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Abstract— This study explores the non-parametric estimation
of a shape boundary from noisy points in 2D when the sensor
characteristics are known. As the underlying shape information
is not known, the offered algorithm estimates points on the
shape boundary by using the statistics of the subsets of point
cloud data.

The novel approach proposed in this paper is able to find
corner points in a local geometry by only using sample mean
and covariance matrices of the subsets of the point cloud.
While the proposed approach can be used for any class of
boundary functions that demonstrates symmetry; for this paper,
the analysis and experiments are performed on a connected line
segment.

I. INTRODUCTION

The last two and a half decades have witnessed a break-
through both in the computational capacity and the sensor
technologies. This comes with a trade-off; while it is possible
to do burdensome calculations in a very little amount of time,
using every bit of data would still bring a computational
complexity and would be redundant considering the needs of
the user. Therefore, getting rid of redundancy is a major
challenge and it is affordable to downsample the sensor
data as much as possible, if the quality of estimation is not
decreasing with the downsampling. Consider the environment
perception problem with laser scanners; if the aim is to
discriminate between curved and flat surfaces immediately,
the noisy point cloud measured by the laser scanner would be
highly redundant and can be downsampled with some basic
statistical tests.

In this paper, we deal with extended objects, where an ob-
ject causes multiple measurements in each observation. These
measurements are assumed to be generated from multiple
point sources on the boundary of the object. For simplicity,
the boundary function is assumed to be a hypersurface, but the
parametric form of this hypersurface is unknown. While the
measurement sources lie on a hypersurface, the measurements
are noisy, so that there is no guarantee that they lie on the
boundary of the target shape.

If the user has an idea about the underlying shape, the
reasonable idea would be to explicitly model the shape with a
set of state parameters. Any instant of these state parameters
would mean another realization of the shape function. The
usual approach to estimate the ”best” shape parameters is to
associate each measurement in some way to the sources on the
shape, which allows for the derivation of a value or metric
to be minimized or maximized. Finding the set of shape
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parameters that fit best to a list of given point measurements
is called shape fitting. There is a field of research mainly in
computer vision that deals with fundamental geometries such
as conics [1], [2], rectangles [3], and line segments [3].

Yet, the selection of an underlying shape function is only a
part of the problem while there is also an uncertainty about the
actual measurement source that has caused the measurement.
This uncertainty about the actual measurement source is called
the association problem. For this problem, viable approaches
can be classified into two categories; that consider multiple
sources probabilistically [3], [4], and approaches that consider
only a single best-fitting source [5], [6] which minimizes some
metric. When only a single measurement source from the
shape boundary is to be selected, a common approach is
to minimize the sum of square Euclidean distances between
measurements and their closest points [5], [7], also denoted as
least squares approaches. As these techniques do not require
a probabilistic modeling, they have the advantage of easier
implementation. Yet, as these approaches do not consider
the properties of the shape function, they have a problem
of estimation bias [2], [8] when the selected measurement
source resides in a highly nonlinear part of the shape.

Taking multiple measurement sources into consideration
comes with a computational burden, but results in a robust
estimator. Werman and Keren [3] have shown this by
considering each point on the model as a measurement source
for each individual measurement. As every measurement
source is taken into account for each measurement, their
model is called Spatial Distribution Model. Recently, Partial
Information Models [8] were proposed to tackle the same
problem. These models also find the closest point from the
measurement to the shape function but then consider the
partial likelihood [9] for this given measurement source.
Both approaches result in an unbiased estimator even when
the underlying shape function has a high curvature or strong
discontinuities.

Assume that you are given sparse point measurements with
a known noise model originating from a shape boundary.
If the underlying shape function is not parametrized, how
much can we infer about the shape information? This depends
on two conditions. First, there must be ”sufficient” number
of measurements coming from the extended object. This is
reasonable, as with a small number of measurements, the
statistical inference would also be weak. Second, the sensor
properties must be well known, as the shape function is
assumed to be unknown. Without a good statistical knowledge
about the sensor, the estimator would not be robust.

