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Abstract— In this paper, we propose a novel approach to
track extended objects by incorporating negative information.
While traditional techniques to track extended targets use only
positive measurements, assumed to stem from the target, the
proposed estimator is also capable of incorporating negative
measurements, which tell us where the target cannot be.
To achieve this, we introduce a simple, robust, and easy-to-
implement recursive Bayesian estimator which employs ideas
from the field of curve fitting. As an application of this idea,
we develop a measurement equation to estimate star-convex
shapes which can be used in standard non-linear Kalman filters.
Finally, we evaluate the proposed estimator using synthetic data
and demonstrate its robustness in scenarios with clutter and low
measurement quality.

I. INTRODUCTION

While classical tracking approaches consider the target
to be a single point, increasing sensor resolution allows for
multiple source points on the target object to be measured.
This allows for the development of more accurate and robust
estimators by taking into account the shape of the target.
However, the extent may be unknown, leading to the problem
of estimating the shape and pose parameters of the target
simultaneously. Treating this problem defines the field of
extended object tracking (EOT).

Literature provides a multitude of approaches that deal
with EOT. In case of low available information, the target
is approximated as a simple shape such as lines [1], [2] or
polynomials [3]. A popular branch consists of approximations
using ellipses based on random matrices [4]–[6]. As more
information becomes available, the shape can become more
detailed. For instance, some approaches parameterize the
boundary radially from a central point, using Fourier series
[7], extended Gaussian images [8], or Gaussian processes [9].
As it deals with shapes, EOT can incorporate many ideas of
distance minimization and curve fitting [10], [11], as explored
in [7], [12], [13].

On a related line, tracking techniques can also be catego-
rized based on the kinds of measurements they can process.
The general approach is to exploit measurements that stem
from the target, denoted as positive measurements. However,
negative measurements, which are known not to stem from
the object, are also valuable as they indicate where the target
cannot possibly be, even if they are generally discarded
as useless clutter. Exploiting negative measurements for
tracking has also been treated in [14]–[16]. In cases of low
measurement quality, this additional information can become

1The authors are with the Chair of Intelligent Sensor-Actuator-
Systems (ISAS) at the Karlsruhe Institute of Technology (KIT),
Germany. antonio.zea@kit.edu, florian.faion@kit.edu,
jannik.steinbring@kit.edu, uwe.hanebeck@ieee.org

-50 0 50
y(1)=m

-50

0

50

y (
2)
=
m

(a) Positive, negative measurements. (b) Example star-convex estimate.

Fig. 1: Positive measurements (red) show where the target
is, while negative measurements (blue) show where the
target cannot be. We propose a robust and easy-to-implement
Bayesian estimator for star-convex shapes (purple) that can
incorporate both kinds of information.

extremely valuable, and may even keep the estimator from
diverging.

The authors of this work have previously proposed a
model to incorporate negative observations for extended object
tracking in [17], which allowed for the derivation of an explicit
likelihood which could be used, e.g., in particle filters [18].
In this paper, we will propose an alternative formulation
that employs ideas from curve fitting (Fig. 1). The main
contribution is the derivation of a measurement equation for
star-convex shapes, which can be used in non-linear Kalman
filters such as the UKF [19]. This approach results in a robust
estimator that is easy to implement. However, an explicit
likelihood based on this new model will also be provided for
applications that need it.

This paper is structured as follows. Sec. II presents a formal
formulation of the discussed problem. Then, Sec. III describes
how extended objects are traditionally modeled. The proposed
approach is introduced in Sec. IV, and Sec. V presents an
evaluation of the implementation. Finally, Sec. VI concludes
the paper.

II. PROBLEM FORMULATION

The task being considered is estimating the state, in
particular the shape and pose, of a target object. At the
timestep k, the state parameters are described as the vector
xk. The shape of the target is denoted as the set of points
Sk ⊂ Rn. For this paper, we will focus on shapes in R2.
Furthermore, we assume that the shape is filled, i.e., the target
consists of the shape boundary and its interior.

