
Geometry-Driven Stochastic Modeling of SE(3)
States Based on Dual Quaternion Representation

Kailai Li, Florian Pfaff, and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)

Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany

kailai.li@kit.edu, florian.pfaff@kit.edu, uwe.hanebeck@ieee.org

Abstract—We present a novel approach to stochastically
model uncertain 6-DoF rigid body motions represented by
dual quaternions. Unlike conventional methods relying on the
local linearization of the nonlinear SE(3) group, the proposed
distribution directly models uncertainty on the manifold of unit
dual quaternions. For that, the Bingham distribution is employed
on the 3-sphere to model the real part, at which the tangent plane
of the hypersphere is spanned by a basis preserving the Bingham
principal directions via parallel transport. The conditioning
dual part is then expressed with respect to the transported
basis and modeled by a Gaussian distribution. This enables the
probabilistic interpretation of the correlation between rotation
and translation terms. We further introduce the correspond-
ing sampling-approximation scheme for the proposed density,
based on which unscented transform-based 6-DoF pose filtering
approaches are established and evaluated with simulations.

I. INTRODUCTION

Recursive pose estimation plays a fundamental role in
various robotic tasks such as localization [1], scene regis-
tration [2], and perception [3], as well as autonomous loco-
motion and manipulation [4]. Due to the nonlinear structure
of the special Euclidean group SE(3), stochastic modeling
of uncertain 6-DoF poses is nontrivial. From the perspective
of Lie groups, most existing methods rely on the local lin-
earization of corresponding nonlinear manifolds (e.g., via Lie
algebra), which are essentially approximations by assuming
local perturbations [5]. However, linearizations can be risky if
the system models entail large uncertainty and fast motion. In
this case, higher-order motion information are usually needed
and multi-sensor fusion techniques are required [6].

Moreover, spatial transformations can be parameterized in
different ways, e.g., via Euler angles and translation terms,
or the well-known 4 × 4 homogeneous matrices. However,
the former one inherently brings ambiguities due to the
gimbal lock issue. Homogeneous matrices guarantee unique
representations through overparameterization, but can suffer
from numerical instabilities caused by the large degree of
redundancy. In contrast, dual quaternions can simultaneously
represent orientations and rotations without ambiguity and
with less redundancy (using 8 instead of 16 elements in
homogeneous matrices for representing the 6 DoF).

Over the years, there has been much effort dedicated for
stochastic modeling uncertain dual quaternions in the context
of recursive pose estimation. As the extra two degrees of
redundancy constrain the dual quaternion states on a nonlinear
manifold embedded in the 8-dimensional Euclidean space,
existing approaches normally model the uncertainty in a

Fig. 1: Examples of basis parallel transport [15] on S2 sphere. Here,
Bingham distributions of two different parameters are defined on
the sphere (color bar indicates density). Basis in accordance of the
principal directions at the mode (black coordinates) are transported
along certain geodesic curves. The parallel transport enables two
vectors on different spherical tangent planes to be parallel with
respect to the geodesic curve between them.

locally linearized space [7]. This can lead to poor robust-
ness and accuracy as formerly discussed. Direct on-manifold
modeling approaches have been first pioneered by [8], [9]
for the orientation filtering: uncertain unit quaternions on
the S3 hypersphere are modeled by the Bingham distribu-
tion without local linearization. In [10], [11], uncertain dual
quaternions representing planar motions have been modeled
via the Bingham-distributed real part with the conditioned
Gaussian-distributed dual part. An extension towards 6-DoF
recursive pose filtering based on the Bingham distribution was
introduced in [12]. However, it is specifically targeted for static
scene registration, where pseudo-measurements using paired
points are required to formulate a linear filter setup. In [13],
an unscented filtering framework has been proposed for vision-
based simultaneous localization and mapping (SLAM) based
on the dual quaternion representation. However, the stochastic
modeling of the poses lacks probabilistic interpretation for
the correlation between rotation and translation terms. In [14],
the uncertainty of dual quaternions is modeled by a Gaussian
distribution on the tangent plane of the hypersphere through
projection. Unfortunately, applying it to Bayesian inference
imposes the prerequisite of small orientation changes.