Werman and Keren [3] have extended their Spatial Dis-
tribution Model for non-parametric curves. For this, they



take a set of discrete points as the shape function and use
a global objective function that minimizes the distance of
measurements to all of these discrete points. However, the
question of how to select these discrete points and how to
change their location for increasing and decreasing local
curvatures on the boundary function is still not answered and
shows the necessity of parameterization. They also discussed
another problem of a purely Bayesian approach for non-
parametric curve fitting: it is possible that a non-parametric
shape function would ”curl around” the data point to increase
the likelihood of receiving this data point.

Instead of assigning a set of discrete points as the shape
function, our aim is to arrive at these points by using some
simple statistical techniques. A simple estimator would be
taking the subsets of the data points according to a procedure
and assuming that the mean of these points are on the shape
boundary. There is a vastly used procedure in computer vision
called mean shift for finding the modes of a density function.
Mean shift algorithm uses a certain rule on the subsets of
given data points to find the mode in an iterative manner.
This rule is known as the kernel function.

Yet, the mode detected by the mean shift algorithm is
not necessarily on the shape boundary. This is called the
estimation bias. There is a line of work showing that, for a
given parametric model, the bias of the estimation is directly
related to the curvature of hypersurface [2], [10], [11] and
this idea can be extended to the local geometries when
the curvature is infinite [12]. This approach is not directly
applicable to non-parametric estimation. But the idea can be
extended to explain the results of the statistical tests we are
offering.

This paper uses simple statistical tools such as the sample
mean and covariance matrix for the estimation of the bias
when the curvature of the local geometry is high. By using
these statistical tools, we would alleviate the bias problem
and arrive at a discrete number of points which we assume to
be on the shape boundary. This is actually a downsampling
technique that can be useful when the shape boundary is a
complex function and therefore, calculating the likelihood for
each measurement would be computationally costly.

II. PROBLEM FORMULATION

In mathematical terms, assume that the boundary of the
target shape is a set of uncountably infinite points Sx, which
we assume is a hypersurface and can be parametrized by
a state vector x not known by the user. We want to gain
information about Sx from the point measurements Y =
{y

1
, · · · , y

m
} given in Cartesian coordinates.

Each measurement y
i

is generated by the following stochas-
tic measurement model: a measurement source zi ∈ Sx
is selected from the shape boundary. Then, this source is
corrupted by an additive noise term vi, which is Gaussian
distributed;

y
i
= zi + vi, vi ∼ N (0,Cv) , (1)

yielding the measurement y
i
. In this study, we will focus on

isotropic noise, i.e., Cv = σ2 · I, where σ2 is a known term.

Furthermore, we assume that the noise term vi is independent
from the state and vi and vj , i 6= j are uncorrelated.

Suppose that we are able to explicitly model the shape
boundary Sx with the state vector x and have information
about its a priori probability distribution p(x). Then, the
sparse point measurements Y can be used for updating our
information about the state vector x by the aid of well known
Bayes’ rule

p(x | Y) ∝ p(Y |x)p(x) . (2)

However, our problem here is not the uncertainty about the
state vector x. As the shape itself is unknown in advance, there
is no reasonable model we can apply, and in consequence,
no meaningful parameters to estimate.

Without a known model of the shape, our aim is to find
points Z = {z1, · · · , zk} on the shape boundary such that
Z ⊂ Sx. While Sx is a set of uncountably infinite points
that form the shape boundary, Z described here is a set of
a finite number of points. Now define SZ as the function
of the shape boundary which is formed by interpolating the
points in the set Z . If the set Z contains enough data points
from the shape boundary especially where the curvature of
the shape boundary is high, then SZ ≈ Sx.