In order to estimate the state, we incorporate sensor
measurements which are assumed to take the following form.



(a) Selection of sources. (b) Determining type. (c) Noise on position. (d) Noise on type.

Fig. 2: Generative model for measurements. First, a set of source positions is drawn from R2, and their corresponding types
are set as positive if they are inside the shape (red), or negative if outside (blue). Then, during observation, the measurements
are subject to corruption by noise, both in their positions (dotted lines) and in their types (red circle).

At the timestep k, we obtain a set of position measurements
{y
k,1

, · · · , y
k,nk
} in Cartesian coordinates, and a correspond-

ing set of measurement types {τk,1, · · · , τk,nk
}. It is not

assumed that all measured positions belong to the target shape.
Instead, for a position y

k,i
∈ R2, the corresponding type τk,i

can take one of two values. If τk,i = �+, it is assumed that the
positive measurement y

k,i
originates from the target. However,

if τk,i = �−, we consider that the negative measurement
y
k,i

does not stem from the target. Measurement types
can be obtained, for example, by segmentation using state-
independent information. Fig. 3 shows a practical example
taken from a real sensor.
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Fig. 3: A real-life target object captured by a Kinect sensor.
Using RGB and planar segmentation, measurements were
classified as either positive (red) or negative (blue). White
gaps represent missing information due to sensor artifacts.

More formally, the observed measurements are assumed to
have been the result of the following generative model. First,
a set of source positions {zk,1, · · · , zk,nk

} is drawn from R2

(Fig. 2a) using an arbitrary but unknown rule. Then, based
on the state xk, a type tk,i is associated to each position zk,i
in the following way. If zk,i is inside of the target shape,
the corresponding type tk,i is set as �+. Otherwise, it is set
to �− (Fig. 2b). Finally, during observation by the sensor,
errors are introduced into each measurement which affect
their position and type. The position is corrupted by additive
zero-mean Gaussian noise, yielding

y
k,i

= zk,i + vk,i ,

where vk,i ∼ N (0,Rk,i) (Fig. 2c). The measurement type
tk,i is also corrupted. A positive type has a probability pFN

of being detected as a false negative, and a negative type has
a probability pFP of turning into a false positive (Fig. 2d),
yielding the observed type τk,i

In probabilistic terms, this generative model can
be described using the conditional probability density
p(y

k,i
, τk,i |xk). We assume that the noise terms are inde-

pendent from each other, so that the probability density for
all combined measurements becomes

p(y
k,1

, τk,1, · · · , y
k,nk

, τk,nk
|xk) =

nk∏
i=1

p(y
k,i

, τk,i |xk) .

This allows us to treat each measurement individually in
the following sections, as multiple measurements can be
combined by multiplying their probabilities sequentially. For
this reason, we will drop the subindex i unless needed.

Finally, the state may evolve in time from xk to xk+1

using a system model. Note that this paper is not concerned
with the state evolution, and imposes no constraints on the
system model.

III. MODELING EXTENDED OBJECTS

In this section, we will give a short description of how
extended targets are usually modeled, and a motivation for
the new proposed approach. Note that traditional models
generally take only into account positive measurements, and
thus, it is assumed that all measurements stem from the
shape and τk = �+. The defining aspect is how to derive the
probability density p(y

k
|xk) which relates the measurement

y
k

to the state xk. The importance of this term stems from
the fact that, by interpreting it as a likelihood function, it
allows for the derivation of a Bayesian estimator. However,
this task is made difficult by the fact that we do not know
which source zk generated y

k
due to the measurement noise.

This crucial issue is known as the association problem.
A commonly used approach to address this challenge

is by using Spatial Distribution Models (SDMs) [1], [20].
The idea is to associate y

k
to all possible sources using a

probability density p(zk |xk), which assigns to each point in
R2 a probability to generate a measurement. However, the
resulting term p(y

k
|xk) takes the form of a difficult integral

for which closed-form solutions are generally unavailable,
raising the need for different simplifications, such as [4].



