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Abstract— As an alternative to Kalman filters and particle
filters, recently the progressive Gaussian filter (PGF) was
proposed for estimating the state of discrete-time stochastic
nonlinear dynamic systems. Like Kalman filters, the estimate
of the PGF is a Gaussian distribution, but like particle filters, its
measurement update works directly with the likelihood function
in order to avoid the inherent linearization of the Kalman filters.
However, compared to particle filters, the PGF allows for much
faster state estimation and circumvents the severe problem
of particle degeneracy by gradually transforming its prior
Gaussian distribution into a posterior one. In this paper, we
further enhance the estimation quality and runtime of the PGF
by proposing a semi-analytic measurement update applicable
to likelihood functions that only depend on a subspace of the
system state. In fact, the proposed semi-analytic measurement
update is not limited to the PGF and can be used by any
nonlinear state estimator as long as its state estimate is
Gaussian, e.g., the Gaussian particle filter.

I. INTRODUCTION

When dealing with state estimation of discrete-time stochas-
tic nonlinear dynamic systems, usually Kalman filters (KFs)
are applied to the nonlinear models [1]–[8] or the more
computational expensive particle filters (PFs) are used [9]–
[13]. However, both filter classes have their individual
drawbacks.

On the one hand, KFs inherently linearize the actual
nonlinear relationship between state and measurement to
perform the measurement update, that is, the joint density
of state and measurement gets approximated as a Gaussian.
This can be a very rough approximation and negatively effect
the estimation quality.

On the other hand, PFs have the advantage of working
directly with the likelihood function, and thus, do not perform
a linearization for the measurement update. Additionally,
PFs can represent multimodal densities in contrast to the
unimodal KFs. An exception consists of the Gaussian particle
filter (GPF) [10], which approximates the state distribution as
a Gaussian as well. Nonetheless, the major problem of all PFs
is particle degeneracy. This means that the particle reweighting
during the measurement update can lead to a drastically
reduced amount of particles with weights significantly greater
zero or even situations where all particles get reweighted to
zero. To circumvent this problem, a huge amount particles
have to be used, especially for large state spaces, which in
turn results in a heavy computational burden. Additionally,
trying to utilize more sophisticated proposal densities can
mitigate this problem, but this may require special treatment
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for different likelihood functions, or the proposal densities
themselves can be computationally expensive. For example,
the local linearization particle filter [12] uses a separate KF
for each particle to obtain a better proposal density. Another
way of reducing the amount of particles is to exploit lin-
ear/Gaussian substructures, called Rao–Blackwellization [14]
or marginalized particle filters [15].

As an alternative to KFs and PFs, recently the progressive
Gaussian filter (PGF) has emerged. First proposed in [16]
and refined in [17], it relies on a Gaussian state distribution
like KFs and the GPF, but avoids the linearization of the
KF and instead also makes directly use of the likelihood
function. However, in contrast to PFs, the PGF gradually, i.e.,
progressively, incorporates the information of a measurement
into the current state estimate. For that, the prior Gaussian dis-
tribution is transformed into a posterior Gaussian distribution
by computing multiple intermediate Gaussians. The PGF was
already successfully applied to extended object tracking [18]–
[20]. Additionally, a high-performance implementation on a
graphics processing unit (GPU) was proposed in [19].

In this paper, we further improve estimation quality and
runtime performance of the PGF by proposing a semi-analytic
measurement update applicable to likelihood functions that do
not depend on the entire system state, i.e., they only depend
on a subspace of it, called the observable state variables.
In such a case, the measurement update is twofold. First,
we obtain an updated estimate only for the observable state
variables by applying the standard measurement update of
the PGF solely to the observable subspace of the system
state. Second, the Gaussian state distribution allows for an
analytic way to update the estimate of the unobservable state
variables given the updated estimate for the observable state
variables.

The analogous approach explicitly formulated for KFs
exists [21], and is also called state decomposition [22].
In fact, the formulas for updating the estimate of the
unobservable variables given the updated estimate of the
observable variables are identical. The difference is how the
updated estimate for the observable variables is computed.
Furthermore, although marginalized particle filters also exploit
special model structures, it is important to note that these
filters perform a KF-like measurement update for the linear
part of each particle. In contrast, for the PGF, a KF-like
measurement update is performed only once in order to update
the unobservable part of the PGF’s state estimate. Additionally,
these update formulas are different from those used by a
marginalized particle filter, and are also used to update the
correlation matrix of the observable and unobservable part



of the system state (that does not exist in a marginalized
particle filter).