Then, for the non-parametrized case, we start with a set
of measurement points Y and end up with a set of points Z
which we assume to be on the shape boundary and |Z| � |Y|.
We will infer this information from our knowledge about
the sensor model and the statistical tests that we apply on
subsets of the noisy point clouds. This can be compared to
a maximum likelihood approach in which we are trying to
find a set of measurement sources Z that would maximize
the likelihood p(Y |Z). So, with a slight abuse of notation,
the problem can be formulated as;

p(Z |Y) ∝ p(Y |Z)p(Z) (3)

Note that this formulation is only for providing a better
understanding of the approach and not usable because Z is not
a predefined set with known properties. As the measurements
can be treated individually, we will write

p(Y |Z) =
m∏
i=0

p(y
i
| Z) , (4)

In the following formulas, the subindex i will be dropped
unless needed.

III. PROPERTIES OF THE SHAPE FUNCTION

We will start our discussion by describing the local
geometry of Sx in mathematical terms. For the sake of
simplicity, we will constrain ourselves with 2D for the rest
of this paper. Let zx(s), for s ∈ [s0, sT ] ⊂ R, be an arbitrary
regular arc length parametrization of the shape boundary as
shown in Fig. 1. That is, zx(s) is differentiable except for a
countable number of points, does not jump backwards, and
between zx(sa) and zx(sb) it traverses an arc with length
sb−sa. We can therefore denote s as the source parameter. It
can be seen that z′x(s) determines the tangent at the position



s. Analogously, we can define nx(s) as the function which
returns the normal at point s such that z′x(s) ·nx(s) = 0. We
will further select ‖nx(s)‖ = 1 and ‖z′x(s)‖ = 1.

Fig. 1: Parametrization for the curve in black. For a given parameter
s, the function zx(s) selects the corresponding source. The tangent
at this point is z′x(s), and the normal is nx(s) and points outwards.
Grey is the shape interior.

Then, the generative model in (1) can be described in
the following way. First, we randomly draw a parameter
s ∈ [s0, sT ] according to a distribution p(s |x). This yields
the source zx(s). Second, this source is corrupted by the
Gaussian noise term v according to (1). From this, we obtain
the measurement equation

y = zx(s) + v (5)

Using z′x(s) and nx(s) as the basis vectors in 2D, we can
write (5) as

y = zx(s) + sv · z′x(s) + lv · nx(s) (6)

where sv = v · z′x(s) and lv = v · nx(s). We can make
an important observation here: It can be seen that lv and
sv will be independent variables if (and only if) z′x(s) and
nx(s) coincide with the principal components of the Gaussian
measurement covariance matrix Cv. Note that, with our
assumption of isotropic measurement noise, this case is always
satisfied.

The underlying shape function zx(s) can be seen as a
combination of infinite number of point sources. We now
want to further our analysis for different shape functions
starting from point sources.

A. zx(s) as a Single Point Source

Assume that we have a point measurement source z =
[a b]T that resides in a sl coordinate system. For any given
measurement y, lv = l − b and sv = s − a describe the
distance of the measurement from the point source z. As the
noise v is isotropic, we can write,

p(lv, sv) = p(lv)p(sv) (7)

Now take the region Rz extending from s = −A to s = A
as shown in Fig. 2. In accordance with the terminology of
the mean shift algorithm, we will call Rz as a kernel. Note
that,

p(lv, sv|Rz) = p(lv|Rz)p(sv|Rz) (8)

where Rz stands for the event y ∈ Rz . Moreover,

p(lv|Rz) = N (l; b,σ2) = N (lv; 0,σ
2) (9)

Fig. 2: A point measurement source z is inside the kernel Rz . Rz

extends from s = −A to s = A. Graph shows three instants of
the random variable ỹ = {y : y = z + v, y ∈ Rz}. E(ỹ) is the
expected value of ỹ.