Furthermore, in cases of occlusions or sensor artifacts, it may
become impossible to obtain an appropriate approximation
for the source probability, which leads to estimation bias.

A different idea is to associate y
k

to a single source
z̃, calculated as the point in Sk which minimizes some
sort of distance function to y

k
. Then, the distance to this

assumed source is used as a pseudo-measurement, and hence,
the estimation task is reduced to a distance-minimization
problem. We denote these approaches as Greedy Association
Models (GAMs) [13], which can be seen as a probabilistic
interpretation of traditional curve fitting techniques [10], [11].
Due to considering only a single source, the term p(y

k
|xk)

required for this model is simple, fast, and easy to evaluate.
Furthermore, as no explicit source probability is required,
these approaches are generally much more robust against
occlusion [13].

However, GAMs tend to suffer from an important issue,
which appears especially in shapes that also generate mea-
surements from their interior, such as disks [12] or line
segments [2]. The problem is that, if there are multiple states
whose shapes contain the target object, the estimator cannot
discern between them, as all of them also contain the received
measurements (Fig. 4a), and thus, the distances to these shapes
are also 0. In some cases, this will cause the estimator to
diverge, as the estimated shape can become arbitrarily large.
We denote this issue as the length problem. As shown in
Fig. 4b, incorporating negative measurements would address
this issue, by imposing a constraint on both sides of the
boundary. This is the key idea behind the approach introduced
in the following section.

(a) Length problem. (b) Proposed approach.

Fig. 4: The length problem appears, e.g., in filled shapes,
when multiple shapes contain all possible measurements
(left), and thus, the optimal state is not unique. By also
incorporating negative measurements (right), the optimal state
is unambiguous.

IV. EXPLOITING NEGATIVE MEASUREMENTS

In this section, we will introduce a recursive Bayesian
estimator to track extended objects by incorporating both
positive and negative measurements. While an approach based
on SDMs was proposed in [17], in this paper we will take
a different direction and exploit ideas of GAMs and curve
fitting, avoiding the pitfalls described in Sec. III. Furthermore,
in order to show the applicability of the concepts, and for
illustration, we will also describe an example implementation

that approximates targets as filled star-convex shapes. We
will also show how these techniques can also be applied for
arbitrary shapes.

This section is structured as follows. First, we formally
derive a recursive Bayesian estimator. Then, we proceed
to define the characteristics of the star-convex shapes, and
the functions we will need for the update step. Finally, we
describe how the update step can be implemented.

A. Deriving a Bayesian Estimator

A Bayesian estimator maintains knowledge about the state
xk in the form of a probability density. It consists of two steps.
On the one hand, the update step corrects the knowledge
about the state based on incoming measurements. On the other
hand, the prediction step lets the state evolve in time using
a system model. As mentioned in Sec. II, this paper is only
concerned with the update step, and imposes no restrictions
or constraints on the prediction step.

The update step of the Bayesian estimator can be derived
by interpreting the conditional density p(y

k
, τk |xk) as a

likelihood function. Using Bayes’ rule, we obtain

fek (xk) = p(xk | yk, τk)

=
p(y

k
, τk |xk)

p(y
k
, τk)

· fpk (xk)

=
p(τk |xk)

p(τk)︸ ︷︷ ︸
Type update

·
p(y

k
|xk, τk)

p(y
k
| τk)︸ ︷︷ ︸

Position update

·fpk (xk) .

where fpk (xk) is denoted as the prior, and fek (xk) as the
posterior distribution. We observe that this step can be divided
into two partial updates, the type update which only considers
the measurement type, and the position update which only
considers the position information.

In literature, there are two main filtering techniques to
implement the update step. The first is by means of particle
filters, which use the likelihood explicitly. The second one
is using Linear Regression Kalman Filters (LRKFs), such as
[19], [21], which represent the prior as N (xk; x̂pk,Cp

k), and
approximate the posterior as N (xk; x̂ek,Ce

k). These do not
work directly with the likelihood, but employ a measurement
equation instead. The following implementation will show
how to apply the proposed concepts for both types of
estimators, so that an application can choose whichever fits
it best.

