Geometry-Driven Stochastic Modeling of SE(3) States Based on Dual Quaternion Representation

Kailai Li, Florian Pfaff, and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany
kailai.li@kit.edu, florian.pfaff@kit.edu, uwe.hanebeck@ieee.org

Abstract—We present a novel approach to stochastically model uncertain 6-DoF rigid body motions represented by dual quaternions. Unlike conventional methods relying on the local linearization of the nonlinear SE(3) group, the proposed distribution directly models uncertainty on the manifold of unit dual quaternions. For that, the Bingham distribution is employed on the 3-sphere to model the real part, at which the tangent plane of the hypersphere is spanned by a basis preserving the Bingham principal directions via parallel transport. The conditioning dual part is then expressed with respect to the transported basis and modeled by a Gaussian distribution. This enables the probabilistic interpretation of the correlation between rotation and translation terms. We further introduce the corresponding sampling-approximation scheme for the proposed density, based on which unscented transform-based 6-DoF pose filtering approaches are established and evaluated with simulations.

I. INTRODUCTION

Recursive pose estimation plays a fundamental role in various robotic tasks such as localization [1], scene registration [2], and perception [3], as well as autonomous locomotion and manipulation [4]. Due to the nonlinear structure of the special Euclidean group SE(3), stochastic modeling of uncertain 6-DoF poses is nontrivial. From the perspective of Lie groups, most existing methods rely on the local linearization of corresponding nonlinear manifolds (e.g., via Lie algebra), which are essentially approximations by assuming local perturbations [5]. However, linearizations can be risky if the system models entail large uncertainty and fast motion. In this case, higher-order motion information are usually needed and multi-sensor fusion techniques are required [6].

Moreover, spatial transformations can be parameterized in different ways, e.g., via Euler angles and translation terms, or the well-known 4 \times 4 homogeneous matrices. However, the former one inherently brings ambiguities due to the gimbal lock issue. Homogeneous matrices guarantee unique representations through overparameterization, but can suffer from numerical instabilities caused by the large degree of redundancy. In contrast, dual quaternions can simultaneously represent orientations and rotations without ambiguity and with less redundancy (using 8 instead of 16 elements in homogeneous matrices for representing the 6 DoF).

Over the years, there has been much effort dedicated for stochastic modeling uncertain dual quaternions in the context of recursive pose estimation. As the extra two degrees of redundancy constrain the dual quaternion states on a nonlinear manifold embedded in the 8-dimensional Euclidean space, existing approaches normally model the uncertainty in a locally linearized space [7]. This can lead to poor robustness and accuracy as formerly discussed. Direct on-manifold modeling approaches have been first pioneered by [8], [9] for the orientation filtering: uncertain unit quaternions on the \(S^3 \) hypersphere are modeled by the Bingham distribution without local linearization. In [10], [11], uncertain dual quaternions representing planar motions have been modeled via the Bingham-distributed real part with the conditioned Gaussian-distributed dual part. An extension towards 6-DoF recursive pose filtering based on the Bingham distribution was introduced in [12]. However, it is specifically targeted for static scene registration, where pseudo-measurements using paired points are required to formulate a linear filter setup. In [13], an unscented filtering framework has been proposed for vision-based simultaneous localization and mapping (SLAM) based on the dual quaternion representation. However, the stochastic modeling of the poses lacks probabilistic interpretation for the correlation between rotation and translation terms. In [14], the uncertainty of dual quaternions is modeled by a Gaussian distribution on the tangent plane of the hypersphere through projection. Unfortunately, applying it to Bayesian inference imposes the prerequisite of small orientation changes.

In this paper, a novel approach for modeling uncertain 6-DoF poses represented by unit dual quaternions is proposed. We employ the Bingham distribution on the \(S^3 \) hypersphere to model the rotation quaternions. Taking the idea of Riemannian geometry, the Bingham principal directions at the mode can then be preserved on \(S^3 \) via parallel transport and further serve as the local basis of the tangent plane on the hypersphere. Thus, the translation terms can be interpreted probabilistically
with respect to the transported basis by a Gaussian distribution. Examples of basis parallel transport for Bingham distributions on $S³$ sphere are shown in Fig. 1. More specifically, our main contributions are:

- The uncertainty of 6-DoF rigid body motions are directly modeled on the manifold of unit dual quaternions without local linearization.
- The probabilistic correlation between rotation and translation terms is inherently considered based on hyperspherical parallel transport.
- A sampling-approximation scheme is proposed based on the novel density and further applied in the unscented transform-based recursive filtering framework.