Similarly for the s dimension,

p(sv|Rz) =

{
CN (s; a,σ2) if s ∈ [−A,A]
0, otherwise

(10)

C = 1
p(y∈Rz)

is the normalization constant. Then,

p(y ∈ Rz) = p(−A− a ≤ sv ≤ A− a)

=
1

2

(
erf

(
A+ a

σ
√
2

)
+ erf

(
A− a
σ
√
2

))
(11)

where erf (.) is the error function. Notice that, the distribution
of the measurements in the s dimension is dependent on the
width of the kernel Rz and the position of the measurement
source a. We can make the following observations,

E(sv|Rz) =
1

p(y ∈ Rz)

A∫
−A

svN (s; a,σ2)ds (12)

var(sv|Rz) ≤ σ2 (13)

while var(sv|Rz) would be exactly equal to σ2 if Rz would
extend to infinity in the s dimension. Also if a 6= 0, then
E(sv|Rz) 6= 0. Finally, cov[lv, sv|Rz] = 0 as lv and sv are
independent.

B. zx(s) as Multiple Point Sources

Assume that there are two point measurement sources Sx =
{zi, i = 1, 2}. As there are more than one measurement
sources now, it is not reasonable to use lv and sv which
is used the show the distance of the measurement to the
measurement source, but use the general coordinates of the
measurements s and l. Define the random variables

ỹ ∼ p(y|Rz)
ỹ
i
∼ p(y|z = zi,Rz)

Denote the mean and covariance of ỹ
i

with µi and Ci and
ỹ with µ and C, respectively. From Section III-A, we know
that Ci is a diagonal matrix. We can write p(y|Rz) as a
mixture density,

p(y|Rz) =
∑
i

p(z = zi|Rz)p(y|z = zi,Rz) (14)



Fig. 3: Two point measurement sources z1 = [a b]T and z2 =
[−a b]T inside kernel Rz . E(ỹ) for the random variable ỹ ∼
p(y|Rz) is on the s = 0 line.

where pi = p(z = zi|Rz) is the mixing parameter and∑
i pi = 1. The first two moments of p(y|Rz) would be

calculated as follows;

µ =
∑
i

piµi

C =
∑
i

pi(Ci + (µ− µi)(µ− µi)T )
(15)

We can see that if z1 = [a b]T and z2 = [−a b]T , µ =
[0 b]T and C would also be a diagonal matrix. Therefore
cov[l, s|Rz] = 0. As shown in Fig. 3, when the underlying
shape function zx(s) preserves a symmetry around the s = 0
axis, var(ỹ) would be a diagonal matrix.

Moreover, (7) and (8) are still valid. As p(z = z1) =
p(z = z2) we can write pi ∝ p(y ∈ Rz|zi). From (11), the
mixing parameter becomes pi = 0.5. Then,

p(l|Rz) = N (l; b,σ2) (16)

p(s|Rz) = C(N (s; a,σ2) +N (s;−a,σ2)), s ∈ [−A,A]
(17)

where C is the normalization constant. Using (12),

E(s|Rz) = 0 (18)

C. zx(s) as a Linear Function

Taking nx(s) = [0 1]T in (6), we arrive at Sx =
{[s b]T | s ∈ [−sT , sT ]}. For using the results of Section
III-B define the set Sx(s) = {zx(s), zx(−s)}. Then,

p(y|Rz) =
sT∫
0

p(y|z ∈ Sx(s),Rz)p(z ∈ Sx(s)|Rz)ds (19)

Note that the mixing parameter p(z ∈ Sx(s)|Rz) is different
for each value of s. But from Section III-B, we know
E(y|z ∈ Sx(s),Rz) = [0 b]T , ∀s. Therefore, we can write
E(y|Rz) = [0 b]T . Added to that as var(y|z ∈ Sx(s),Rz)
is a diagonal matrix for all s, using (15) we can conclude
that cov(y|Rz) is a diagonal matrix. For this selection of the

Fig. 4: All measurements Y = {y
1
, . . . , y

4
} are originating from a

linear boundary Sx. The aim is to find an estimate ẑk ∈ Sx. For
this, we just consider the measurements inside Rz .

boundary function, (7) and (8) are valid. Also,

p(l|Rz) = N (l; b,σ2) (20)

p(s|Rz) = C

sT∫
−sT

N (s; s′,σ2)ds′, s ∈ [−A,A] (21)