As an aside, we note that the number of received measure-
ments also contains information about the state. The likelihood
function can be extended to incorporate this information as
explored in [4], [20], [22]. For reasons of brevity and space,
we decided to leave this discussion out of this paper.

B. Star-Convex Shapes using Fourier Series

We will now describe the characteristics of the star-convex
shapes. The boundary of a star-convex shape of degree nF
is defined by a center mk, a rotation θk, and a sequence of
coefficients {a(0)k , a

(1)
k , b

(1)
k , · · · , a

(nF )
k , b

(nF )
k }. We assume

that these parameters are contained in the state vector xk. We



(a) Distance rk (φ). (b) Star-convex shape. (c) “Closest” point π.

Fig. 5: Example star-convex shape with center mk, rotated
by θk. Similar to polar coordinates, rk (φ) determines the
radial distance to the boundary (dark purple) at the angle φ.

define the radial distance function (Fig. 5a) as the Fourier
series

rk(φ) :=
a
(0)
k

2
+

nF∑
j=1

a
(j)
k cos (jφ) + b

(j)
k sin (jφ) .

Then, the shape Sk (Fig. 5b) can be constructed as the set

Sk := {mk + s · rk (φ) e(φ+ θk) | s ∈ [0, 1],φ ∈ [0, 2π]}

where e(α) :=
[
cos(α), sin(α)

]T
. Furthermore, we define

the boundary of Sk as all points generated for s = 1. It
follows that this shape has the geometric property of being
star-convex, that is, we can connect all points in the shape
to the center point using a segment that is completely inside
the shape.

We define the following convenience functions. Given a
point p =

[
p0, p1

]T ∈ R2, the angle between the segment
that connects it the origin and the x-axis is

∠
(
p
)

:= atan2(p1, p0) ,

where atan2(·, ·) is the four-quadrant inverse tangent. Then,
we define φpk := ∠

(
p−mk

)
as the direction of p. Finally,

we define the function

π(xk, p) := mk + rk (φpk − θk) · e (φpk) ,

which yields the point on the shape boundary in the direction
φpk. We denote this as the “closest” boundary point to p
(Fig. 5c). Note that this point is not necessarily the closest in
the sense of the Euclidean distance, and is chosen only for
its ease of calculation.

C. Shape-related Functions

For the following subsections, we will require three
functions related to the shape. Note that these functions are
not specific to star-convex shapes, and can be re-implemented
to describe other shapes. The subsequent update step can still
be applied in the same way.

We consider an arbitrary measurement y
k
∈ R2 of type τk.

First, we need a function Inside(xk, y
k
) that tells us whether

y
k

is inside Sk. For star-convex shapes, this follows as

Inside(xk, y
k
)↔

[
‖y
k
−mk‖ ≤ rk (φyk − θk)

]
,

(a) Positive measurements. (b) Negative measurements.

Fig. 6: Assumed source. For positive measurements, the
source is the closest point in Sk. For negative measurements,
the source is the closest point outside Sk, or on its boundary.

where ‖·‖ is the Euclidian norm. This means that y
k

is inside
iff it is closer to the center mk than the boundary in that
direction. Second, we need to calculate an assumed source
z̃(xk, y

k
, τk). We define it as

z̃(xk, y
k
, τk) =


y
k

if τk = �+ ∧ Inside(xk, y
k
)

or τk = �− ∧ ¬ Inside(xk, y
k
)

π(xk, y
k
) otherwise.

The idea behind this function is simple. If y
k

is of type �+,
we assume it was generated on the inside of Sk. Thus, if it
is already inside, the closest point is y

k
itself. Otherwise, we

return the closest point on the boundary (Fig. 6a). Similarly, if
y
k

is of type �− and it is already outside, we return y
k

itself,
otherwise, we calculate the closest point on the boundary
(Fig. 6b).

