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Abstract—In multitarget tracking, using the association of
tracks to measurements that maximizes the association likelihood
is a well-established strategy in Euclidean spaces. We explain how
this strategy can be adopted for circular domains. Formulae are
provided for the association likelihood for three density repre-
sentations used by important filters for periodic domains—von
Mises densities, density approximations based on trigonometric
polynomials, and particle-based representations. The presented
closed-form formulae allow for efficiently determining the most
likely association. In the evaluation, the approaches based on
particles and trigonometric polynomials outperform an approach
based on a Kalman filter that was adapted to the periodic domain.

Index Terms—Directional statistics, Fourier series, multitarget
tracking, particle filter

I. INTRODUCTION

Due to the periodicity of the domain, estimation problems on
the unit circle are inherently nonlinear. For periodic domains,
filters tailored to the topology at hand can be used to achieve
accurate estimation results. In essence, there are three important
approaches to topology-aware filtering on periodic manifolds.
First, it is possible to use assumed density filters [1], which are
similar to filters for linear domains that rely on approximations
involving densities of a certain class, such as Gaussian densities.
Second, particle filters [2], which constitute a very general
nonlinear estimation approach, can be used. On periodic
domains, the particles can be propagated through a topology-
aware function and then reweighted and redrawn as in a
standard particle filter approach. Third, there are approaches
that use the finite size of the domain to their advantage [3],
[4]. Examples of such filters are the Fourier filters [3], in
which the density or its square root is approximated using a
trigonometric polynomial (i.e., a Fourier series with a finite
number of nonzero coefficients).

So far, estimators for periodic manifolds only allowed
for tracking single targets. However, a variety of real-world
scenarios exist in which it is necessary to track multiple targets
that cannot be distinguished simultaneously. Such applications
include tracking space debris, which can be modeled to
be located on a spherical manifold [5]. Further, scenarios
exist in which it is possible to measure the orientation of
multiple objects but no information is available regarding
which measurement stems from which object [6]. While
significant research has gone into multitarget tracking for

linear domains [7], [8], little research has been conducted
on multitarget tracking for periodic domains.

In this paper, we limit ourselves to approaches that perform
one-to-one assignments. In such approaches, a so-called hard
(or explicit) association decision is used to assign each
measurement to (at most) a single track. A popular aim is to find
the most likely association, maximizing the so-called global
association likelihood [8, Sec. 10.3.1.4]. A closely related
concept is the global nearest neighbor (GNN) [7, Sec. 6.4],
[8, Sec. 10.3.1.3], in which the sum of squared (uncertainty-
aware) Mahalanobis distances is minimized. Based on the
squared Mahalanobis distances of all measurement–track pairs,
the association decision can be obtained by solving a linear
assignment problem. For Gaussian densities, the association
obtained via the GNN can be shown to yield the highest
association likelihood. For more details on the relationship
between the maximization of the association likelihood and
the GNN, we refer the reader to [9, Sec. 11.3].

In early approaches to multitarget tracking, only information
about each target’s motion in linear (Euclidean) spaces was
considered for deriving the associations. Integrating additional
features into the association process was proposed, e.g., in [10],
[11]. In these works, it is proposed to treat features on non-
periodic continuous domains like the positions of the targets in
a classical multitarget tracking approach. Further, the papers
address features that can attain a number of discrete values
or should fall into a set of known categories. For features on
continuous domains, it is implied that modifications may be
required if the densities are clearly non-Gaussian.

Recently, we presented an efficient approach to integrate
periodic quantities into a multitarget tracking algorithm without
assuming the densities to be Gaussian distributed [6]. The
extended algorithm, which can handle both linear and periodic
quantities, was applied to tracking for optical belt sorting. For
some tracking tasks in this context, measurements of both the
position and orientation of the targets are available. Squared
Mahalanobis distances were calculated for the position part,
which was modeled to be perturbed by Gaussian-distributed
noise. For the periodic part of the state, a distance measure
on the circle was employed. A weighted combination of these
two distances was calculated in each time step for deciding
on an association. The approach employed in [6] helped to
improve the tracking results compared with an algorithm that



does not respect the orientation in the association. However,
the association used was generally not the most probable for
the system and measurement model employed. In our current
paper, we focus on state spaces with the topology of the unit
circle, which we parameterize by [0, 2π), and explicate how
the most probable association decision can be derived.

The paper is structured as follows. In Sec. II, we describe the
density representations used by important filters for circular
manifolds. In Sec. III, we derive closed-form formulae for
the association likelihood for the individual representations.
How the most likely association can be derived based on these
formulae is explained in the fourth section. Evaluations are
given for the individual approaches in Sec. V, and a conclusion
and an outlook are provided in Sec. VI.