In this paper, a novel approach for modeling uncertain 6-
DoF poses represented by unit dual quaternions is proposed.
We employ the Bingham distribution on the S3 hypersphere to
model the rotation quaternions. Taking the idea of Riemannian
geometry, the Bingham principal directions at the mode can
then be preserved on S3 via parallel transport and further serve
as the local basis of the tangent plane on the hypersphere.
Thus, the translation terms can be interpreted probabilistically



with respect to the transported basis by a Gaussian distribution.
Examples of basis parallel transport for Bingham distributions
on S2 sphere are shown in Fig. 1. More specifically, our main
contributions are:
• The uncertainty of 6-DoF rigid body motions are directly

modeled on the manifold of unit dual quaternions without
local linearization.

• The probabilistic correlation between rotation and transla-
tion terms is inherently considered based on hyperspher-
ical parallel transport.

• A sampling-approximation scheme is proposed based on
the novel density and further applied in the unscented
transform-based recursive filtering framework.

The remainder of the paper is structured as follows. In
Sec. II, preliminaries about dual quaternion pose represen-
tation and the Bingham distribution are introduced. The
novel geometry-driven stochastic modeling of uncertain unit
dual quaternions is introduced in Sec. III. The sampling-
approximation scheme is proposed in Sec. IV, based on which
the unscented transform-based Bayesian inference framework
is established. Finally, the work is concluded in Sec. V.

II. PRELIMINARIES

A. Parameterization of Spatial Rotations Using Quaternions

By convention, 3-DoF spatial rotations can be parameterized
by quaternions in the following form [16]

xr =
[

cos(θ/2), n> sin(θ/2)
]> ∈ R4 , (1)

with the unit vector n ∈ R3 denoting the axis around which
a rotation of angle θ is performed. The norm of quaternions
is defined as ‖xr‖ =

√
xr ⊗ x∗r , with ⊗ being the Hamilton

product [17] and x∗r = diag(1,−1,−1,−1) xr being the
conjugate of xr . Here, diag(·) denotes a diagonal matrix
with the entries given as diagonal elements. Therefore, the
quaternions in (1) are of unit norm and also of unit length in
R4, thus xr ∈ S3 ⊂ R4. Given the unit quaternion defined in
(1), a point v ∈ R3 can be rotated to v′ accordingly via

[ 0,v′> ]> = xr ⊗ [ 0, v> ]> ⊗ x∗r , (2)

with [ 0,v> ]> being the quaternion form of vector v .
Moreover, the set of unit quaternions is closed under the

Hamilton product, which essentially denotes 4-dimensional
rotations on the S3 hypersphere. For instance, ∀p =
[ p0, p1, p2, p3 ]>, q = [ q0, q1, q2, q3 ]> ∈ S3, their Hamil-
ton product can be reformulated into ordinary matrix–vector
multiplication, namely p⊗ q = Qx

p q = Qy
q p , with

Qx
p =

[
p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

]
, Qy

q =

[
q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

]
(3)

being the left and right matrix representation and Qx
p,Q

y
q ∈

SO(4) (proven in Appendix A). For unit quaternions, their
inverse is identical to the conjugate, i.e., q−1 = q∗, with its
matrix representation, either composed from left or right hand
side, satisfying Qq−1 = Q−1

q = Q>q [16] .

B. Dual Quaternion Parameterization of Rigid Body Motions
A dual quaternion is essentially a tuple of paired quaternions

combined by the dual unit ε (ε2 = 0), namely x = xr + εxd .
Here, xr denotes the real part and xd the dual part. Concate-
nation of the real and dual part then results in the following
vector form of dual quaternions 1 x = [ x>r , x>d ]> ∈ R8 .
Thus, the arithmetics of dual quaternions is the combination
of the Hamilton product and dual number theory. We use � to
denote the product of two dual quaternions (example shown
in Appendix B). Multiplication of two dual quaternions can
also be expressed as ordinary matrix–vector product [11]. For
two dual quaternions x = [ x>r , x>d ]> and y = [ y>r , y>d ]>,
we have x � y = Qp