Third, and finally, we need a function Φ(xk, y
k
, τk) that

calculates the distance between y
k

and its assumed source.
This follows simply as

Φ(xk, y
k
, τk) := ‖y

k
− z̃(xk, y

k
, τk)‖ . (1)

D. The Position Update

As is common in GAMs, we will use the distance to
the shape as a pseudo-measurement. We observe that, if we
remove the effect of noise, the measured positions always
match their assumed sources, and the distances generated by
(1) always equal 0. This leads to the measurement equation

0 = Φ(xk, y
k
− vk, τk) . (2)

However, [13] showed that this sort of measurement equation
produces a biased result, and proposed a mechanism to
alleviate this bias, which works as follows. We rewrite (2) as

0 = Φ(xk, y
k
, τk)− εk , (3)

where εk is a new noise term derived from vk, defined as

εk := Φ(xk, zk + vk, τk) . (4)

For convenience and speed, we will approximate εk as follows.
First, we will only consider the case for xk ≈ x̂

p
k, i.e., the prior

mean. Second, we approximate zk ≈ z̃(x̂
p
k, y

k
, τk). Then, we

calculate the mean ε̂k and variance σ2
εk

of the new noise term



by propagating vk through (4), as described, for example, in
Algorithm 1. Note that in all algorithms we drop the subindex
k for legibility. Finally, by moment matching, we assume that
εk ∼ N (ε̂k,σ2

εk
). The likelihood for particle filters follows

Algorithm 1: Calculate additive noise moments.
input : x̂p, y, τ ,

noise samples with weights {νj ,W j}nv
j=1

1 z ← z̃(x̂p, y, τ) ;
2 for j = 1 to nv do
3 εj ← Φ(x̂p, z + νj , τ) ;

4 ε̂ ←
nv∑
j=1

W j · εj ;

5 σ2
ε ←

nv∑
j=1

W j ·
[
εj − ε̂

]2
;

output : ε̂,σ2
ε

from (3) as

p(y
k
|xk, τk) ≈ N (Φ(xk, y

k
, τk); ε̂k,σ2

εk
) .

For LRKFs, the update step can be implemented using
Algorithm 2, using the state samples (also called sigma points)
provided by the filter, and the well-known Kalman formulas.

Algorithm 2: Position update step for LRKFs.
input : x̂p,Cp, y, τ ,

prior state samples with weights {χj ,W j}nx
j=1

1 ε̂, σ2
ε ← Calculate moments using Algorithm 1 ;

2 for j = 1 to nx do
3 ϕj ← Φ(χj , y, τ) ;

4 ϕ̂ ←
nx∑
j=1

W j · ϕj ;

5 σ2
ϕ ←

nx∑
j=1

W j ·
[
ϕj − ϕ̂

]2
;

6 Cxϕ ←
nx∑
j=1

W j
[
χj − x̂p

] [
ϕj − ϕ̂

]
;

7 K ← Cxϕ · (σ2
ε + σ2

ϕ)−1 ;
8 x̂e ← x̂p + K · (ε̂− ϕ̂) ;
9 Ce ← Cp −K · (σ2

ε + σ2
ϕ) ·KT ;

output : x̂e,Ce

E. The Type Update

The second part of the update step only takes into account
the measurement type. However, calculating p(τk |xk) di-
rectly is difficult, given that it depends on the probability
for each point in space to generate a measurement, which is
generally unknown. Instead, using the same ideas as Sec. IV-
D, we will focus only on the neighborhood of the assumed
measurement source, and calculate how likely it would be
to generate a measurement of the given type. Following this
idea, the term p(τk |xk) can be calculated using Algorithm 3.

