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Abstract— The group of rotations in three dimensions SO(3)
plays a crucial role in applications ranging from robotics
and aeronautics to computer graphics. Rotations have three
degrees of freedom, but representing rotations is a nontrivial
matter and different methods, such as Euler angles, quater-
nions, rotation matrices, and Rodrigues vectors are commonly
used. Unfortunately, none of these representations allows easy
discretization of orientations on evenly spaced grids. We present
a novel discretization method that is based on a quaternion
representation in conjunction with a recursive subdivision
scheme of the four-dimensional hypercube, also known as the
tesseract.

I. INTRODUCTION

Orientations in three dimensions are omnipresent in many
problems, for example in robotics [1], [2], computer vi-
sion [3], autonomous vehicles, aeronautics [4], [5], crystal-
lography [6], computer graphics [7], etc. In many scenarios,
orientations have to be estimated based on noisy sensor
measurements or controlled using various kinds of actuators.
Due to the uncertainty involved, it often becomes necessary to
consider probability distributions on the space of orientations.
One possible way to approach this problem is to employ a
finite subset of possible rotations and to assign a probability
to each discrete rotation.

Aside from approximation of uncertain rotations, discretiza-
tion on SO(3) has various user applications. For example, in
robotic perception, it can be used to generate initial poses
for alignment of point clouds. These can be locally refined
using an algorithm such as iterative closest point (ICP) to
achieve a globally optimal solution [8]. An application in
computer vision consists in detecting known 3D objects in
2D images by rendering a 3D model of the object from a
set of different perspectives and using pattern recognition to
find it in the image [9]. In model predictive control (MPC),
it can be used to generate a discrete set of possible control
inputs [10] (where the input is an orientation in SO(3)).
Finally, in computer graphics, we can use it to pre-render
an object or a scene from multiple perspectives, and use the
closest one when a particular view is desired to avoid online
rendering.

In R3, orientations can be represented using the special
orthogonal group SO(3), which is the group of 3 × 3
rotation matrices. Rotation matrices are a unique represen-
tation of orientations, but they suffer from significant over-
parameterization – a rotation matrix has nine entries but
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a rotation in three dimensions only has three degrees of
freedom.

For this reason, we will represent orientations using unit
quaternions [11], [12]. Quaternions are an extension of
complex numbers with three different imaginary units, and
hence, they can be parameterized using four-dimensional
vectors in R4. The quaternions with unit norm are commonly
used to represent orientations, i.e., each point on the unit
sphere S3 in R4 can be seen as an orientation. However, the
two quaternions q and −q represent the same orientation,
so the unit quaternions form a double cover of SO(3). As
a result, we can use a hemihypersphere in R4 as a unique
parameterization for SO(3).

By doing so, we reduce the problem of discretization of
SO(3) to the problem of discretizing the four-dimensional
unit hemisphere S3/{±1}. Our novel method is based on
recursive subdivision of a four-dimensional cube, also known
as the four-dimensional hypercube or tesseract. The surface of
the tesseract consists of three-dimensional cubes. However,
points on the surface of the tesseract do not, in general,
correspond to unit vectors, and thus, cannot be used to
represent rotations. For this reason, the resulting points are
projected onto the unit hypersphere by normalizing them
to have unit length. This discretization induces a Voronoi
tessellation [13] on SO(3), i.e., a partition of the space of
rotations.

A similar approach has been proposed by Schaefer et
al. [14]. The key difference is that their approach is based
on subdivisions using tetrahedral and octahedral meshes. In
particular, a tetrahedron can be split into four tetrahedra and
an octahedron. Moreover, an octahedron can be split into six
octahedra and eight tetrahedra. This approach has been used
by Glover et al. [15] for evaluation of a recursive rotation
estimator based on the Bingham distribution. Other possible
discretization approaches consist in uniform discretization of
Euler angles (see Sec. V) and in using equal area partitioning
of the unit sphere [16]. The latter approach does not, in
general, result in a symmetric discretization, however.

There are several advantages to using a tesseract compared
with the subdivision method based on octahedra and tetra-
hedra. Because only one type of polyhedron appears, our
algorithm is more straightforward and easier to understand
and implement. Also, the resulting discretization has more
intuitive symmetries as the tesseract has 90◦ rotational
symmetry. Finally, our evaluation shows that the proposed
approach also yields the most accurate results when used for
approximating probability densities on SO(3).