x y = Qq
y x, with

Qp
x =

[
Qx

xr
0

Qx
xd

Qx
xr

]
,Qq

y =

[
Qy

yr
0

Qy
yd

Qy
yr

]
, (4)

and 0 ∈ R4×4 . Furthermore, the norm of dual quaternions is
defined as ‖x‖ =

√
x � x∗, with x∗ = [ x∗>r , x∗>d ]> being

the classic conjugate of x, where the real and dual part are
conjugated individually. By imposing unit norm constraints,
the manifold of unit dual quaternions can be derived as

Ω =
{[

x>r , x>d
]> ∣∣∣xr ∈ S3, x>r xd = 0

}
⊂ R8 , (5)

which indicates that the real part xr is located on the hyper-
sphere S3 as given in (1) with the dual part xd being orthogonal
to the real part. The derivation can be found in Appendix C.

Similar to unit quaternions parameterizing spatial rotations,
dual quaternions of unit norm are a compact representation
of rigid transformations fulfilling the two constraints in (5).
By convention [12], the real part xr is defined as in (1)
representing the rotations and the dual part is given as

xd =
1

2

[
0, t>

]> ⊗ xr , (6)

with t ∈ R3 being the translation, such that any v ∈ R3 can
be transformed to v′ via[

1, 0, 0, 0, 0,v′>
]>

= x �
[

1, 0, 0, 0, 0,v>
]>

� x◦ (7)

(proof shown in Appendix D). Here, [ 1, 0, 0, 0, 0,v> ]> de-
notes the dual quaternion form of vector v and x◦ =
[ x∗>r , −x∗>d ]> is the full conjugate of x (both the dual unit
and quaternion components are conjugated).

C. Stochastic Modeling of Uncertain Unit Quaternions
The Bingham distribution [18] on S3 is defined as

fB(xr; Z,M) =
1

NB(Z)
exp

(
x>r M Z M>xr

)
, (8)

with Z = diag(z1, z2, z3, z0) being the concentration matrix
controlling the dispersion, NB(Z) the normalization constant,
and real orthogonal matrix M ∈ R4×4 indicating the principal
directions of the density. As (2) shows, two antipodal unit
quaternions on the hypersphere, i.e., xr,−xr ∈ S3 , represent
the same rotation. Thus, the Bingham distribution defined in
(8) is well-suited to model the uncertainty of unit quaternions,

1For better readability in this paper, we use x to denote both the dual
number form and the vector form of dual quaternions.
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Fig. 2: Examples of random sampling from the proposed density via the sampling scheme introduced in Alg. 1 . Figures in each column
visualize dual quaternion samples represented by 3-D poses of the same parameter configuration. Here, the blue arrows indicate random
samples, whereas the red one gives the mode of the distribution.

as its density is antipodally symmetric on S3, i.e., fB(xr) =
fB(−xr) . Moreover, the parameter matrices Z and M can
be derived via eigendecomposition of a negative semidefinite
matrix CB. Afterward, the eigenvalues in Z are by convention
re-aligned in ascending order [9], i.e., z1 ≤ z2 ≤ z3 ≤ z0 ≤
0 , and the column vectors in M are re-ordered accordingly
as [ m1,m2,m3,m0 ]. The mode of the density can then be
recognized as the column vector associated with the largest
eigenvalue, namely m0 .

III. ON-MANIFOLD STOCHASTIC MODELING FOR
UNCERTAIN UNIT DUAL QUATERNIONS

A. Geometric Structure of the Unit Dual Quaternion Manifold

The unit dual quaternion manifold as introduced in (5) is
compact and can be identified as a differentiable Riemannian
manifold [19], [20]. Here, the dual part defined in (6) can
be further reformulated via the matrix representation intro-
duced in (3) as xd = 0.5 Qy

xr
[ 0, t> ]> = 0.5 Ey

xr
t , with

Ey
r ∈ R4×3 being the last three columns of the matrix Qy

xr
,

namely Qy
xr

= [ xr,E
y
r ] . As Qy

xr
∈ SO(4), the column

vectors of matrix Ey
xr

essentially provide an orthonormal
basis spanning the tangent space of the hypersphere S3 at
xr, i.e., TxrS3 = span{e1, e2, e3} , with Ey

r = [ e1, e2, e3 ] .
It can be easily proven that Ey>

r Ey
r = I ∈ R3×3 . Thus

the encapsulated pure translation in the dual part can be
regenerated via t = 2 Ey>

r xd .