The remainder of the paper is structured as follows. In Sec. II, preliminaries about dual quaternion pose representation and the Bingham distribution are introduced. The novel geometry-driven stochastic modeling of uncertain unit dual quaternions is introduced in Sec. III. The sampling-approximation scheme is proposed in Sec. IV, based on which the unscented transform-based recursive Bayesian inference framework is established. Finally, the work is concluded in Sec. V.

II. PRELIMINARIES

A. Parameterization of Spatial Rotations Using Quaternions

By convention, 3-DoF spatial rotations can be parameterized by quaternions in the following form [16]

$$\mathbf{x}_r = \begin{bmatrix} \cos(\theta/2), \mathbf{n}^\top \sin(\theta/2) \end{bmatrix}^\top \in \mathbb{R}^4,$$

(1)

with the unit vector $\mathbf{n} \in \mathbb{R}^3$ denoting the axis around which a rotation of angle θ is performed. The norm of a quaternion is defined as $\|\mathbf{x}_r\| = \sqrt{\mathbf{x}_r \cdot \mathbf{x}_r^\top}$, with \otimes being the Hamilton product [17] and $\mathbf{x}_r^\ast = \text{diag}(1, -1, -1, -1)\mathbf{x}_r$ being the conjugate of \mathbf{x}_r. Here, diag(\cdot) denotes a diagonal matrix with the entries given as diagonal elements. Therefore, the quaternions in (1) are of unit norm and also of unit length in \mathbb{R}^4, thus $\mathbf{x}_r \in S^3 \subset \mathbb{R}^4$. Given the unit quaternion defined in (1), a point $\mathbf{v} \in \mathbb{R}^3$ can be rotated to \mathbf{v}' accordingly via

$$\begin{bmatrix} 0, \mathbf{v}^\top \end{bmatrix}^\top = \mathbf{x}_r \otimes \begin{bmatrix} 0, \mathbf{v}^\top \end{bmatrix}^\top \otimes \mathbf{x}_r^\ast,$$

(2)

with $\begin{bmatrix} 0, \mathbf{v}^\top \end{bmatrix}^\top$ being the quaternion form of vector \mathbf{v}.

Moreover, the set of unit quaternions is closed under the Hamilton product, which essentially denotes 4-dimensional rotations on the S^3 hypersphere. For instance, $\forall \mathbf{p} = [p_0, p_1, p_2, p_3]^\top$, $\mathbf{q} = [q_0, q_1, q_2, q_3]^\top \in S^3$, their Hamilton product can be reformulated into ordinary matrix-vector multiplication, namely $\mathbf{p} \otimes \mathbf{q} = Q_{\mathbf{p}} \mathbf{q} = \mathbf{Q}_{\mathbf{p}}^L \mathbf{q}$, with

$$Q^L_{\mathbf{p}} = \begin{bmatrix} p_0 - p_1 & -p_2 & -p_3 & p_0 \\ p_1 & p_0 - p_2 & -p_3 & p_1 \\ p_2 & p_3 & p_0 - p_2 & p_2 \\ p_3 & -p_2 & p_1 & p_3 \end{bmatrix}, \quad Q^J_{\mathbf{p}} = \begin{bmatrix} q_0 - q_1 & -q_2 & -q_3 & q_0 \\ q_1 & q_0 - q_2 & -q_3 & q_1 \\ q_2 & q_3 & q_0 & q_2 \\ q_3 & -q_3 & -q_2 & q_3 \end{bmatrix}$$

(3)

being the left and right matrix representation and $Q^L_{\mathbf{p}}, Q^J_{\mathbf{p}} \in SO(4)$ (proven in Appendix A). For unit quaternions, their inverse is identical to the conjugate, i.e., $Q^{-1} = Q^\ast$, with its matrix representation, either composed from left or right hand side, satisfying $Q_{\mathbf{q}}^{-1} = Q_{\mathbf{q}}^J = Q_{\mathbf{q}}^L$ [16].