Fig. 1: Examples in 3D before (top) and after (bottom) normalization. Observe that only the surface is subdivided, not the
interior of the cube.

II. CUBE SURFACE SUBDIVISION

Before considering the tesseract subdivision algorithm, we
introduce the corresponding three-dimensional approach, i.e.,
a cube subdivision method, to illustrate the basic ideas and
concepts.

A three-dimensional cube has eight corners with coordi-
nates

[±1,±1,±1] :=



1 1 1
−1 1 1
1 −1 1
−1 −1 1
1 1 −1
−1 1 −1
1 −1 −1
−1 −1 −1


∈ R8×3 .

Its surface consists of six two-dimensional squares with
coordinates

[1,±1,±1] , [−1,±1,±1] , [±1, 1,±1] ,
[±1,−1,±1] , [±1,±1, 1] , [±1,±1,−1] .

We can subdivide a square by adding a new point in the
middle of each edge and one point in the center of the
rectangle, yielding four squares whose edges have half the
length of the original square. This operation can be performed
recursively as many times as desired. The same approach is
used in quadtrees [17] in the plane. Quadtrees typically do not
subdivide all squares equally, but focus on areas of interest
that are subdivided more finely than the rest. However, we
limit ourselves to uniform subdivisions for now.

Lemma 1. After n subdivision steps, we have 6 · 4n squares
with a total of 24 · 4n non-unique corners. As certain corners

are shared between multiple squares, the total number of
unique points is 6 · 4n + 2.

Proof. The first two claims are straightforward. In order to
compute the total number of unique points, we proceed as
follows.

The surface of a cube consists of 6 squares. Assume that
each square has been subdivided into a grid of m×m points,
i.e., there are m2 points that are unique within each square.
In total, we have 6m2 points. However, as the squares are
touching at the edges and corners, certain points are present
in more than one square and we need to subtract those. There
are
• 8 corners, which have been counted 3 times, i.e., we

need to subtract 8 · 2,
• 12 edges with m−2 points each (excluding the corners)

that have been counted twice, i.e., we have to subtract
12 · (m− 2).

As a result, we obtain

6m2 − 8 · 2− 12(m− 2) .

For n subdivision steps, i.e., m = 2n + 1, we have

6(2n + 1)2 − 12(2n − 1)− 16 = 6 · 4n + 2 ,

which shows the claim.

To obtain a tessellation of the surface of the sphere
S2, we normalize all corners to be vectors of unit length.
Some examples are depicted in Fig. 1. Even though all
squares have an identical size before normalization, the
resulting tessellation is not perfectly uniform due to the
nonlinear normalization operation, i.e., the distance between
neighboring points is not equal everywhere. However, the
result is close enough to a uniform tessellation for many
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Fig. 2: Examples in 4D for the tesseract subdivision, the tetrahedral/octahedral subdivision, and an Euler angle approach.
Each orientation is represented by a point on the unit sphere along with a vector tangential to the sphere that corresponds to
the roll angle. The point on the unit sphere can be interpreted as the direction you are facing (two degrees of freedom) along
with a vector pointing upwards (one degree of freedom). Note that sometimes, several samples have the same point on the
sphere but a different vector pointing upwards.

practical purposes and exhibits a high degree of symmetry.
In future work, it may be possible to consider the use of a
non-uniform grid on the cube, which is designed to yield a
more uniform grid after projection onto the sphere.

III. TESSERACT SURFACE SUBDIVISION

The cube subdivision algorithm introduced above can be
generalized to the four-dimensional case as follows. It should
be noted, however, that the cube subdivision algorithm is not
part of the tesseract subdivision algorithm.

We consider the 4D hypercube (or tesseract). It has 16
corners with coordinates

[±1,±1,±1,±1]T .