On the other hand, given the Bingham distribution defined
in (8), the tangent plane at the mode m0 can also be spanned
by the first three column vectors of matrix M, namely
Tm0S3 = span {m1,m2,m3} , with {m1,m2,m3} being the
orthonormal basis. For simplicity of the derivation below, we
denote EB = [ m1,m2,m3 ] , such that M = [ EB, m0 ] .

B. On-manifold Basis Parallel Transport

In order to probabilistically interpret the correlation between
the translation term and the rotation quaternion, we decode the
dual part xd located on the tangent plane TxrS3 with respect
to a basis that preserves the Bingham principal directions at
xr. For that, we employ the parallel transport technique from
Riemannian geometry [15], [20] on S3 to shift the tangent
plane coordinates at the mode m0 to xr, namely

EB
r = Qx

xr⊗m−1
0

EB = Qx
xr

Qx>
m0

EB . (9)

Here, EB
r denotes the basis preserving the Bingham principal

directions EB transported from the mode m0 to xr. The unit
dual quaternion xr⊗m−1

0 denotes the difference between m0

and xr . In fact, the column vectors of EB
r = [ eB

1 , eB
2 , eB

3 ]
can essentially be computed according to eB

i = xr ⊗m−1
0 ⊗

mi, meaning that the principal components {mi}3i=1 of the
Bingham distribution are shifted jointly under the same 4-
dimensional rotation xr⊗m−1

0 . Therefore, {eB
i }3i=1 provide an

orthonormal basis for TxrS3, i.e., TxrS3 = span {eB
1 , eB

2 , eB
3} ,

which embodies the information geometry of the Bingham



distribution at ∀xr ∈ S3. With respect to the transported basis
EB

r , the translation quaternion xd can be decoded into the
following form

tB = 2 EB>
r xd , (10)

such that xd = 0.5 EB
r tB . By modeling tB with a certain

distribution, e.g., a Gaussian distribution, that is uncorrelated
to the real part, the true translation term encapsulated in the
dual part defined in (6) shall be correlated with the real part.

C. Stochastic Modeling of Unit Dual Quaternions
Based on Hyperspherical Geometry

The joint probability density function modeling the real and
dual part of uncertain unit dual quaternions can be derived by
marginalizing out the orientation-uncorrelated translation term
tB of (10), namely

f(xr,xd) =

∫
R3

f(xr,xd, tB) dtB

=

∫
R3

f(xr) f(xd , tB |xr) dtB

= f(xr)

∫
R3

f(xd |xr, tB) f(tB |xr) dtB

= f(xr)

∫
R3

δ(xd − 0.5 EB
r tB) f(tB) dtB

∝ f(xr) f(2 EB>
r xd) .

(11)

Here, δ(·) denotes the Dirac delta function which evaluates
f(tB) at tB = 2EB>

r xd according to (10) in the integral and
results in the proportion [21, Theorem 265E]. We assume the
real part to be Bingham-distributed, i.e., xr ∼ B (Z,M), and
the translation term 2EB>

r xd to be Gaussian-distributed with
respect to the basis in (9), namely 2EB>

r xd ∼ N (µ ,Σ). The
second part can thus be derived as follows

f(2EB>
r xd)

∝ exp
{
− 0.5 (2EB>

r xd − µ)>Σ−1(2EB>
r xd − µ)

}
= exp

{(
xd − µr

d

)>
Cr

d

(
xd − µr

d

)}
.

