assume that πỹ is the true source, which allows us
to derive a form of p(y |x) which exploits this information.

For this paper, the best-fitting source is defined as the most
likely source, that is,

πỹ := arg max
z∈Sx

N (ỹ − z; 0,Cv) ,

so that πỹ acts as some sort of projection. As we deal with
isotropic noise, this is equivalent to

πỹ = arg min
z∈Sx

‖ỹ − z‖2 , (5)

i.e., the best-fitting source is the one that minimizes the
Euclidian distance. We define sỹ as the source parameter that
generated πỹ , or in other words, πỹ = zx(sỹ). Finally, as we
only assume sỹ as a possible source parameter, it follows that
p(s |x) ≈ δ(s−sỹ), where δ(·) is the Dirac-delta distribution.
Plugging this on (4) leads to

p(y |x) =

sT∫
0

N (y − zx(s); 0,Cv) · δ(s− sỹ) ds (6)

= N (y − zx(sỹ); 0,Cv)

= N (y − πỹ; 0,Cv) .

as a result of the sifting property. This approach, denoted as
a Greedy Association Model (GAM) [8], can be seen as a
Bayesian interpretation of distance minimization approaches
[3], [8].

The advantage of this mechanism is clear, as once the
best-fitting source is found, p(y |x) can be obtained by a
simple evaluation in a Gaussian distribution. Furthermore,
unlike SDMs, there is no need to know the underlying p(s |x).



Fig. 2: Projection-based parametrization based on the curve shape in black. Left, a measurement y is parametrized by its
Cartesian coordinates

[
y(0), y(1)

]
. Right, we reparametrize y as [sy, ly], where sy is the source parameter of the best-fitting

source πy , and ly is the signed Euclidian distance.

This allows GAMs to be robust against occlusions and sensor
artifacts, as we do not need to know a-priori which parts of the
shape are visible to the sensor. However, this simplification
comes with the caveat that it only considers the best-fitting
source, which usually does not correspond to the true source.
Thus, a GAM approach is only as good as its ability to
discern what the true source was. This leads to estimation
bias which increases with noise and shape curvature [2], [8].
It can be seen that we have two properties that appear to act
against each other, unbiasedness and resistance to occlusion.
In the following, we explore a new approach that aims to
combine both strengths.

IV. PARTIAL INFORMATION MODEL

The key idea of Partial Information Models (PIMs) [8] is
to minimize the effect of the unknown true source by finding
a suitable parametrization φx of y which divides it into two
scalar components sy and ly . These values are related by

y = φx(sy, ly)

where sy depends on p(s |x) but ly does not. If we assume
that sy and ly are independent from each other, we can write

p(sy, ly |x) = p(sy |x) · p(ly |x) . (7)

Then, by applying the concept of partial likelihood [9], we
ignore the sy component and focus on the ly component.
Thus, instead of deriving p(y |x), we focus instead on

f(y |x) := p(ly |x) . (8)

As in (2), we can extend this to multiple measurements as

f(Y |x) =

n∏
i=0

f(y
i
|x) . (9)

In practice, it is extremely difficult if not impossible to find
a parametrization where (7) holds for arbitrary shapes. [8]
proposed using a projection-based parametrization (Fig. 2)
where sy describes the best-fitting source, and ly describing
the so-called signed Euclidian distance to this source. While
this approach does not make sy and ly fully independent from
each other, even in the presence of isotropic noise, it reduces
the correlation enough for (8) to yield good results. In the
following, we will describe the proposed parametrization and
then derive a formal description of p(ly |x).

A. Projection-based Parametrization

We are now interested in a function which produces a point
p from the scalars sp and lp. More formally, we relate an
arbitrary point p ∈ R2 to the scalars sp and lp by means of
the function φ : [0, sT ]× R→ R2, defined as

p = φx(sp, lp) := zx(sp) + lp · nx(sp) ,

that is, p is obtained by selecting the source corresponding
to sp, and then adding the normal at that point scaled by lp.
We are interested in two aspects of this function, its Jacobian
matrix and its inverse. The Jacobian matrix of φx(·, ·), which
we will later require in order to use the change-of-variables
technique, has the form

Jφ(sp, lp) :=
[
∂φ
∂sp

(sp, lp),
∂φ
∂lp

(sp, lp)
]

=
[
z′x(sp) + lp · n′x(sp), nx(sp)

]
.