Its three-dimensional surface consists of 8 three-dimensional
cubes (embedded in a 4D space) whose corners have the
coordinates

C1 = [1,±1,±1,±1] , (1a)
C2 = [−1,±1,±1,±1] , (1b)
C3 = [±1, 1,±1,±1] , (1c)
C4 = [±1,−1,±1,±1] , (1d)
C5 = [±1,±1, 1,±1] , (1e)
C6 = [±1,±1,−1,±1] , (1f)
C7 = [±1,±1,±1, 1] , (1g)
C8 = [±1,±1,±1,−1] . (1h)



Fig. 3: Subdivision of a 3D cube into eight smaller cubes.
This type of subdivision is used for octrees. Observe that
unlike in Fig. 1, the interior of the cube is subdivided rather
than its surface.

Now, we can subdivide each cube by adding new points in
the middle of each edge and a new point in the center. By
doing so, we obtain 8 smaller cubes whose edges have half
the length of the original edge length. The subdivision is
performed in the same way as in octrees [17], [18] in 3D
(see Fig. 3).

Lemma 2. After n subdivision steps, we have 8 · 8n cubes
with a total of 64 · 8n corners. Certain corners are shared
among multiple cubes, so the total number of unique points
is 8 · (2n + 8n).

Proof. Similar to Lemma 1, the first two claims are straight-
forward. We use a similar approach as before to show the
third claim.

The tesseract consists of eight cubes. Consider one cube
and assume that there are m points onn each edge, i.e., there
is an m×m×m grid. Then, one cube has m3 points that
are unique if only the current cube is considered. Since there
are 8 cubes, we have 8m3 points in total.

Now, we subtract the points occurring multiple times. There
are
• 16 corners, counted 4 times ⇒ subtract 16 · 3,
• 32 edges, counted 3 times ⇒ subtract 32 · 2 · (m− 2),
• 24 faces, counted twice ⇒ subtract 24 · 1 · (m− 2)2.

In total, we have

8m3 − 16 · 3− 32 · 2(m− 2)− 24 · (m− 2) .

For n subdivision steps, i.e., m = 2n + 1, we obtain

8·(2n+1)3−16·3−32·2·(2n−1)−24·(2n−1)2=8(2n+8n) ,

which shows the claim.

The resulting recursive tesseract subdivision method is
given in Algorithm 1, which in turn makes use of the cube
subdivision method given in Algorithm 2. After applying these
algorithms, we normalize the vectors to obtain a tessellation
of the four-dimensional hypersphere. The runtime of the

proposed algorithms is linear in the number of points in the
discretization.

Algorithm 1: Tesseract Subdivision
Input: iterations n
Output: list of points P
/* generate tesseract using equations (1a)-(1h) */

C0 ← [C1, . . . ,C8];
/* subdivide cubes recursively */

for i← 1 to n do
Ci ← ∅;
for j ← 1 to |Ci−1| do

Ci ← [Ci,subdivideCube(Cj)] ;
end

end
P ←removeDuplicatePoints(Cn);
return P;

Algorithm 2: Subdivide Cube
Input: cube C ∈ R8×4, where each row corresponds to

a corner point in R4

Output: list of 8 cubes C
/* compute center of cube */

m← 1
8

∑8
i=1 C(i, :);

/* compute subdivision */

C ← ∅;
for i← 1 to 8 do

/* Generate an axis-aligned cube with given

opposite corners */

C ← [C,generateCube(C(i, :),m)];
end
return C;

As we plan to use the discretization of the hypersphere
for quaternions, we have to deal with their property that
quaternions q and −q represent the same orientation. Thus, we
are actually interested in a tessellation of the hemihypersphere
rather than the full hypersphere. It is straightforward to
obtain a tessellation of the hemihypersphere based on the
previous approach. Due to the symmetry of the tessellation,
we can simply perform a regular tesseract subdivision and
then remove half of the points in such a way that for any
pair x,−x only x is preserved1.

The resulting tessellation are visualized in Fig. 2. For
comparison, we also show the results obtained using the
tetrahedral/octahedral subdivision from [14] and using the
Euler angle method discussed in Sec. V. It can be seen that
the first two approaches generally yield similar results, but
the number of points increases more quickly per subdivision
step for the tetrahedral/octahedral subdivision.

1Note that it is not sufficient to remove all points with x1 < 0 or x1 ≤ 0,
because there are points with x1 = 0. Half of the points with x1 = 0 are
supposed to be removed but the other half has to be kept.