D. zx(s) as a Nonlinear Function

The idea described in Section III-B can be applied to all of
the boundary functions that demonstrate symmetry around the
s = 0 axis. Certainly, the derivations for different boundary
functions will differ from each other. For this paper, we two
line segments connected at an end point. The demonstration
of the problem is given in Fig. 5. The boundary function can
be parameterized as zx(s) = [s m|s|]T , s ∈ [−sT , sT ],m ∈
R+. Define the arc length parameter as s′. Note that for
any point on the shape boundary, ds′ =

√
(ds2 + dl2) =

ds
√
m2 + 1.

Similar to Section III-C, we define the set Sx(s) =
{zx(s), zx(−s)}. For the s dimension, using (18) and (19),
we can see E(s|Rz) = 0. Again as var(y|z ∈ Sx(s),Rz) is
a diagonal matrix for all s, using (15) we can conclude that
cov(y|Rz) is a diagonal matrix.

For the l dimension, we first calculate,

p(y ∈ Rz) =
sT∫
−sT

p(y ∈ Rz|z = zx(s))p(z = zx(s))ds

(22)

=
1

2sT

sT∫
0

p(y ∈ Rz|z = zx(s))ds (23)

=
1

sT

sT∫
0

(
erf

(
A+ s

σ
√
2

)
+ erf

(
A− s
σ
√
2

))
ds (24)



Fig. 5: Sx is a corner of a polygon parameterized as zx(s) =
[s m|s|]T where m = tan(α). E(ỹ) for the random variable ỹ ∼
p(y|Rz) is on the s = 0 line. Due to the symmetry in the shape
function, cov(ỹ) is a diagonal matrix in the sl coordinates.

where we have used (11). Then,

E(l|Rz) =
sT∫
−sT

E(l|z = zx(s),Rz)p(z = zx(s)|Rz)ds

(25)

=
m

sT

sT∫
0

s
p(y ∈ Rz|z = zx(s))p(z = zx(s))

p(y ∈ Rz)
ds (26)

=
m

sTC

sT∫
0

s

(
erf

(
A+ s

σ
√
2

)
+ erf

(
A− s
σ
√
2

))
ds (27)

where C = p(y ∈ Rz). Assuming sT →∞,

E(l|Rz) =
mσ
√
2

a

(
(2a2 + 1) erf (a)

2
+
a exp(−a2)√

π

)
(28)

where a = A
σ
√
2

. For the variance,

var(l|Rz) = σ2 + E(l2|Rz)− E(l|Rz)2 (29)

E(l2|Rz) = m2σ2 2a
2 + 3

3
(30)

as can be seen when m→ 0, var(l|Rz)→ σ2 as expected.

IV. SHAPE INFERENCE

In Section II, we have described the problem as finding
discrete points zk ∈ Sx. How can we use the statistical
analysis of point sources for shape inference? Clearly, the set
of points, Z , that can be detected by statistical inference, is
highly dependent on where they reside on the shape boundary
Sx.

First assume that we have a linear boundary function as
shown in Fig. 4 and all measurements are i.i.d. Take all
measurements Y = {y

i
|y
i
∈ Rz} and N := |Y|. For the

sample mean ẑ =
∑N

i=1 yi
N ,

E(ẑ|Rz) = E(y|Rz) = [0 b]T (31)

cov(ẑ|Rz) = cov(y|Rz)/N (32)

Therefore as N gets larger, ẑ approaches to [0 b]T . Define
scalar variables lz = t · ẑ and sz = n · ẑ. Note that lz , which
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Fig. 6: For a given noisy point cloud, the mean shift algorithm
is initiated using a circular kernel Cz . The point where the mean
shift algorithm stops is shown with a green circle. At this point, the
sample covariance Ĉz is calculated using the points inside Cz . We
switch to the kernel Rz by using the eigenvectors of Ĉz . The points
in yellow squares shows the points inside Rz . From these points,
Ĉz is calculated again. The eigenvector of Ĉz that corresponds to
σ̂lz is shown with a green line. Our aim is to find m and the corner
point which is shown with a red diamond.

is the distance to the linear boundary, is an unbiased and
consistent estimator.