Our proposed semi-analytic PGF has several advantages.
First, its estimation quality is improved due to the analytic
treatment of the unobservable state variables. Second, the
PGF measurement update only has to consider a subspace
the system state, which reduces the amount of samples
required for an update, and thus, reduces its runtime as
well. Third, during the measurement update of the PGF,
several Cholesky decompositions and computations of sample
covariance matrices have to be conducted. Due to the
respective complexities of O(N3) and O(N2), where N
denotes the state space dimension, reducing the considered
state space has a further runtime improvement. Finally,
in some situations the PGF diverges when dealing with
likelihood functions with unobservable state variables. The
new semi-analytic measurement update can avoid this.

The remainder of this paper is structured as follows. First,
in Section II, we describe the workflow of the progressive
Gaussian filter. After that, we propose our semi-analytic
version of the PGF in Section III. An evaluation of the new
semi-analytic PGF by means of target tracking is performed
in Section IV. Finally, the conclusions are given in Section V.

II. THE PROGRESSIVE GAUSSIAN FILTER

Like the popular Kalman filters, the progressive Gaussian
filter estimates the system state x ∈ RN as a Gaussian
distribution1. However, in contrast to Kalman filters, it
does not approximate the joint distribution of state and
measurement as a Gaussian. That is, the PGF directly tries
to approximate the Bayesian measurement update

f(x | ỹ) ≈
f(ỹ |x)f(x)∫

RN f(ỹ |x)f(x) dx
, (1)

with received measurement ỹ, prior Gaussian state density

f(x) = N
(
x;µ(x),Σ(x)

)
,

arbitrary likelihood function f(ỹ |x), and posterior Gaussian
state density

f(x | ỹ) = N
(
x;µ(x|ỹ),Σ(x|ỹ)

)
. (2)

Note that, although the prior is assumed to be Gaussian, the
true posterior (according to Bayes’ rule) will not necessarily
be Gaussian, and thus, we do not have equality in (1).

The key idea of the PGF to obtain the Gaussian posterior (2)
is to use a so-called progressive likelihood function defined
as

f(ỹ |x, γ) := f(ỹ |x)γ ,

with progression parameter γ ∈ [0, 1]. Based on this, the PGF
considers the progressive Bayes update

f(x | ỹ, γ) ≈
f(ỹ |x, γ)f(x)∫

RN f(ỹ |x, γ)f(x) dx
, (3)

1Vectors are underlined and matrices are printed bold face. For better
readability, we omit a discrete time step k in this and the following section.

with progressive Gaussian posterior

f(x | ỹ, γ) = N
(
x;µ(x|ỹ,γ),Σ(x|ỹ,γ)

)
for γ ∈ [0, 1]. As with the Bayes update (1), the true
posterior f(x | ỹ, γ) is not necessarily Gaussian, but it will
be approximated as such throughout the measurement update
of the PGF.

To get a better understanding of this progression approach,
we consider two extreme cases. On the one hand, for γ = 1,
we get the unmodified likelihood f(ỹ |x), which gives

f(x | ỹ, 1) ≈
f(ỹ |x)f(x)∫

RN f(ỹ |x)f(x) dx
,

i.e., the measurement update (1). On the other hand, for
γ = 0, we have

f(x | ỹ, 0) = f(x) ,

i.e., the progressive posterior equals the prior. In other words,
for γ = 0, we do not incorporate any information of the
received measurement ỹ into the state estimate, whereas for
γ = 1 all its information is processed.

Now, the progressive update (3) can be expressed in a
recursive formula according to

f(x | ỹ, γ + ∆) ≈ c(γ + ∆)

c(γ)
f(ỹ |x)∆f(x | ỹ, γ) , (4)

for a given step size ∆ > 0 and γ + ∆ ≤ 1. Here, the
terms c(γ) and c(γ + ∆) denote the normalization integrals
of f(x | ỹ, γ) and f(x | ỹ, γ + ∆), respectively. By starting
the recursion with γ = 0, i.e., with the known Gaussian prior
f(x | ỹ, 0) = f(x), and appropriate step sizes ∆, we can
obtain multiple intermediate Gaussian distributions f(x | ỹ, γ)
until we reach γ = 1, and thus, the desired Gaussian posterior
f(x|ỹ, 1).