B. Dual Quaternion Parameterization of Rigid Body Motions

A dual quaternion is essentially a tuple of paired quaternions combined by the dual unit $\epsilon (\epsilon^2 = 0)$, namely $\mathbf{x} = \mathbf{x}_r + \epsilon \mathbf{x}_d$. Here, \mathbf{x}_r denotes the real part and \mathbf{x}_d the dual part. Concatenation of the real and dual part then results in the following vector form of dual quaternions $\mathbf{x} = [\mathbf{x}_r^T, \mathbf{x}_d^T]^\top \in \mathbb{R}^8$. Thus, the arithmetic of dual quaternions is the combination of the Hamilton product and dual number theory. We use \boxplus to denote the product of two dual quaternions (example shown in Appendix B). Multiplication of two dual quaternions can also be expressed as ordinary matrix–vector product [11]. For two dual quaternions $\mathbf{x} = [\mathbf{x}_r^T, \mathbf{x}_d^T]^\top$ and $\mathbf{y} = [\mathbf{y}_r^T, \mathbf{y}_d^T]^\top$, we have $\mathbf{x} \boxplus \mathbf{y} = Q_{\mathbf{x}} \mathbf{y} = Q_{\mathbf{y}} \mathbf{x}$, with

$$Q_x = \begin{bmatrix} Q_{x_r} & 0 \\ Q_{x_d} & Q_{x_r} \end{bmatrix}, \quad Q_y = \begin{bmatrix} Q_{y_r} & 0 \\ Q_{y_d} & Q_{y_r} \end{bmatrix},$$

(4)

and $0 \in \mathbb{R}^{4 \times 4}$. Furthermore, the norm of dual quaternions is defined as $\|\mathbf{x}\| = \sqrt{\mathbf{x} \boxplus \mathbf{x}^\top}$, with $\mathbf{x}^\ast = [\mathbf{x}_r^T, -\mathbf{x}_d^T]^\top$ being the classic conjugate of \mathbf{x}, where the real and dual part are conjugated individually. By imposing unit norm constraints, the manifold of unit dual quaternions can be derived as

$$\Omega = \{ [[\mathbf{x}_r^T, \mathbf{x}_d^T]^\top | \mathbf{x}_r \in S^3, \mathbf{x}_r^T \mathbf{x}_d = 0 \} \subset \mathbb{R}^8,$$

(5)

which indicates that the real part \mathbf{x}_r is located on the hypersphere S^3 as given in (1) with the dual part \mathbf{x}_d being orthogonal to the real part. The derivation can be found in Appendix C.

Similar to unit quaternions parameterizing spatial rotations, dual quaternions of unit norm are a compact representation of rigid transformations fulfilling the two constraints in (5). By convention [12], the real part \mathbf{x}_r is defined as in (1) representing the rotations and the dual part is given as

$$\mathbf{x}_d = \frac{1}{2} \begin{bmatrix} 0, \mathbf{t}^\top \end{bmatrix} \otimes \mathbf{x}_r,$$

(6)

with $\mathbf{t} \in \mathbb{R}^3$ being the translation, such that any $\mathbf{v} \in \mathbb{R}^3$ can be transformed to \mathbf{v}' via

$$\begin{bmatrix} 1, 0, 0, 0, 0, \mathbf{v}^\top \end{bmatrix}^\top = \mathbf{x} \boxplus \begin{bmatrix} 1, 0, 0, 0, 0, \mathbf{v}^\top \end{bmatrix}^\top \boxplus \mathbf{x}_d^\ast$$

(7)

(proof shown in Appendix D). Here, $[1, 0, 0, 0, 0, \mathbf{v}^\top]^\top$ denotes the dual quaternion form of vector \mathbf{v} and $\mathbf{x}_d^\ast = [\mathbf{x}_r^T, -\mathbf{x}_d^T]^\top$ is the full conjugate of \mathbf{x} (both the dual unit and quaternion components are conjugated).