We observe that both columns are orthogonal to each other,
as both z′x(sp) and n′x(sp) are orthogonal to nx(sp) (see
Sec. III-A). Thus, the determinant of the Jacobian matrix has
the form

det (Jφ(sp, lp)) = ‖ ∂φ
∂sp

(sp, lp)‖ · ‖
∂φ

∂lp
(sp, lp)‖

= ‖ ∂φ
∂sp

(sp, lp)‖ ,

as the norm of the partial derivative for lp is always 1. The
inverse has the form [

sp
lp

]
= φ−1x (p) ,

where sp and lp are obtained in the following way. On the
one hand, sp can be calculated as the source parameter that
corresponds to its best-fitting source πp, as we did in Sec. III-
C. On the other hand, lp represents the signed Euclidian
distance dφx(p) to this source, defined as

dφx(p) :=

{ ‖p− πp‖ if p outside Sx
−‖p− πp‖ otherwise . (10)

For the sake of formality, we see that multiple pairs of
[
sp, lp

]
may produce the same point p. In order to ensure that φ
remains invertible, we will only consider as valid the pair
with the smallest |lp|.



B. Deriving a Measurement Equation for PIMs
By applying φ−1x to both sides of (3) we obtain the new

measurement equation[
sy
ly

]
= φ−1x (zx(s) + v) . (11)

As a short reminder, sy is the source parameter of the best-
fitting source of y, and s is the parameter for the source
we are associating y with. From (11) we are particularly
interested in the part which is related to ly , or in other words,
we want to derive p(ly |x) from

ly = dφx(zx(s) + v) .

The approach we will use works as follows. First, for a given
s, we describe (11) probabilistically as

p(sy, ly|s,x) = p(y | s,x) · det (Jφ(sy, ly))

= N (φx(sy, ly)− zx(s); 0,Cv) · ‖
∂φ

∂sp
(sy, ly)‖

by applying the change-of-variables technique. In a similar
fashion as SDMs in (4), we obtain the following density by
marginalizing out s,

p(sy, ly |x) =

sT∫
0

p(sy, ly | s,x) · p(s |x) ds . (12)

Finally, by also marginalizing out sy , we obtain

p(ly |x) =

sT∫
0

p(sy, ly |x) dsy . (13)

However, it becomes clear that this term is generally un-
tractable, in particular due to the evaluation of two integrals.
Furthermore, it still requires an a-priori knowledge of p(s |x).
In the following, we will simplify this model using ideas
from GAMs.

C. Simplifying the Model
In a similar way as we did with GAMs in (6), we remove

the dependency on p(s |x) by considering only the best-fitting
source. Thus, given a measurement ỹ, we consider that the
only possible source is πỹ , yielding[

sy
ly

]
= φ−1x (πỹ + v) ,

from which we are interested particularly in the term

ly = dφx(πỹ + v) . (14)

As we only consider a single source, p(s |x) is reduced again
to a Dirac, which reduces (12) to a simple evaluation in a
Gaussian distribution in the form of

p(sy, ly |x) = N (φx(sy, ly)− πỹ; 0,Cv) ‖
∂φ

∂sy
(sy, ly)‖ .

By plugging this term in (13), we obtain

p(ly|x) =

sT∫
0

N (φx(sy, ly)− πỹ; 0,Cv) · ‖
∂φ

∂sy
(sy, ly)‖ dsy .

Fig. 3: For the given curve (black), the level-set Lx(ly1)
(green) contains y

1
and all other points with the signed

Euclidian distance ly1 to the shape. Similarly, Lx(ly2) (blue)
contains all points with signed Euclidian distance ly2 .

D. PIMs as Line Integrals

An interesting fact of p(ly |x) is that it has the form of
a line integral. By considering all sy ∈ [0, sT ], the term
φx(ly, sy) traverses the curve formed by all points whose
signed Euclidian distance to Sx is equal to ly . This curve is
the level-set

Lx(ly) := { p ∈ R2 | dφx(p) = ly } ,

visualized in Fig. 3. By using a change of variables, we can
use any smooth parametrization of Lx(ly) without changing
the result. For example, let us consider an arbitrary function
r(ŝ) : [ŝ0, ŝ1]→ R2 that describes the same level-set. Then,
we can also write

p(ly |x) =

ŝ1∫
ŝ0

N (r(ŝ)− πỹ; 0,Cv) · ‖r′(ŝ)‖ dŝ , (15)

where r′(ŝ) represents the derivative vector.
At this point, we see that the arc length parameter s and the

parametrization zx(s), which are usually difficult to calculate,
are not needed anymore. Instead, an implementation only
requires πỹ and can use any arbitrary parametrization of
Lx(ly).