Here, µr
d indicates the dual part mean correlated to the real

part and can be further derived given (9) as

µr
d = 0.5 EB

r µ = 0.5 Qx
xr

Qx>
m0

EBµ = xr ⊗m−1
0 ⊗ µd ,

with µd = 0.5 EBµ ∈ Tm0
S3 , which can be viewed as

the mode of the dual part. As m−1
0 ⊗ µd is invariant to the

orientation, the aforementioned equation can be further derived
by applying the matrix representation in (3), such that

µr
d = Qy

m−1
0 ⊗µd

xr = Qy
µd

Qy>
m0

xr := Td xr ,

with Td = Qy
µd

Qy>
m0

interpreting the correlation between
rotation and translation quaternions. Meanwhile, we have

Cr
d = −2EB

r Σ−1
t EB>

r

= −2Qx
xr

Qx>
m0

EB Σ−1
t

(
Qx

xr
Qx>

m0
EB)>

= −2Qx
xr

Qx>
m0

EB Σ−1
t EB>Qx

m0
Qx>

xr

:= Qx
xr

Cd Qx>
xr
,

Algorithm 1 Deterministic Sampling
procedure detSample ({Z ,M ,µ ,Σ})

1: {xi
r , w

i
r}ni=1 ← detSampleBingham (Z,M) ;

2: {tjB, w
j
t }mj=1 ← detSampleGaussian (µ ,Σ) ;

3: [ EB,m0 ]← M ;
4: k ← 1;
5: for i = 1 to n do
6: EB

r,i ← Qx
xi

r
Qx>

m0
EB ; // see (9)

7: for j = 1 to m do
8: x

j|i
d ← 0.5 EB

r,i tjB ;
9: xk ← [ xi>

r ,x
j|i>
d ]>;

10: wk ← wj
r × wi

t ;
11: k ← k + 1 ;
12: end for
13: end for
14: return {xk , wk}m×nk=1

end procedure

with Cd = −2 Qx>
m0

EB Σ−1
t EB>Qx

m0
interpreting the

orientation-invariant component of the dual part uncertainty.
We can thus combine the Bingham-distributed real part and the
conditioning Gaussian-distributed translation term according
to (11) into the following concise form

f(x) ∝ fB(xr) fN (2 EB>
r xd)

= exp
{
x>r M Z M>xr−

0.5 (2EB>
r xd − µ)>Σ−1

(
2EB>

r xd − µ)
}

= exp
{
x>r M Z M>xr +

(xd −Td xr)
>Qx

xr
Cd Qx>

xr
(xd −Td xr)

}
.

(12)

Moreover, the mode of the proposed distribution is

xmode =
[
m>0 ,µ

>
d

]>
=
[
m>0 , 0.5µ>EB> ]> ,

where the real part is the mode of the Bingham distribution
and the dual part the Gaussian mean expressed in the basis
composed by the Bingham principal directions.

IV. UNSCENTED POSE FILTERING

A. Deterministic Sampling and Parameter Fitting

In order to apply the proposed distribution for Bayesian in-
ference, we further introduce a deterministic sampling scheme
following the basic idea of unscented transform [22] (shown
in Alg. 1 in detail). Given the parameters of the distribution
{Z ,M ,µ ,Σ} as introduced in Sec. III-C, deterministic sam-
ples are first drawn from the Bingham [9], [23] and the Gaus-
sian part [22] individually. For each unit quaternion sample, we
derive its associated tangent plane basis EB

r according to (9) ,
with respect to which the Gaussian samples are composed with
the real part via (10), such that the dual part can be obtained
(Alg. 1, line 6). Similarly, the weighting factors are computed
through Cartesian product by multiplying the Bingham and
Gaussian weights.

The aforementioned scheme can also be used for Monte
Carlo-based random sampling processes. Here, we only need
to substitute the deterministic samplings in line 1-2 of Alg. 1
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Fig. 3: Qualitative evaluation of unscented transform-based prediction steps using the proposed sampling-approximation scheme. The result
is shown from two viewpoints. Here, the prediction steps are performed consecutively. Thus, the uncertainty dispersion gets larger as shown
by the 6-DoF random samples (blue arrows) drawn continuously from the prior estimates. The proposed sampling-approximation scheme
shows good performance for UT-based prediction.