C. Stochastic Modeling of Uncertain Unit Quaternions

The Bingham distribution [18] on S^3 is defined as

$$f_B(\mathbf{x}_r; \mathbf{Z}, \mathbf{M}) = \frac{1}{N_B(\mathbf{Z})} \exp \left(\mathbf{x}_r^\top \mathbf{M} \mathbf{Z} \mathbf{M}^\top \mathbf{x}_r \right),$$

(8)

with $\mathbf{Z} = \text{diag}(z_1, z_2, z_3, z_0)$ being the concentration matrix controlling the dispersion, $N_B(\mathbf{Z})$ the normalization constant, and real orthogonal matrix $\mathbf{M} \in \mathbb{R}^{4 \times 4}$ indicating the principal directions of the density. As (2) shows, two antipodal unit quaternions on the hypersphere, i.e., $\mathbf{x}_r, -\mathbf{x}_r \in S^3$, represent the same rotation. Thus, the Bingham distribution defined in (8) is well-suited to model the uncertainty of unit quaternions,

\footnote{For better readability in this paper, we use \mathbf{x} to denote both the dual number form and the vector form of dual quaternions, instead of using $\mathbf{x}_r, \mathbf{x}_d$.}
as its density is antipodally symmetric on S^3, i.e., $f_B(x_i) = f_B(-x_i)$. Moreover, the parameter matrices Z and M can be derived via eigendecomposition of a negative semidefinite matrix C_B. Afterward, the eigenvalues in Z are by convention re-aligned in ascending order \cite{9}, i.e., $z_1 \leq z_2 \leq z_3 \leq z_0 \leq 0$, and the column vectors in M are re-ordered accordingly as $[m_1, m_2, m_3, m_0]$. The mode of the density can then be recognized as the column vector associated with the largest eigenvalue, namely m_0.

III. ON-MANIFOLD STOCHASTIC MODELING FOR UNCERTAIN UNIT DUAL QUATERNIONS

A. Geometric Structure of the Unit Dual Quaternion Manifold

The unit dual quaternion manifold as introduced in \cite{5} is compact and can be identified as a differentiable Riemannian manifold \cite{19, 20}. Here, the dual part defined in \cite{11} can be further reformulated via the matrix representation introduced in \cite{3} as $x_d = 0.5 Q_x [0, t^T]^T = 0.5 E_d t$, with $E_d \in \mathbb{R}^{4 \times 3}$ being the last three columns of the matrix Q_x, namely $Q_x = [x, E_d]$. As $Q_x \in SO(4)$, the column vectors of matrix E_x essentially provide an orthonormal basis spanning the tangent space of the hypersphere S^3 at x, i.e., $T_x \mathbb{S}^3 = \text{span}\{e_1, e_2, e_3\}$, with $E_d = [e_1, e_2, e_3]$. It can be easily proven that $E_d^T E_d = I \in \mathbb{R}^{3 \times 3}$. Thus the encapsulated pure translation in the dual part can be regenerated via $t = 2 E_d^T x_d$.

On the other hand, given the Bingham distribution defined in \cite{8}, the tangent plane at the mode m_0 can also be spanned by the first three column vectors of matrix M, namely $T_{m_0} \mathbb{S}^3 = \text{span}\{m_1, m_2, m_3\}$, with $\{m_1, m_2, m_3\}$ being the orthonormal basis. For simplicity of the derivation below, we denote $E_B = [m_1, m_2, m_3]$, such that $M = [E_B, m_0]$.

B. ON-MANIFOLD BASIS PARALLEL TRANSPORT

In order to probabilistically interpret the correlation between the translation term and the rotation quaternion, we decode the dual part x_d located on the tangent plane $T_x \mathbb{S}^3$ with respect to a basis that preserves the Bingham principal directions at x. For that, we employ the parallel transport technique from Riemannian geometry \cite{15, 20} on \mathbb{S}^3 to shift the tangent plane coordinates at the mode m_0 to x, namely