The complete procedure of the PGF is listed in Algorithm 1.
A single recursion step is conducted with the aid of samples.
More precisely, we approximate f(x | ỹ, γ) with a Dirac mix-
ture, i.e., set of M equally weighted samples x(i) according
to

1

M

M∑
i=1

δ(x− x(i)) , (5)

where δ(·) denotes the Dirac delta distribution (line 3). The
arbitrary number of samples M is the only user-defined
parameter that controls the PGF. For any M , the samples (5)
are generated with the optimal Gaussian sampling technique
based on the localized cumulative distribution (LCD) [7],
[8], [23]. This powerful sampling technique also builds the
basis for the smart sampling Kalman filter (S2KF) [7], [8]. An
exemplary sampling of a 2D Gaussian distribution comprising
M = 31 samples is depicted in Figure 1. Note that in order
to obtain the samples {x(i)}Mi=1 the Cholesky decomposition
of the current intermediate covariance matrix Σ(x|ỹ,γ) is
required.

The determination of the step size ∆ for the current
recursion step is based on the log-likelihood evaluations of



Algorithm 1 The Progressive Gaussian Filter

Input: prior state estimate µ(x) and Σ(x), log-likelihood
log(f(ỹ |x)), and number of samples M

1: Set µ(x|ỹ,γ) ← µ(x),Σ(x|ỹ,γ) ← Σ(x), γ ← 0

2: while γ < 1 do
3: {x(i)}Mi=1 = LCD-Sampling(µ(x|ỹ,γ),Σ(x|ỹ,γ),M)

4: li = log(f(ỹ |x(i))) ∀ 1 ≤ i ≤M
5: S = {li | ∀ 1 ≤ i ≤M ∧ li > −∞}
6: lmin = min(S) lmax = max(S)

7: if S = ∅ ∨ lmin = lmax then
8: No progression possible ⇒ abort update
9: end if

10: ∆ = − log(M) / (lmin − lmax)

11: if γ + ∆ > 1 then
12: ∆ = 1− γ
13: end if
14: f(ỹ |x(i))∆ = exp(∆(li − lmax)) ∀ 1 ≤ i ≤M
15: α =

∑M
i=1 f(ỹ |x(i))∆

16: α(i) = f(ỹ |x(i))∆ / α ∀ 1 ≤ i ≤M
17: µ(x|ỹ,γ) ←

∑M
i=1 α

(i)x(i)

18: Σ(x|ỹ,γ) ←
∑M
i=1 α

(i)(x(i)−µ(x|ỹ,γ))(x(i)−µ(x|ỹ,γ))>

19: γ ← γ + ∆

20: end while
21: return posterior state estimate µ(x|ỹ,γ) and Σ(x|ỹ,γ)

the samples {x(i)}Mi=1 (lines 4–13). That is, the step sizes ∆
are not the same in each recursion step, and in turn yield
an adaptive number of progression steps, specific to each
measurement update.

Plugging (5) into (4) gives the reweighted Dirac mixture
(line 14)

M∑
i=1

c(γ + ∆)

c(γ)M
f(ỹ |x(i))∆δ(x− x(i)) . (6)

Normalizing the sample weights of (6) (lines 15–16) and
subsequently computing sample mean and sample covariance
matrix (lines 17–18) gives the intermediate Gaussian

f(x | ỹ, γ + ∆) = N
(
x;µ(x|ỹ,γ+∆),Σ(x|ỹ,γ+∆)

)
for the next recursion step. In summary, in each recursion step
a resampling with a fresh set of M equally weighted samples
based on the current intermediate Gaussian f(x | ỹ, γ) is
performed, and thus, sample degeneracy can be avoided. For
a more detailed explanation of the PGF, please refer to [17].

Up to now, we have only considered the measurement
update of the PGF. Concerning the state prediction, we
distinguish between linear and nonlinear system models. In
case of a linear system model, the prediction can be conducted
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Fig. 1: Exemplary sampling of a 2D Gaussian obtained from
the LCD sampling technique with 31 samples (blue dots) and
95% confidence interval of the Gaussian (gray ellipse).

in closed-form using the optimal Kalman filter prediction
formulas. In case of a nonlinear system model, the PGF
also utilizes the optimal Gaussian LCD sampling technique
to generate a set of samples representing the current state
estimate. By propagating these samples through the nonlinear
system model and subsequently computing sample mean and
sample covariance matrix of the propagated samples, we get
the predicted state estimate. In fact, the nonlinear prediction
of the PGF is identical to the nonlinear prediction of the S2KF.