Up to this point, we have assumed that the kernel Rz is
aligned with the sl axis and used this fact in our calculations.
But we don’t have prior knowledge of the shape boundary, and
therefore, of s and l. This problem can be handled as follows;
we will use a circular kernel Cz where the radius of the circle
is a function of σ and calculate the sample covariance Ĉz =∑N

i=1(yi
−ẑ)(y

i
−ẑ)T

N−1 . Singular value decomposition would give,

Ĉz = VT D̂V (33)

where V = [t n] and D̂ = diag(σ̂2
lz
, σ̂2
sz ). Here, σ̂lz and σ̂sz

are the sample standard deviations of lz and sz , respectively.
But σ̂lz and σ̂sz are found by using Cz which would be
a poor estimator. Vectors t and n can then be used for
selection of the kernel Rz and Ĉz is calculated again using
Rz . This process can be repeated until t and n converges to
a value. This procedure holds in any of the cases in which
the covariance matrix is diagonal. For a linear function, the
sample covariance is an unbiased and consistent estimator
σ̂lz → σ with increasing sample size N . For a connected
line segment, we have seen that var(l|Rz) increases with
increasing m from (29). Therefore, the value of σ̂lz can be
used as an identifier which shows if we are on a linear region
of the shape function.

V. EVALUATION

For the experimental setup, we assume that we have a
noisy point cloud originating from a connected line segment.
The experiments were repeated for α varying from π/10 to
4π/10 radians and for different number of data points, N .
In all experiments, the standard deviation of the isotropic
noise σv is taken as 0.2mm while the length of each line
segment is 2mm. Our aim is to find the corner point zk and
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Fig. 7: Results for 100 trials with different number of data points
N . The measurement noise is isotropic with σ = 0.2mm.

estimate the angle between the line segments, or equivalently,
the slope m = tan(α). One instant of the experiments is
shown in Fig. 6. The kernel width A is selected such that
A < sT .

The average results for 100 trials are shown in Fig. 7.
Recall that the lower bound for σ̂lz is σ = 0.2mm when
m = 0. This is consistent with Fig. 7a where a general
trend for σ̂lz can be observed in all results for N ranging
from 102 to 104. However, the estimation of m and lz are
highly dependent on the value of σ̂lz . Small differences in the
estimator σ̂lz cause much difference in the estimation of m
and lz as can be seen from Fig. 7b and 7c, respectively. None
of the estimators were able to alleviate the bias totally, but
the best results were taken for small values of α when N is
large. The estimation quality decreases when α is increased.
This is an expected result; as the spread of the means term
in (15) starts playing a larger role in the calculation of the
sample covariance matrix Ĉz for the selected kernel Rz .

VI. CONCLUSIONS

In this paper, we have proposed an novel method for
the non-parametric estimation of a shape boundary in a
noisy point cloud. The subsets of the point cloud has been
taken into account to find out the linear and non-linear
parts of the shape boundary. While there is a literature on
the parametric estimation methods of the problem, the non-
parametric estimation problem is not much delved into due
to its complexity.

There are a number of subjects with the proposed method
that should be considered. First of all, the method is highly
dependent on the number of samples as the sample covariance
matrix is used in the estimation process. Moreover, the
assumption that the noise statistics are perfectly known might
be unrealistic. However, due to the simplicity of the method
proposed, these problems can be afforded.

In this study, the analytical results for E(l|Rz) and
var(l|Rz) were used in the estimation process. It is also
possible to analytically calculate var(s|Rz) for different
shape functions and incorporate this information into the
estimation process. Also, the selection of another kernel
function besides Rz , where l dimension is also finite would
be beneficial to decrease the error in the estimation of m and
lz for high values of α.
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