$$E_B^T = Q_{x_0 \otimes m_0^{-1}}^T E_B = Q_{x_0}^T Q_{m_0}^{-T} E_B.$$

Here, E_B^T denotes the basis preserving the Bingham principal directions E_B transported from the mode m_0 to x. The unit dual quaternion $x_i \otimes m_0^{-1}$ denotes the difference between m_0 and x_i. In fact, the column vectors of $E_B^T = [e_1^B, e_2^B, e_3^B]$ can essentially be computed according to $e_i^B = x_i \otimes m_0^{-1} \otimes m_1$, meaning that the principal components $\{m_i\}_{i=1}^3$ of the Bingham distribution are shifted jointly under the same 4-dimensional rotation $x_i \otimes m_0^{-1}$. Therefore, $\{e_i^B\}_{i=1}^3$ provide an orthonormal basis for $T_x \mathbb{S}^3$, i.e., $T_x \mathbb{S}^3 = \text{span}\{e_1^B, e_2^B, e_3^B\}$, which embodies the information geometry of the Bingham
distribution at $\forall x_r \in S^3$. With respect to the transported basis E^R, the translation quaternion x_d can be decoded into the following form

$$t_b = 2 E^R_b x_d,$$ \hspace{1cm} (10)

such that $x_d = 0.5 E^R_b t_b$. By modeling t_b with a certain distribution, e.g., a Gaussian distribution, that is uncorrelated to the real part, the true translation term encapsulated in the dual part defined in (6) shall be correlated with the real part.

C. Stochastic Modeling of Unit Dual Quaternions Based on Hyperspherical Geometry

The joint probability density function modeling the real and dual part of uncertain unit dual quaternions can be derived by marginalizing out the orientation-uncorrelated translation term t_b of (10), namely

$$f(x_r, x_d) = \int_{\mathbb{R}^3} f(x_r, x_d, t_b) \, dt_b$$

$$= \int_{\mathbb{R}^3} f(x_r) \, f(x_d | x_r, t_b) \, dt_b$$

$$= f(x_r) \int_{\mathbb{R}^3} f(x_d | x_r, t_b) \, f(t_b | x_r) \, dt_b$$

$$= f(x_r) \int_{\mathbb{R}^3} \delta(x_d - 0.5 E^R_b t_b) \, f(t_b | x_r) \, dt_b$$

$$\propto f(x_r) \int_{\mathbb{R}^3} \delta(x_d - 0.5 E^R_b t_b) \, dt_b$$

$$\propto \delta(x_d - 0.5 E^R_b t_b) \, dt_b$$

Here, $\delta(\cdot)$ denotes the Dirac delta function which evaluates $f(t_b)$ at $t_b = 2 E^R_b x_d$ according to (10) in the integral and results in the proportion [21, Theorem 265E]. We assume the real part to be Bingham-distributed, i.e., $x_r \sim B(Z, M)$, and the translation term $2 E^R_b x_d$ to be Gaussian-distributed with respect to the basis in (9), namely $2 E^R_b x_d \sim \mathcal{N}(\mu, \Sigma)$. The second part can thus be derived as follows

$$f(2 E^R_b x_d) \propto \exp\left\{-0.5 (2 E^R_b x_d - \mu)^T \Sigma^{-1} (2 E^R_b x_d - \mu)\right\}$$

$$= \exp\left\{ (x_d - \mu_d)^T C_d (x_d - \mu_d) \right\}.$$

Here, μ_d indicates the dual part mean correlated to the real part and can be further derived given (9) as

$$\mu_d = 0.5 E^R_b \mu = 0.5 Q_{x_r} Q_{m_0}^T E^B \mu = x_r \otimes m_0^{-1} \otimes \mu_d,$$

with $\mu_d = 0.5 E^R_b \mu \in T_{m_0}S^3$, which can be viewed as the mode of the dual part. As $m_0^{-1} \otimes \mu_d$ is invariant to the orientation, the aforementioned equation can be further derived by applying the matrix representation in (3), such that

$$\mu_d = Q_{m_0}^T \otimes \mu_d x_r = Q_{m_0}^T Q_{m_0}^T x_r := T_d x_r,$$

with $T_d = Q_{m_0}^T \otimes \mu_d$ interpreting the correlation between rotation and translation quaternions. Meanwhile, we have

$$C_d = -2 E^B \Sigma^{-1} E^R_b^T$$

$$= -2 Q_{x_r}^T Q_{m_0}^T E^B \Sigma^{-1} (Q_{x_r}^T Q_{m_0}^T E^R_b)^T$$

$$= -2 Q_{x_r}^T Q_{m_0}^T E^B \Sigma^{-1} E^R_b^T Q_{m_0} Q_{x_r}^T$$

$$:= Q_{x_r}^T C_d Q_{x_r}^T,$$

with $C_d = -2 Q_{m_0}^T E^B \Sigma^{-1} E^R_b$ interpreting the orientation-invariant component of the dual part uncertainty. We can thus combine the Bingham-distributed real part and the conditioning Gaussian-distributed translation term according to (11) into the following concise form