Finally, an open-source implementation of the PGF (and
other state-of-the-art state estimators like particle filters or the
S2KF) can be found in the nonlinear estimation toolbox [24].

III. SEMI-ANALYTIC PROGRESSIVE GAUSSIAN FILTERING

After describing the workflow of the PGF for a general
likelihood function f(ỹ |x) in the previous section, we now
consider a likelihood function that only depends on a subspace
of x. For that, we assume that the system state x ∈ RA+B is
partitioned into two subspaces a ∈ RA and b ∈ RB , that is,

x =

[
a
b

]
.

Like in Section II, the distribution of x is assumed to be
Gaussian according to

f(x) = f(a, b) = N
([
a
b

]
;

[
µ(a)

µ(b)

]
,

[
Σ(a) (Σ(b,a))>

Σ(b,a) Σ(b)

])
.

Next, we assume a nonlinear measurement model which only
depends on the subspace a, i.e.,

y = h(a, v) , (7)

where v ∈ RV denotes measurement noise with density
f(v). Note that a received measurement ỹ is a realization of
the random vector y. Due to (7), a contains the observable
state variables and b the unobservable state variables. The
corresponding likelihood function of (7) is given by

f(ỹ |x) = f(ỹ | a) =

∫
RV

δ(ỹ − h(a, v))f(v) dv , (8)

and of course solely depends on a as well.



With the likelihood (8), the posterior state density of the
entire system state x is proportional to

f(x | ỹ) = f(a, b | ỹ) ∝ f(ỹ |x)f(x)

= f(ỹ | a)f(a, b)

= f(b | a)f(ỹ | a)f(a) .

Note that f(b | a) is a conditionally Gaussian distribution with
mean

µ(b|a) = µ(b) + K(a− µ(a))

and covariance matrix

Σ(b|a) = Σ(b) −K(Σ(b,a))> ,

where
K = Σ(b,a)Σ(a)−1

.

Furthermore, we can obtain a posterior density only for the
subspace a by again using Bayes’ rule, i.e.,

f(a | ỹ) =
f(ỹ | a)f(a)∫

RA f(ỹ | a)f(a) da
. (9)

Although f(a) is Gaussian, this, in general, does not hold
for f(a | ỹ) due to the nonlinear measurement model h(a, v)
and possible non-Gaussian measurement noise v.

The key idea is now to get an Gaussian approximation of
the posterior (9), i.e.,

f(a | ỹ) ≈ N
(
a;µ(a|ỹ),Σ(a|ỹ)

)
, (10)

by applying the PGF only to the subspace a and its prior
Gaussian density f(a). Based on this, the posterior density
of the entire system state x can also be approximated as
Gaussian distribution according to

f(a, b | ỹ) ∝ f(b | a)f(a | ỹ)

≈ f(b | a)N
(
a;µ(a|ỹ),Σ(a|ỹ)

)
= N

([
a
b

]
;

[
µ(a|ỹ)

µ(b|ỹ)

]
,

[
Σ(a|ỹ) (Σ(b,a|ỹ))>

Σ(b,a|ỹ) Σ(b|ỹ)

])
,

with

µ(b|ỹ) = µ(b) + K(µ(a|ỹ) − µ(a)) ,

Σ(b|ỹ) = Σ(b) + K(Σ(a|ỹ) −Σ(a))K> ,

Σ(b,a|ỹ) = KΣ(a|ỹ) ,

K = Σ(b,a)Σ(a)−1

.

A proof is given in the Appendix. Thus, the posterior of the
subspace b (and its correlation with the subspace a) can be
obtained in an analytic way given the updated, i.e., posterior,
estimate of the subspace a. As can be seen, the distribution of
the subspace b, and its correlation with the subspace a, will
only change if (i) prior correlations Σ(b,a) 6= 0 exists and (ii)
the distribution of the subspace a changed, i.e., µ(a|ỹ) 6= µ(a)

and Σ(a|ỹ) 6= Σ(a).