Algorithm 2 Parameter Estimation
procedure estimateParameter ({xi, wi}ni=1)

1: {M,Z} ← estimateBingham ({xi
r , w

i}ni=1) ;
2: [ EB,m0 ]← M ;
3: for i = 1 to n do
4: EB

r,i ← Qx
xi

r
Qx>

m0
EB ; // see (9)

5: tiB ← 2 EB>
r,i xi

d ;
6: end for
7: µ←

∑n
i=1 w

i tiB ;
8: Σ←

∑n
i=1 w

i (tiB − µB
t ) (tiB − µB

t )> ;
9: return {Z ,M ,µ ,Σ }

end procedure

with random ones [10]. Fig. 2 further shows results of ran-
dom sampling on the proposed distribution under different
parameter configurations. The dual quaternion samples are
hereby visualized by 3-D quivers representing the spatial
poses. Furthermore, the proposed distribution can also be
re-approximated given weighted samples (shown in Alg. 2).
Here, the Bingham component is first approximated by using
the real parts of the dual quaternion samples as introduced
in [9]. Based on the fitted Bingham parameters, we can
therefore derive the tangent plane basis EB

r corresponding to
each quaternion sample, such that its uncorrelated translation
term tB can be obtained (Alg. 2, line 4-5). The uncorrelated
Gaussian parameters {µ,Σ} can thus be approximated from
the collected tB samples (Alg. 2, line 7-8). We use the
following example to show an application of the proposed
sampling-approximation approach to Bayesian inference of
uncertain system dynamics.

Example IV.1 Our system model is: xk = xk−1 � uk−1 �
vk−1 , with xk−1 ,uk−1 ,vk−1 ∈ Ω denoting the system state,
input and noise, respectively. We assume the noise term vk−1

to be distributed according to the proposed density that is
time-invariant. Therefore, the sampling-approximation scheme
introduced in Alg. 1 and Alg. 2 can be practically integrated
into an unscented transform (UT)-based prediction step, for

instance, the one introduced in [24, Alg. 3]. Here, determin-
istic samples are drawn from the last prior estimate f p

k−1
and propagated with the noise samples drawn from the noise
distribution fv through Cartesian product. The current prior
estimate f e

k can therefore be obtained by re-approximating
from the propagated samples. Fig. 3 shows the result for 8
consecutive prediction steps. The system input is given as a
rotation of θ = π/3 around axis n = [ 1/

√
3, 1/
√

3, 1/
√

3 ]>

followed by a translation of t = [ 30, 30, 30 ]> .

B. Measurement Fusion
Without loss of generality, we assume the following formula

for identity measurement models zk = xk�wk , with the noise
term wk ∈ Ω following the proposed distribution. Thus, the
posterior can be obtained according to Bayes’ law as follows

f e(xk|zk) ∝ f(zk|xk)︸ ︷︷ ︸
likelihood

· f p(xk)︸ ︷︷ ︸
prior

.

By marginalizing out the noise term and further applying
the definition of conditional probability, the likelihood can be
reformulated into the following form

f(zk|xk) =

∫
Ω

f(zk,wk |xk) dwk

=

∫
Ω

f(zk |wk,xk) f(wk) dwk

=

∫
Ω

δ(wk − zk � x−1
k ) f(wk) dwk

= fw(zk � x−1
k ) ,

which is the noise density evaluated at the unit dual quaternion
indicating the difference between the measurement and the
prior. By applying the arithmetics of unit dual quaternions
introduced in Sec. II, the difference term can be derived as 2

x−1 � z =

[
x−1

r ⊗ zr
x−1

r ⊗ zd + x∗d ⊗ zr

]
:=

[
∆r
∆d

]
.

2For better readability of the algorithm, we ignore the time stamp index k
of the state and measurement variable xk and zk .