$$f(x) \propto f_R(x_r) \int_{\mathbb{R}^3} f_N(2 E^R_b x_d)$$

$$= \exp\left\{ x_r^T M Z M^T x_r - 0.5 (2 E^R_b x_d - \mu)^T \Sigma^{-1} (2 E^R_b x_d - \mu)\right\}$$

$$= \exp\left\{ x_r^T M Z M^T x_r + (x_d - T_d x_r)^T Q_{x_r} C_d Q_{x_r}^T (x_d - T_d x_r)\right\}.$$

Moreover, the mode of the proposed distribution is

$$x_{mode} = \left[m_0^T, \mu_d \right]^T = \left[m_0^T, 0.5 \mu^T E^R_b \right]^T,$$

where the real part is the mode of the Bingham distribution and the dual part the Gaussian mean expressed in the basis composed by the Bingham principal directions.

IV. UNSCENTED POSE FILTERING

A. Deterministic Sampling and Parameter Fitting

In order to apply the proposed distribution for Bayesian inference, we further introduce a deterministic sampling scheme following the basic idea of unscented transform [22] (shown in Alg. 1 in detail). Given the parameters of the distribution $\{Z, M, \mu, \Sigma\}$ as introduced in Sec. III-C, deterministic samples are first drawn from the Bingham [9], [23] and the Gaussian part [22] individually. For each unit quaternion sample, we derive its associated tangent plane basis E^R_i according to (9), with respect to which the Gaussian samples are composed with the real part via (10), such that the dual part can be obtained (Alg. 1, line 6). Similarly, the weighting factors are computed through Cartesian product by multiplying the Bingham and Gaussian weights.

The aforementioned scheme can also be used for Monte Carlo-based random sampling processes. Here, we only need to substitute the deterministic samplings in line 1-2 of Alg. 1

\begin{algorithm}
\begin{algorithmic}
\State Algorithm 1 Deterministic Sampling
\Procedure{detSample}{$\{(Z, M, \mu, \Sigma)\}$}
\State $\{x_i^1, w_i^1\}_{i=1}^n \leftarrow \text{detSampleBingham}(Z, M)$; \Comment{see (9)}
\State $\{t_i^j, w_i^j\}_{j=1}^m \leftarrow \text{detSampleGaussian}(\mu, \Sigma)$;
\State $\{E^R_i, m_0\} \leftarrow M$;
\State $k \leftarrow 1$;
\For{$i = 1$ to n}
\State $E^R_{i,i} \leftarrow Q_{x_i}^T Q_{m_0}^T E^B$; \Comment{see (9)}
\For{$j = 1$ to m}
\State $x_d^{ij} \leftarrow 0.5 E^R_{i} t_b^j$;
\State $x_k^{ij} \leftarrow [x_r^{ij}, x_d^{ij}]^T$;
\State $w_k^{ij} \leftarrow w_i^j \times w_i^j$;
\State $k \leftarrow k + 1$;
\EndFor
\EndFor
\Return $\{x_k, w_k\}_{k=1}^n$ \Comment{Alg. 1 in detail}
\EndProcedure
\end{algorithmic}
\end{algorithm}
with random ones [10]. Fig. 2 further shows results of random sampling on the proposed distribution under different parameter configurations. The dual quaternion samples are hereby visualized by 3-D quivers representing the spatial poses. Furthermore, the proposed distribution can also be re-approximated given weighted samples (shown in Alg. 2). Here, the Bingham component is first approximated by using the real parts of the dual quaternion samples as introduced in [9]. Based on the fitted Bingham parameters, we can therefore derive the tangent plane basis \(\mathbf{E}^B \) corresponding to each quaternion sample, such that its uncorrelated translation term \(\mathbf{t}_B \) can be obtained (Alg. 2, line 4-5). The uncorrelated Gaussian parameters \(\{ \mu, \Sigma \} \) can thus be approximated from the collected \(\mathbf{t}_B \) samples (Alg. 2, line 7-8). We use the following example to show an application of the proposed sampling-approximation approach to Bayesian inference of uncertain system dynamics.