This result can be used directly as an explicit likelihood
for particle filters. For LRKFs, a measurement equation

Algorithm 3: Type likelihood for a given state x.
input : x, y, τ , pFN , pFP ,

noise samples with weights {νj ,W j}nv
j=1

1 z ← z̃(x, y, τ) ;
2 p+ ← 0 ;
3 for j = 1 to nv do
4 if Inside(x, z + νj) then
5 p+ ← p+ +W j ;

6 p− ← 1− p+ ;
7 if τ = �+ then
8 ` ← (1− pFN ) · p+ + pFP ·p− ;

9 else
10 ` ← pFN ·p+ + (1− pFP ) · p− ;

output : `

is not directly available, and the usual update mechanism
is inadequate given that τk is a discrete term. Instead, an
alternative update mechanism inspired by [23] is provided in
Algorithm 4. Note that, as usual in particle-based approaches,
this mechanism may have issues with sample degeneration.
Thus, if the number of non-zero likelihoods is smaller than
the state dimension, the measurement should be discarded.

Algorithm 4: Type update step for LRKFs.
input : y, τ ,

prior state samples with weights {χj ,W j}nx
j=1

1 for j = 1 to nx do
2 `j ← Likelihood for χj using Algorithm 3 ;

3 for j = 1 to nx do

4 W
j ←W j · `j/

[
nx∑
i=1

W i · `i
]

;

5 x̂e ←
nx∑
j=1

W
j · χj ;

6 Ce ←
nx∑
j=1

W
j ·
[
χj − x̂e

] [
χj − x̂e

]T
;

output : x̂e,Ce

F. Gating

In real scenarios, it is often the case that pFN 6= 0 or
pFP 6= 0, and thus, it becomes necessary to find a mechanism
to reject clutter measurements that are far from the boundary,
while also taking into account the measurement noise and
the state uncertainty. For LRKFs, we propose the follow-
ing straightforward mechanism using ideas from validation
gates for Kalman filters [24] that can be incorporated into
Algorithm 2. Thus, we discard the measurement if

(ε̂− ϕ̂)2 · (σ2
ε + σ2

ϕ)−1 > G .

This step can be introduced after Line 5. The left term can
be approximated as having a χ2 distribution with one degree
of freedom, which allows an intuitive selection of the gating
parameter G. For example, if we want to accept 99% of
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(b) pFN = pFP = 0.1.

Fig. 7: Example snapshots with 200 total measurements,
without and with clutter. Measurement noise is Rk = 4 ·Im2.

valid measurements, we use G = chi2inv(0.99, 1) ≈ 6.6349,
where chi2inv(·, 1) is the inverse function of the χ2(1) CDF.

V. EVALUATION

In this section, we will present an evaluation of the
proposed concepts using synthetic data. The setup is as
follows. The state has the form

xk =
[
mT
k , θk,vk,ωk, a

(0)
k , · · · , a

(nF )
k , b

(nF )
k

]T
,

where nF = 7, leading to a state of dimension 20. As in
Sec. IV-B, mk ∈ R2 is the shape center, θk the rotation, and
the values a(·)k and b(·)k represent the Fourier coefficients. The
target is assumed to be moving in the direction of θk at a
speed of vk, and turning with rotational velocity ωk.

At each timestep k, 200 measurements are generated
uniformly from the sensor’s field of view, according to the
generative model from Sec. II. An example setup is shown in
Fig. 7. The number of resulting measurements that originate
from the target varies every timestep, approximately following
a Poisson distribution with mean 11. Note that the total
number of positive measurements also depends on the number
of false positives determined by pFP .

The estimator to be used is the S2KF [21], following
the LRKF implementation proposed in Algorithm 2 and
Algorithm 4. The number of state samples is 16× 20 = 320.
The number of measurement noise samples for Algorithm 1
is 21, also taken from the S2KF. The update step is
extended to implement the validation gate of 99% pro-
posed in Sec. IV-F. The process noise is assumed to be
white, additive, and distributed as wk ∼ N (0,Q), where
Q = 10−1 · diag(1, 1, 10−4, 1, 10−4, 1, 1, · · · , 1). Measure-
ments are processed sequentially as they arrive, and the
process noise is applied only at the end of each timestep.