V. IMPLEMENTATION USING POLYGONS

Given the theoretical derivation presented in Sec. IV,
we now want to consider the practical aspects of the
implementation. To recapitulate, a PIM works as follows.
Given a measurement ỹ, we

1) find the best-fitting source πỹ of ỹ as shown in (5),
2) calculate lỹ = dφx(ỹ) using (10), then finally
3) obtain the distribution p(ly |x) that arises from (14),

calculated using (15).
The most difficult tasks are finding πỹ and constructing
p(ly |x). In this section we will describe an approach to
obtain these terms for general shapes, with focus on circles,
by using polygonal shapes.

A. Best-Fitting Sources

For a circle with center cx and radius rx, the best-fitting
source of ỹ can be obtained easily from

πỹ = cx +
ỹ − cx
‖ỹ − cx‖

· rx .



For general shapes, we can assume that they can be approxi-
mated using the polygon Asx = {as0, · · · , asm} ∈ R2×m. For
each segment connecting the vertices asi and asi+1 we define
a candidate point as

πcỹ,i := asi + clamp(ti) ·
(
asi+1 − asi

)
,

where clamp(ti) := max(min(ti, 1), 0) and

ti :=
ỹ − asi

‖asi+1 − asi‖2
.

Finally, from each of the found candidates πcỹ,i we select the
one with the smallest Euclidian distance to ỹ as the best-fitting
source πỹ .

B. Constructing the Level-Sets

In order to calculate p(ly |x), we need to construct the
level-set that corresponds to ly . For circles, the construction is
straightforward, as the level-set Lx(ly) of a circle of radius rx
is another circle with the same center and radius rx + ly . For
arbitrary shapes, however, the explicit construction of a level-
set may be difficult. Approaches to find these can be found
in literature such as [11]. Once the level-set is available, we
can to calculate p(ly |x) easily using the following approach.
First, we approximate the level-set Lx(ly) as the polygonal
shape Alx. Then, we obtain a solution by using

p(ly |x) ≈ Lp
(
πỹ,Alx,Cv

)
,

where Lp(·, ·, ·) is the integral of a Gaussian distribution over
the polygon segments.

C. Gaussian Approximation of p(ly |x)

An alternative to explicitly calculating p(ly |x) was pro-
posed in [8] by means of a Gaussian distribution. The idea
is, for a given x, to calculate the mean and variance of ly in
the form of

l̄y = E
[
dφx(πỹ + v)

]
σ2
ly = E

[
(dφx(πỹ + v)− l̄y)2

]
,

which allows us to construct a Gaussian approximation by
moment matching, given by

p(ly |x) ≈ N (ly; l̄y,σ2
ly ) .

As these values generally cannot be obtained analytically,
they are approximated by means of sample propagation.
The advantage of this approach is that it avoids the explicit
construction of level-sets required by (15). However, it should
be noted that for higher noise levels, a Gaussian distribution
generally stops being an appropriate fit for p(ly |x) .

D. Developing an Estimator

By assuming that Y is fixed and x is a free variable, we
can interpret (9) as a likelihood function. This allows us to
use stochastic approaches to estimate the parameter vector x.
Thus, a maximum likelihood (ML) estimate is obtained from

xML = arg max
x

f(Y |x) . (16)

Furthermore, a recursive Bayesian estimator can be used to
update an estimate of x, described with the prior distribution
fp(x), in the form of

fe(x | Y) = c · f(Y |x) · fp(x) ,

where c is a normalization constant, and fe(x) is the posterior
distribution. Coupled with a dynamic model, a Bayesian
estimator can also incorporate information about changes in
time and predict the state to a subsequent time step. However,
for the evaluation we will focus on (16).