IV. USING THE DISCRETE APPROXIMATION FOR
REPRESENTATION OF UNCERTAIN ROTATIONS

The discretization of SO(3) obtained above can be used
in many applications, such as estimation, control etc. In the
following, we will consider the representation of uncertain
orientations as an exemplary application.

Recently, representing uncertain orientations using the
Bingham distribution [19] has gained significant interest [20]–
[23]. For this reason, we will consider how a Bingham-
distributed uncertain orientation can be approximated using a
discrete grid obtained from the tesseract subdivision approach.

A Bingham distribution is given by the probability density
function (pdf)

f(x;M,Z) =
1

F (Z)
· exp

(
xTMZMTx

)
,

where x ∈ Rd is a unit vector, M ∈ Rd×d is an orthogonal
matrix and Z = diag(z1, . . . , zd−1, 0) ∈ Rd×d is a diagonal
matrix with z1 ≤ · · · ≤ zd−1 ≤ 0. The term F (Z) refers to
the normalization constant (see [24]). It can be seen from the
pdf that the Bingham distribution is antipodally symmetric,
i.e., f(x) = f(−x), which makes it very appropriate for use
with quaternions.

To approximate a given Bingham distribution, we consider
the integral of the pdf over the Voronoi region Vi [13] of
each grid point

wi =

∫
Vi

f(x) dx ,

Vi = {x ∈ S3 : ‖x− xi‖ ≤ ‖x− xj‖ ∀j 6= i}

to compute its weight. As solving this integral is only possible
numerically and computationally burdensome, we assume
that all Voronoi cells are of nearly identical volume and
approximate the weights according to

wi =

∫
Vi

f(x) dx ≈ f(xi)
∫
Vi

1 dx ≈ c · f(xi) ,

where c is a normalization constant that ensures
∑n

i=1 wi = 1.
This yields a set of weighted samples that approximate the
original continuous distribution. Generally, the finer the grid,
the better the approximation.

After normalizing the weights to sum to one, the resulting
weighted samples can be interpreted as a discrete set of
possible rotations together with their associated probabilities.
The key advantage of considering a discrete sample set instead
of the original continuous distribution is that it is easy to
propagate the samples through nonlinear functions and to
reweigh them based on a likelihood. As a result, it is possible
to derive a nonlinear discrete filter on SO(3) similar to the
discrete circular filter we presented in [25], [26] and the point
mass filter proposed in [27].

Of course, the grid-based representation of uncertain
orientations is not limited to approximating Bingham distri-
butions. It is also possible to approximate other antipodally
symmetric distributions on S3, for example, the angular
central Gaussian [28], the S3 version of projected Gaussians
[29, Sec. III], and Bingham mixtures [2, Sec. IV-D].

V. EVALUATION

In the evaluation, we compare our proposed approach
with two alternative discretization methods, the tetrahe-
dron/octahedron subdivision method by Schaefer [14] and a
naive method based on Euler angles. The Euler angle approach
works by considering roll, pitch, and yaw angles αr, αp, αy ,
where αr, αy ∈ [−π, π) and αp ∈ [−π/2, π/2]. For the n-th
subdivision step, we consider

αr = −π + 2π
i

n
, i = 0, . . . , n− 1 ,

αp = −π/2 + π
j

n
, j = 0, . . . , n− 1 ,

αy = −π + 2π
k

n
, k = 0, . . . , n− 1

and convert each of the n3 possible combinations to a unit
quaternion. Note that this can result in duplicates because
Euler angles are not unique, even when the angles are limited
to the appropriate range.

A. Moment-based Evaluation

We consider a Bingham distribution with orientation
parameter M and concentration parameter Z. The orientation
parameter is chosen as a random orthogonal matrix M
(see [30, Sec. 2]) to avoid introducing a bias when the
symmetry axes of the Bingham distribution align with the
symmetry axes of one of the discrete approximations. For
the concentration parameters, we investigate several fixed
concentration matrices Z to see how the amount of uncertainty
impacts the results.