Note that our proposed semi-analytic approach can also
directly applied to any other nonlinear estimator that maintains
a Gaussian state estimate, e.g., the GPF. In such a case, (10)

will be computed by using the measurement update of the
GPF, not the measurement update of the PGF. The analytic
part remains the same, though.

IV. EVALUATION

In this section, we evaluate the proposed semi-analytic
PGF by means of target tracking. We consider the target’s
system state xk =

[
a>k , b

>
k

]>
with target position

ak = [p
(x)
k , p

(y)
k ]> ,

in Cartesian coordinates and their respective velocities and
accelerations

bk = [ṗ
(x)
k , ṗ

(y)
k , p̈

(x)
k , p̈

(y)
k ]> .

Furthermore, we model the temporal evolution of the target
with an constant acceleration model according to [25]

xk = Axk−1 + Bw , (11)

with matrices

A =

I2 T I2
1
2T

2I2

0 I2 T I2

0 0 I2

 , B =

 1
2T

2I2

T I2

I2

 ,

respectively, T = 0.01, and zero-mean state-independent
white Gaussian system noise w with covariance matrix Q =
diag(10−1, 10−1).

At each time step k, we receive a noisy position measure-
ment ỹ

k
in polar coordinates according to

y
k

= h(ak) + v =

[
‖ak‖2

atan2(p
(y)
k , p

(x)
k )

]
+ v , (12)

where atan2(·, ·) denotes the four-quadrant inverse tangent
and v zero-mean state-independent white Gaussian noise with
covariance matrix R = diag(10−2, 10−4). The corresponding
likelihood function is given by

f(ỹ
k
| ak) = N

(
ỹ
k
− h(ak); 0,R

)
.

As we can apply our proposed semi-analytic measurement
update to any nonlinear filter that estimates the system state as
a Gaussian distribution, we evaluate the following estimators:
• the PGF with M = 101 samples,
• the semi-analytic PGF with M = 51 samples,
• the GPF with 105 particles, and
• the semi-analytic GPF also with 105 particles.

Due to the linear system model (11), the state prediction for all
investigated filters can be optimally computed in closed-form
using the Kalman filter prediction formulas.

We perform 100 Monte Carlo runs. In each run, we
initialize all filters with the mean µ(x)

0
= [1, 1, 0, 0, 0, 0]>

and the covariance matrix Σ
(x)
0 = 102I6 . Then, an initial

system state is created by randomly drawing a sample from
this Gaussian distribution. Based on this, for 200 time steps we
simulate the temporal behavior of the system by propagating
the current system state, together with a random realization for
w, through the system model (11). Furthermore, in each time



step k we simulate a noisy measurement ỹ
k

by evaluating
(12) together with a random realization of v.

We assess the estimation quality by computing the root
mean square error (RMSE) over all runs for the target position
[p

(x)
k , p

(y)
k ]>, the target velocity [ṗ

(x)
k , ṗ

(y)
k ]>, and the target

acceleration [p̈
(x)
k , p̈

(y)
k ]>, respectively. The results are depicted

in Figures 2a–2c. First, for the position error, it can be seen
that both PGF versions are nearly identical. However, keep in
mind that the semi-analytic PGF only uses half of the samples
used by the standard PGF. The semi-analytic GPF, although
equipped with several particles, is not as good as the PGFs.
The by far worst estimator is the standard GPF. Second, for
the velocity error, the semi-analytic PGF is slightly better
than the standard PGF. Like for the position error, the semi-
analytic GPF is worse than the PGFs. The standard GPF
again is the worst estimator. Finally, the acceleration errors
reveal a significant difference in the estimation quality of
the PGF and its semi-analytic version. At the beginning, the
semi-analytic PGF is much better than the standard PGF.
Additionally, the semi-analytic GPF has a much larger error
than the semi-analytic PGF between the time steps 20 and
100. As with the position and velocity errors, the standard
GPF delivers the worst results of all filters.

Now, when looking at the averaged runtimes of the
measurement updates from the respective filters in Figure 2d,
we see that the Gaussian particle filters have a much higher
runtime than the progressive Gaussian filters. However, for
the GPF there is a significant improvement when using the
semi-analytic measurement update. This can be explained
with the reduced overhead for computing sample mean and
sample covariance to obtain the posterior state estimate. For
the PGF, the semi-analytic version is only slightly faster.
Hence, for this scenario the semi-analytic version of the PGF
yields no significant runtime improvement due to the rather
small system state xk and small number of employed samples.