VI. EVALUATION

In this section we will evaluate the proposed PIM approach.
First, we will examine how the likelihood functions of selected
state-of-the-art techniques behave for different noise levels.
Then, we will compare these techniques in fitting scenarios
using circles. As an evaluation for relatively low noise was
already performed in [8], in this paper we want to explore
higher noise levels to test the limitations of the proposed
approaches. Fig. 4 shows example measurements and their
spread in relation to the size of the considered shapes.
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(a) Example measurements σv = 1.
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(b) Example measurements σv = 3.

Fig. 4: Experiment setup with example measurements. The
dotted vertical lines at −1 and 1 help visualize the bounds
of the ground truth circle with radius rx = 1.

A. Circle Likelihood Functions

In the following, we want to compare four approaches
for fitting a circle. The first one is PIM-LSet, i.e., the PIM
using level-sets as described in Sec. V-B. Then, the second
one is PIM-Gauss, which uses the Gaussian approximation
explained in Sec. V-C with 31 samples. Third, we wanted
to compare the approach proposed by Okatani et al. [2].
For this approach, given a circle with radius rx, we use the
approximation

p(ly |x) ≈ N
(
ly; ηx,σ2

v ·
(
1− η2x

)2)
,

with ηx :=
σ2
v

2rx
. Finally, the Least Squares approach assumes

p(ly |x) ≈ N
(
ly; 0,σ2

v

)
. (17)

It can be seen that maximizing the product of likelihoods
from (17) is equivalent to minimizing the sum of their
corresponding squared Euclidian distances l2y . For reference,
the ground truth circle has a radius of rx = 1.

When fitting circles to measurements without occlusions,
it is commonly the case that the center can be easily found
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(a) Likelihoods for σv = 0.5.
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(b) Likelihoods for σv = 3.

Fig. 5: Likelihood functions for Y with different noise levels.
Dotted vertical lines show the rx which yield the ML.

but the radius estimate is biased. Thus, for this experiment,
we are only interested in estimating the radius xr of a circle
whose center is fixed at the origin. Fig. 4 shows the setup
and example measurements. Then, we generated a set Y of
105 measurements from sources which were drawn uniformly
from the circle, and we multiplied their likelihoods as shown
in (9) to obtain the corresponding likelihood functions for Y .
Note that we used a high amount of measurements because
we wanted to obtain the best possible results each estimator
could provide. The results are shown in Fig. 5. It can be seen
that PIM-LSet, PIM-Gauss, and Okatani are almost identical
for low noise levels, as the Gauss approximation is a good fit
for p(ly |x). However, as noise increases, Okatani encounters
a singularity and becomes heavily biased. The Least Squares
approach is observed to consistently return the worst results.

B. Circle Fitting with ML

Next, we wanted to compare the four approaches when the
center was also being estimated. Thus, the state had the form
x =

[
cTx , rx

]T
, where cx was the circle center. In addition,

we also wanted to evaluate the effect of occlusions, and for
this we only generated sources uniformly in the range of
[0,α]. Fig. 6 shows the ML results after 105 measurements.
To obtain these maxima we used the MATLAB function
fminsearch with default parameters and a starting estimate of[
3, 3, 3

]T
. For reference, the ground truth was

[
0, 0, 1

]T
. In

cases of occlusion, we see that the center estimate was biased
in a direction opposite to the missing sources. Otherwise,
as expected, the center was found by all estimators even
with high noise. For the radius, however, Okatani and Least
Squares were once again highly biased. The PIM approaches
could still estimate the radius appropriately, even with a high
noise variance of σ2

v = 36.

VII. CONCLUSIONS

In this paper, we presented an implementation of Partial
Information Models. The idea was to reparametrize mea-
surements in function of their best-fitting source and their
distance to the shape, which allowed for the derivation of a
partial likelihood which reduced the effect of the association
problem. Then, using level-sets, we derived a mechanism to
closely approximate the distribution of distances we expect

for a given shape. Using this information, we developed a
maximum likelihood estimator which was able to estimate
shapes, in particular circles, even in the presence of occlusions
and extremely high noise levels. We compared our estimator
with other state-of-the-art approaches to demonstrate its high
robustness and low estimation bias.
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(a) Results for α = π,σv = 3.
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(b) Results for α = 3
2
π,σv = 3.
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(c) Results for α = 2π,σv = 3.
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(d) Results for α = 2π,σv = 6.

Fig. 6: Results for different noise levels, using a circle (black)
that only generates measurements in an arc between [0,α].
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