Due to the antipodally symmetric pdf, a Bingham-
distributed random vector x always has a first moment of
E(x) = 0. However, the second moment E(x · xT ) is of
great interest because it uniquely characterizes a Bingham
distribution, similar to the way the mean and the covariance
uniquely describe a Gaussian distribution. As a result, there is
a bijection between positive semidefinite 4× 4 matrices and
Bingham distributions on S3. Thus, the second moment plays
a crucial role in the maximum likelihood parameter estimation
algorithm for the Bingham distribution [19, Sec. 5], [24,
Sec. III-B].

The second moment of a given Bingham distribution can
be computed according to

E(x · xT )= 1

F (Z)
M · diag

(
∂F (Z)

∂z1
, . . . ,

∂F (Z)

∂zn

)
·MT .

Note that this computation involves both the normalization
constant and its first derivative. It is possible to compute
these values using saddlepoint approximations [31], [24],
but for the purpose of the evaluation, we want to avoid
the approximation error involved. For this reason, we use
the integral representation of the normalization constant by
Wood [32, eq. (3.3)], which is slower but much more accurate.
The derivative is computed using finite differences.

Then, we compare the true second moment Ct of the
Bingham distribution to the second sample moment Ca of the
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Fig. 4: Moment-based evaluation for different concentration parameters Z according to the error measure (2).

set of weighted samples obtained based on the discretization
of SO(3). For this purpose, we use the error measure√√√√ 1

16

4∑
i=1

4∑
j=1

(Ct(i, j)−Ca(i, j))2 . (2)

In total, we performed 100 Monte Carlo runs. The results
of the moment-based evaluation are shown in Fig. 4. It can
be seen that the method based on Euler angles is clearly
inferior in some cases. The tesseract subdivision method and
the tetrahedron/octahedron subdivision method perform very
similarly with a slight advantage for the tesseract method.

B. Expected Distance

In order to evaluate the uniformity of the discretization,
we consider the expected distance to the nearest grid point
for a random point x that is uniformly drawn from the
hypersphere. The intuitive motivation is that we seek to avoid
large “holes” in the grid, i.e., areas that are not covered by
grid points. An upper bound of the distance to the next grid
point can be used to derive bounds on the approximation error
when applying certain nonlinear functions to the discretized
probability density (see [33]).

For this purpose, we consider the expectation value

E(‖x−N(x)‖2) =
1

|S3|

∫
S3

‖x−N(x)‖2 dx

where |S3| is the surface area of S3 and

N(x) = argmin
y∈grid

‖x− y‖2
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Fig. 5: Evaluation based on the expected distance to the
nearest grid point.

is the Euclidean distance to the nearest neighbor of x. In
order to evaluate the integral, we perform a substitution to
hyperspherical coordinates [r, φ1, φ2, φ3]

T according to

x1 = r sin(φ1) sin(φ2) sin(φ3) ,

x2 = r cos(φ1) sin(φ2) sin(φ3) ,

x3 = r cos(φ2) sin(φ3) ,

x4 = r cos(φ3)

with radius r = 1 and the corresponding volume correction
term dx = sin(φ2) sin

2(φ3) dφ1 dφ2 dφ3. The resulting
integral is evaluated numerically. Fig. 5 shows the resulting
expected distance. It can be seen that the grid obtained using
the Euler angles approach is slightly inferior to the grid
produced by the other methods, but the differences are very
small.



VI. CONCLUSION

We have presented a novel method for discretizing the ori-
entation group SO(3). The method is based on using a quater-
nion representation and discretizing the four-dimensional
unit hemisphere. This is achieved by considering a four-
dimensional cube, the tesseract, and recursively subdividing
its surface, which consists of three-dimensional cubes.

In a simulative evaluation, we have shown the advantages
of the proposed approach. It performs significantly better than
a naive discretization based on Euler angles while being easier
to understand and implement than the tetrahedron/octahedron
approach.

In future work, it seems promising to consider an adaptive
octree method, i.e., areas of high interest are to be discretized
with more subdivision steps than areas of low interest.
Moreover, we plan on developing a recursive nonlinear filter
based on the proposed discretization, similar to the discrete
filters in [25]–[27].

An implementation of the proposed algorithm is available as
part of libDirectional [34], a library that focuses on directional
statistics and directional estimation.
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