V. CONCLUSIONS

In this paper, we presented a semi-analytic measurement
update for the progressive Gaussian filter. It can be applied
if the likelihood function only depends on a subspace of the
system state, and exploits the fact that the state estimate of
the PGF is a Gaussian distribution. In doing so, the PGF’s
estimation quality can be improved, its runtime reduced, and
potential filter divergence avoided. In addition, the proposed
semi-analytic measurement update is not limited to the PGF.
In fact, it can be used by any nonlinear state estimator as long
as its state estimate is Gaussian, e.g., the Gaussian particle
filter. The target tracking evaluation showed that our proposed
semi-analytic measurement update can improve the estimation
quality of the PGF. Furthermore, the Gaussian particle filter
can also profit from the semi-analytic measurement update.
In summary, the semi-analytic PGF was the best estimator
regarding estimation quality and runtime.

APPENDIX

We prove that the product of the conditionally Gaus-
sian distribution f(b | a) and the Gaussian approximation
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(a) RMSE of the target position.
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(b) RMSE of the target velocity.
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(c) RMSE of the target acceleration.
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Fig. 2: Target tracking results.



N
(
a;µ(a|ỹ),Σ(a|ỹ)

)
yields an unnormalized Gaussian dis-

tribution. We have

f(b | a)N
(
a;µ(a|ỹ),Σ(a|ỹ)

)
∝ exp

(
−1

2
z

)
,

with
z = (b− µ(b|a))>Σ(b|a)−1

(b− µ(b|a)) +

(a− µ(a|ỹ))>Σ(a|ỹ)−1

(a− µ(a|ỹ))

= (b− µ(b) −K(a− µ(a)))>Σ(b|a)−1

·
(b− µ(b) −K(a− µ(a))) +

(a− µ(a|ỹ))>Σ(a|ỹ)−1

(a− µ(a|ỹ)) .

First, extending this by adding twice the term µ(a|ỹ) − µ(a|ỹ)

and define

µ(b|ỹ) := µ(b) + K(µ(a|ỹ) − µ(a)) ,

we get

z = (b− µ(b) −K(µ(a|ỹ) − µ(a|ỹ) + a− µ(a)))>Σ(b|a)−1

·
(b− µ(b) −K(µ(a|ỹ) − µ(a|ỹ) + a− µ(a))) +

(a− µ(a|ỹ))>Σ(a|ỹ)−1

(a− µ(a|ỹ))

= (a− µ(a|ỹ))>
(
Σ(a|ỹ)−1

+ K>Σ(b|a)−1

K
)
·

(a− µ(a|ỹ)) +

(b− µ(b|ỹ))>Σ(b|a)−1

(b− µ(b|ỹ))−

(b− µ(b|ỹ))>Σ(b|a)−1

K(a− µ(a|ỹ))−

(a− µ(a|ỹ))>K>Σ(b|a)−1

(b− µ(b|ỹ))

=

([
a
b

]
−
[
µ(a|ỹ)

µ(b|ỹ)

])>
Σ−1

([
a
b

]
−
[
µ(a|ỹ)

µ(b|ỹ)

])
,

with block matrix

Σ−1 =

[
Σ(a|ỹ)−1

+ K>Σ(b|a)−1

K −K>Σ(b|a)−1

−Σ(b|a)−1

K Σ(b|a)−1

]
.

Second, using the formulas for inverting a 2×2 block matrix
and equating the coefficients, we get the inverse of Σ−1

according to

Σ =

[
Σ(a|ỹ) Σ(a|ỹ)K>

KΣ(a|ỹ) Σ(b) + K(Σ(a|ỹ) −Σ(a))K>

]
=:

[
Σ(a|ỹ) (Σ(b,a|ỹ))>

Σ(b,a|ỹ) Σ(b|ỹ)

]
.

Finally, this yields

f(b | a)N
(
a;µ(a|ỹ),Σ(a|ỹ)

)
∝

N
([
a
b

]
;

[
µ(a|ỹ)

µ(b|ỹ)

]
,

[
Σ(a|ỹ) (Σ(b,a|ỹ))>

Σ(b,a|ỹ) Σ(b|ỹ)

])
.
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