Algorithm 3 Measurement Fusion
procedure fuseMeasurement (f p , fw , z)

1: [ z>r , z
>
d ]> ← z ;

2: f e
B ← fuseBingham (f p

B, f
w
B , zr) ; // see [9]

3: {Ze,Me} ← f e
B ;

4: f e
N ← f p

N ;
5: {µw,Σw} ← fwN ;
6: {xi

r}ni=1 ← detSampling (Ze,Me) ; // see [23]
7: for i = 1 to n do
8: EB

r,i ← Qx
xi

r
Qx>

m0
EB ; // see (9)

9: tB ← 2 EB>
r,i zd ;

10: f e
N ← updateKF (f e

N , f
w
N , tB) ;

11: end for
12: {µe,Σe} ← f e

N ;
13: return {Ze ,Me ,µe ,Σe }
end procedure

Unlike in the case of planar motions introduced in [10],
[24], [ ∆>r ,∆

>
d ]> cannot be trivially turned into a closed-

form update step for the proposed distribution. However,
since the distribution in (12) is given as the product of the
Bingham and the orientation-invariant Gaussian, the real part
∆r can still be fused in closed form [9]. In order to fuse the
measurement of the dual part in a coherent way, we propose
an unscented transform-based fusion approach, as shown in
Alg. 3 in detail. Here, the Bingham part is first updated in
closed form as mentioned in [9]. We then draw quaternion
samples deterministically from the Bingham part and traverse
each of their associated tangent planes, on which an ordinary
Kalman filter (KF) update step is performed for the Gaussian
part (Alg. 3, line 8-10). As the Gaussian part is updated
sequentially throughout all the sampled tangent planes, the
quaternion samples should be equally weighted. It is thus
recommended to employ deterministic Bingham sampling
approaches proposed in [23], [25], which guarantees equal
weighting factors. The following example shows a quantitative
evaluation of the proposed measurement fusion method.

Example IV.2 We use the measurement model setup in
Sec. IV-B with the prior and measurement noise distribution
given as
• Cp

B = −diag(1, 500, 500, 500), Σp
N = 0.001× I ;

• Cw
B = −diag(1, 1/a, 2/a, 3/a), Σw

N = a× I .
Here, a is selected from {0, 1, 0.01, 0.001} and is used to
control the measurement noise level, with a larger value indi-
cating higher noise level for both the Bingham and Gaussian
parts. The Bingham parameters Cw

B and Cp
B are given in the

concise form as mentioned in Sec. II-C, indicating both modes
at [1, 0, 0, 0]>. The Gaussian terms are also zero-centered
with the identity matrix I ∈ R3×3 . Here, a hidden state xgt
incorporating a noise term v is given as the ground truth. It is
generated via xgt = u� v , with v also distributed according
to the proposed distribution parameterized as follows
• Cv

B = −diag(1, 400, 400, 400), Σv
N = 0.002× I .

Here, the noise for the hidden state is also zero-centered (same
as the prior). Therefore, we use u ∈ Ω as a shifting term to
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Fig. 4: Evaluation of sequential updates using the proposed mea-
surement fusion methods in Sec. IV-B . Here, the representative run
is shown.

diverge the ground truth away from the mode of the prior. The
u encodes a rotation of degree θ = π/3 around axis n =
1/
√

3× [1, 1, 1]> followed by a translation of t = [5, 4, 6]> .
In the simulation, we generate the hidden state xgt by

propagating u with one random sample v drawn from fv. The
prior f p is then updated by sequentially fusing measurements
generated via z = xgt � w, with w randomly drawn from
the measurement noise distribution fw each time. Fig. 4
shows the results of 50 sequential update steps by using
the measurement fusion approach in Alg. 3. For all of the
noise levels considered, both rotation and translation errors
decrease with growing fusion steps. With lower noise level
(smaller a), the posterior estimate converges faster towards
the ground truth.