The proposed approach will be compared against the star-
convex Random Hypersurface Model (RHM) described in [7],
using the S2KF. The RHM scaling factor is approximated
as N ( 2

3 , 1
18 ). All other parameters, including the gating

mechanism, are identical for both approaches.

A. Static Target

For the static target evaluation, the target is assumed not to
be moving. The initial position is

[
15, 15

]T
. For the Fourier
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(a) No clutter, Rk = 4 · Im2.
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(b) With clutter, Rk = 16 · Im2.

Fig. 8: Results of evaluation with static target. Light red
are example positive measurements, negative measurements
omitted. Clutter parameters are pFN = pFP = 0.1.

coefficients, the values were set as a(0)0 = 60, and the rest as
0. This represents a circle of radius 30 m. Two experiments
were started, without and with clutter. The results are shown
in Fig. 8. Ground truth is gray, the proposed model (“NM”)
in purple, and the RHM in green. The illustrated shapes
correspond to the final states averaged over 50 runs.

In Fig. 8a, it can be seen that the NM estimate is smaller
(or tighter) than the RHM. This is explained by the fact that
negative measurements push the estimate towards the inside,
an effect that is absent in RHMs. Still, both approximations
can be seen to be accurate. However, when clutter is present
and the measurement noise is higher (Fig. 8b), the RHM starts
to diverge. As a reminder, both approaches use the same gating
procedure. The problem is that the clutter measurements
which pass the validation gate push the boundary towards
the outside, an artifact which accumulates in time. The
proposed model compensates for this with the use of negative
measurements, which push the boundary to its correct form.

B. Moving Target

For this experiment, the target is moving at a constant speed
of 5 m per timestep, where each timestep represents a time
of ∆t = 0.01 s. From timestep 0 to 100, the plane is moving
from

[
0, 0
]T

to
[
0, 500

]T
in a straight line. Then, the plane

begins rotating southwards around the point
[
500,−1000

]T
.

The initial position for both estimators is
[
0, 0
]T

, and the
speed is set to the correct value of 500 m / s. As with the
static target, the initial shape is a circle of radius 30 m. Fig. 9
shows the results of selected timesteps averaged over 50 runs.

At the end of the straight line motion (Fig. 9a, Fig. 9b), both
estimates are still accurate. In fact, assuming no clutter and
low noise (Fig. 9c, Fig. 9e), the RHM and the proposed
approach return similar results. However, once clutter is
present and noise is higher, the RHM cannot keep up with the
target. As seen in Fig. 9d and Fig. 9f, the estimator begins to
diverge completely, so that by the end of the arc the estimate
is larger than the sensor field of view. The proposed approach,
however, is able to keep up by incorporating additional
information from negative measurements.



VI. CONCLUSION

While traditional techniques to track extended targets
exploit only positive measurements, which are assumed to
stem from the target, in this paper we presented an approach
that also incorporates negative measurements, which tell us
where the target is not. We developed a recursive Bayesian
estimator that represents the target as a star-convex shape, and
draws from ideas of curve fitting and distance minimization
techniques. Two alternative implementations were provided,
one for LRKFs such as the well-known UKF, and another
for particle filters. The evaluation showed that, in conditions
with high measurement quality, the results were very similar
to state-of-the-art approaches such as RHMs. However, in
the presence of clutter and high measurement noise, the
RHM diverged while the proposed approach was still able to
return accurate results, thus demonstrating the advantages of
extracting more information from negative measurements.

450 500 550
y(1)=m

-50

0

50

y (
2)
=
m

GT
NM
RHM

(a) k = 100, no clutter.
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(b) k = 100, with clutter.
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(c) k = 500, no clutter.
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(d) k = 500, with clutter.
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(e) k = 800, no clutter.
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(f) k = 800, with clutter.

Fig. 9: Results of evaluation with moving target. Left column
uses Rk = 4 · Im2, right column Rk = 8 · Im2. Clutter
parameters are pFN = pFP = 0.1. Light red are example
positive measurements, negative measurements are omitted.
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