Example IV.1 Our system model is: \(\mathbf{x}_k = \mathbf{x}_{k-1} \oplus \mathbf{u}_{k-1} \oplus \mathbf{v}_{k-1} \), with \(\mathbf{x}_{k-1}, \mathbf{u}_{k-1}, \mathbf{v}_{k-1} \in \Omega \) denoting the system state, input and noise, respectively. We assume the noise term \(\mathbf{v}_{k-1} \) to be distributed according to the proposed density that is time-invariant. Therefore, the sampling-approximation scheme introduced in Alg. 1 and Alg. 2 can be practically integrated into an unscented transform (UT)-based prediction step, for instance, the one introduced in [24, Alg. 3]. Here, deterministic samples are drawn from the last prior estimate \(\mathbf{f}_k \) and propagated with the noise samples drawn from the noise distribution \(\mathbf{f}_k \) through Cartesian product. The current prior estimate \(\mathbf{f}_k \) can therefore be obtained by re-approximating from the propagated samples. Fig. 3 shows the result for 8 consecutive prediction steps. The system input is given as a rotation of \(\theta = \pi/3 \) around axis \(\mathbf{n} = [1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}]^\top \) followed by a translation of \(\mathbf{t} = [30, 30, 30]^\top \).

B. Measurement Fusion

Without loss of generality, we assume the following formula for identity measurement models \(\mathbf{z}_k = \mathbf{x}_k \oplus \mathbf{w}_k \), with the noise term \(\mathbf{w}_k \in \Omega \) following the proposed distribution. Thus, the posterior can be obtained according to Bayes’ law as follows

\[
\mathcal{f}^{s}(\mathbf{x}_k | \mathbf{z}_k) \propto \mathcal{f}(\mathbf{z}_k | \mathbf{x}_k) \cdot \mathcal{f}^{p}(\mathbf{x}_k).
\]

By marginalizing out the noise term and further applying the definition of conditional probability, the likelihood can be reformulated into the following form

\[
\mathcal{f}(\mathbf{z}_k | \mathbf{x}_k) = \int_{\Omega} \mathcal{f}(\mathbf{z}_k, \mathbf{w}_k | \mathbf{x}_k) \, d\mathbf{w}_k
\]

\[
= \int_{\Omega} \mathcal{f}(\mathbf{z}_k | \mathbf{w}_k, \mathbf{x}_k) \, f(\mathbf{w}_k) \, d\mathbf{w}_k
\]

\[
= \int_{\Omega} \delta(\mathbf{w}_k - \mathbf{z}_k \oplus \mathbf{x}_k^{-1}) \, f(\mathbf{w}_k) \, d\mathbf{w}_k
\]

\[
= f^m(\mathbf{z}_k \oplus \mathbf{x}_k^{-1}),
\]

which is the noise density evaluated at the unit dual quaternion indicating the difference between the measurement and the prior. By applying the arithmetics of unit dual quaternions introduced in Sec. II, the difference term can be derived as

\[
\mathbf{x}^{-1} \oplus \mathbf{z} = \begin{bmatrix} \mathbf{x}_r^{-1} \otimes \mathbf{z}_r \\ \mathbf{x}_r^{-1} \otimes \mathbf{z}_d + \mathbf{x}_d \otimes \mathbf{z}_r \end{bmatrix} := \begin{bmatrix} \Delta_r \\ \Delta_d \end{bmatrix}.
\]

\(^2\)For better readability of the algorithm, we ignore the time stamp index \(k \) of the state and measurement variable \(\mathbf{x}_k \) and \(\mathbf{z}_k \).
Unlike in the case of planar motions introduced in [10], [24], $[\Delta_r^1, \Delta_d^1]^T$ cannot be trivially turned into a closed-form update step for the proposed distribution. However, since the distribution in (12) is given as the product of the Bingham and the orientation-invariant Gaussian, the real part Δ_r can still be fused in closed form [9]. In order to fuse the measurement of the dual part in a coherent way, we propose an unscented transform-based fusion approach, as shown in Alg. 3 in detail. Here, the Bingham part is first updated in closed form as mentioned in [9]. We then draw quaternion samples deterministically from the Bingham part and traverse each of their associated tangent planes, on which an ordinary Kalman filter (KF) update step is performed for the Gaussian part (Alg. 3, line 8-10). As the Gaussian part is updated sequentially throughout all the sampled tangent planes, the quaternion samples should be equally weighted. It is thus recommended to employ deterministic Bingham sampling approaches proposed in [23], [25], which guarantees equal weighting factors. The following example shows a quantitative evaluation of the proposed measurement fusion method.