V. CONCLUSION

In this paper, a novel approach is proposed to stochastically
model uncertain 6-DoF rigid body motions represented by
unit dual quaternions. The resulting distribution is directly
defined on the manifold of unit dual quaternions without local
linearizations, inherently considering the nonlinearity of the
underlying group. Besides, by applying the parallel transport
technique from Riemannian geometry to the Bingham distri-
bution on the S3 hypersphere, a probabilistic interpretation of
the correlation between the rotation and translation terms is
enabled. A corresponding sampling-approximation scheme is
also proposed and employed further in an unscented transform-
based pose filtering framework. However, there is much po-
tential to exploit from the proposed work. First, it might be
possible to simplify the distribution parameters into a more
concise form, e.g., a single 8 × 8 matrix. Second, it is of
interest to evaluate the proposed unscented filtering approaches
for real-world applications, e.g., robotic pose estimation and
perception, localization in sensor networks [26], etc.



APPENDIX

A. Matrix Representation of Unit Quaternions
∀p, q ∈ S3, p⊗q = Qx

p q, with Qx
p as given in (3). Since

p = [ p1, p2, p3, p4 ]> ∈ S3, we have Qx>
p Qx

p = Qx
p Qx>

p =
I ∈ R4×4 and det(Qx

p) = 1, thus Qx
p ∈ SO(4), i.e., the 4-

dimensional group. Similarly, it can be proven that in (3) the
right matrix representation Qy

q ∈ SO(4).

B. Dual Quaternion Product
The product of two dual quaternions can be derived as x1�

x2 = (x1
r + εx1

d)(x2
r + εx2

d) = x1
r ⊗ x2

r + ε (x1
r ⊗ x2

d + x1
d ⊗

x2
r ) + ε2 x1

d ⊗ x2
d = x1

r ⊗ x2
r + ε (x1

r ⊗ x2
d + x1

d ⊗ x2
r ) .

C. Dual Quaternions of Unit Norm
The squared norm of a dual quaternion x = xr + εxd can

be derived by exploiting ε2 = 0 as x�x∗ = (xr + εxd)(x∗r +
εx∗d) = xr ⊗ x∗r + ε (xr ⊗ x∗d + xd ⊗ x∗r ) = xr ⊗ x∗r + ε (xr ⊗
x∗d + (xr ⊗ x∗d)∗) . The dual part in the aforementioned form
is thus the sum of quaternion xr⊗x∗d with its own conjugate.
According to the Hamilton product in (3), this leads to a scalar
value, namely xr⊗x∗d + (xr⊗x∗d)∗ = 2 x>r xd . Thus, we have
x�x∗ = xr⊗x∗r +2 εx>r xd to fulfill the unit norm constraint,
i.e., ‖x‖ =

√
x � x∗ = 1, which results in the manifold of

unit dual quaternions as shown in (5).

D. Spatial Transformations via Unit Dual Quaternions
For any v ∈ R3, it can be transformed by a unit dual

quaternion to v′ according to (7) as follows

x � [ 1, 0, 0, 0, 0,v> ]> � x◦

= (xr + εxd)([ 1, 0, 0, 0 ]> + ε [ 0,v> ]>)(x∗r − εx∗d)

= (xr + εxr ⊗ [ 0,v> ]> + εxd)(x∗r − εx∗d)

= xr ⊗ x∗r − ε (xr ⊗ x∗d − xr ⊗ [ 0,v> ]> ⊗ x∗r − xd ⊗ x∗r )

As xr ⊗ x∗d = (xd ⊗ x∗r )∗ and xd ⊗ x∗r = xd ⊗ x−1
r =

0.5 [ 0, t> ]>, it can be further derived that xr⊗x∗d−xd⊗x∗r =
−[ 0, t> ]> . Given xr ⊗ x∗r = [ 1, 0, 0, 0 ]>, we have

x � [ 1, 0, 0, 0, 0,v> ]> � x◦

= [ 1, 0, 0, 0 ]> + ε(xr ⊗ [ 0,v> ]> ⊗ x∗r + [ 0, t> ]>) ,

resulting in a transformation of rotation via xr followed by a
translation of t , namely [ 0,v′> ]> = xr ⊗ [ 0,v> ]> ⊗ x∗r +
[ 0, t> ]>.
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