Example IV.2 We use the measurement model setup in Sec. IV-B with the prior and measurement noise distribution given as

- $C_B^p = -\text{diag}(1, 500, 500, 500)$, $\Sigma_B^p = 0.001 \times I$;
- $C_B^w = -\text{diag}(1, 1/a, 2/a, 3/a)$, $\Sigma_B^w = a \times I$.

Here, a is selected from $\{0, 1, 0.01, 0.001\}$ and is used to control the measurement noise level, with a larger value indicating higher noise level for both the Bingham and Gaussian parts. The Bingham parameters C_B^w and C_B^p are given in the concise form as mentioned in Sec. II-C, indicating both modes at $[1, 0, 0, 0]^T$. The Gaussian terms are also zero-centered with the identity matrix $I \in \mathbb{R}^{3 \times 3}$. Here, a hidden state x_{gt} incorporating a noise term v is given as the ground truth. It is generated via $x_{gt} = u \oplus w$, with v also distributed according to the proposed distribution parameterized as follows

- $C_B^w = -\text{diag}(1, 400, 400, 400)$, $\Sigma_B^w = 0.002 \times I$.

Here, the noise for the hidden state is also zero-centered (same as the prior). Therefore, we use $u \in \Omega$ as a shifting term to diverge the ground truth away from the mode of the prior. The u encodes a rotation of degree $\theta = \pi/3$ around axis $n = 1/\sqrt{3} \times [1, 1, 1]^T$ followed by a translation of $t = [5, 4, 6]^T$.

In the simulation, we generate the hidden state x_{gt} by propagating u with one random sample v drawn from f^v. The prior f^p is then updated by sequentially fusing measurements generated via $z = x_{gt} \oplus w$, with w randomly drawn from the measurement noise distribution f^w each time. Fig. 4 shows the results of 50 sequential update steps by using the measurement fusion approach in Alg. 3. For all of the noise levels considered, both rotation and translation errors decrease with growing fusion steps. With lower noise level (smaller a), the posterior estimate converges faster towards the ground truth.

V. CONCLUSION

In this paper, a novel approach is proposed to stochastically model uncertain 6-DoF rigid body motions represented by unit dual quaternions. The resulting distribution is directly defined on the manifold of unit dual quaternions without local linearizations, inherently considering the nonlinearity of the underlying group. Besides, by applying the parallel transport technique from Riemannian geometry to the Bingham distribution on the S^3 hypersphere, a probabilistic interpretation of the correlation between the rotation and translation terms is enabled. A corresponding sampling-approximation scheme is also proposed and employed further in an unscented transform-based pose filtering framework. However, there is much potential to exploit from the proposed work. First, it might be possible to simplify the distribution parameters into a more concise form, e.g., a single 8×8 matrix. Second, it is of interest to evaluate the proposed unscented filtering approaches for real-world applications, e.g., robotic pose estimation and perception, localization in sensor networks [26], etc.
A. Matrix Representation of Unit Quaternions

\(\forall p, q \in \mathbb{S}^3, p \otimes q = Q_p q, \) with \(Q_p \) as given in (3). Since \(p = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \end{bmatrix}^T \in \mathbb{S}^3 \), we have \(Q_p \otimes Q_p = Q_p Q_p^T = I \in \mathbb{R}^{4 \times 4} \) and \(\det(Q_p) = 1 \), thus \(Q_p \in SO(4) \), i.e., the 4-dimensional group. Similarly, it can be proven that in (3) the right matrix representation \(Q_q \in SO(4) \).

B. Dual Quaternion Product

The product of two dual quaternions can be derived as \((1, \epsilon)\). This work is supported by the German Research Foundation (DFG) under grant HA 3789/16-1.

REFERENCES