II. DENSITY REPRESENTATIONS USED BY
FILTERS FOR CIRCULAR MANIFOLDS

One notable filter for circular manifolds is the von Mises
filter [1]. It is based on the assumption that the prior and
posterior densities can be approximated well using von Mises
densities. The density of a von Mises distribution comprises an
exponential function and a normalization constant. The formula

fVM(x;µ, κ) =
1

2πI0(κ)
eκ cos(x−µ)

involves a location parameter µ, a concentration parameter κ,
and the Bessel function of the first kind of order zero I0(·).
When two von Mises densities are multiplied and the result
is normalized, a von Mises density is obtained [1]. Thus, for
von Mises-distributed prior densities and likelihoods, a precise
update step can be realized. However, this does not hold for the
prediction step. Even if a simple system model is employed and
all noise terms are von Mises distributed, the prediction result
is generally not von Mises distributed. Thus, approximations
are generally inevitable in the von Mises filter.

In the particle filter, the prior and posterior densities are
represented using a finite number of (potentially weighted)
samples. The samples and their weights can be interpreted to
describe a mixture of Dirac delta distributions, which is also
referred to as wrapped Dirac mixture [12] on the circle. Such
a mixture can be written as

fWD(x; s, w) =

L∑
k=1

wkδ(x− sk) ,

depending on the vector of positions s and vector of weights
w for the L samples. All weights should be nonnegative and
sum up to one. Such a representation is also used by a Dirac-
based discrete filter [4], in which the positions of the individual
components are static.

Last, we address the representations used by the Fourier
filters. In the Fourier identity filter, each density is represented
by a vector of Fourier coefficients c = [c−kmax , . . . , ckmax ]

>

comprising 2kmax + 1 entries according to

f(x; c) =

kmax∑
k=−kmax

ckeikx ,

with i denoting the imaginary unit. The density can always
be ensured to integrate to 1. However, ensuring that the
approximations of all functions involved have no negative
values is nontrivial. Further, the nonnegativity is generally not
preserved throughout update steps when truncation is used to
prevent an increase in the number of parameters.

As an alternative that ensures the nonnegativity of the
approximation, the Fourier square root filter was proposed.
The Fourier square root filter is based on approximating the
square root of the density using a trigonometric polynomial
with coefficient vector1 d = [d−kmax , . . . , dkmax ]

>. The density
is then approximated by

f(x; d) =

(
kmax∑

k=−kmax

dkeikx

)2

.

In this representation, both the normalization and the nonnega-
tivity of the density can be preserved throughout prediction and
update steps without an increase in the number of parameters.

III. DERIVATION OF THE ASSOCIATION LIKELIHOODS

In this section, we begin by providing and reformulating
a general expression for the association likelihood. We say
there are n tracks and m measurements and index them by
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. The state of the ith track is
denoted by xi and the jth measurement by ẑj . The association
likelihood `(ẑj |i) can be obtained by considering the joint
likelihood `(ẑj , xi|i) and marginalizing out xi, i.e.,

`(ẑj |i) =

∫
Ωx

`(ẑj , xi|i) dxi ,

in which Ωx denotes the sample space of the track’s state,
which is [0, 2π) for circular domains. A reformulation yields

`(ẑj |i) =

∫
Ωx

`(ẑj |xi, i)f(xi|i) dxi .

As ẑj is conditionally independent of i given xi, `(ẑj |xi, i)
can be replaced by the measurement likelihood fL,j(ẑj |xi).
The density describing the state of the track i (based on the
initial prior density and all measurements assigned to the track
so far) is given by the prior density f p,i(xi). Thus, we obtain

`(ẑj |i) =

∫
Ωx

fL,j(ẑj |xi)f p,i(xi)︸ ︷︷ ︸
f̆ e,i,j(xi)

dxi . (1)

For Gaussian densities, a closed-form expression for the
association likelihood is well known (see [8, Section 10.3,
Equations (10.22)–(10.26)]). In the subsections of this section,
we provide closed-form formulae for the association likelihood
for the representations of periodic densities described in Sec. II.
We start by deriving the association likelihood for von Mises
densities, then address wrapped Dirac mixtures, and finally
provide formulae for the representations based on trigonometric
polynomials.

1In our other works, e.g., [3], [13], we use cid instead of c and csqrt instead
of d. For our current contribution, keeping the number of upper indices to a
minimum allows for a clearer notation.



Remark 1. For updating the ith track with the jth measurement,
Bayes’ formula yields

f e,i,j(xi) =
fL,j(ẑj |xi)f p,i(xi)∫

Ωx
fL,j(ẑj |xi)f p,i(xi) dxi

=
f̆ e,i,j(xi)∫

Ωx
f̆ e,i,j(xi) dxi

for the posterior density f e,i,j(xi). Since the formula in the
denominator is equivalent to the formula for the association
likelihood (1), the association likelihood is the reciprocal of
the normalization constant in the Bayes’ formula. Further, the
association likelihood is the reciprocal of the integral over the
unnormalized posterior density obtained by multiplying the
prior density with the likelihood. In Fig. 1, we consider an
example involving one track and multiple measurements. We
illustrate the prior densities, likelihoods, posterior densities,
and association likelihoods for the von Mises filter, particle
filter, and Fourier square root filter.

A. Von Mises Filter
In our derivation of the association likelihood, we proceed

similarly as in [13, App. E]. First, we write out (1) for von
Mises densities. The prior density of the ith track is given
by fVM(xi; x̂p,i, κp,i), and the measurements are generated
according to a topology-aware identity model with additive
von Mises-distributed noise, resulting in a likelihood of
fVM(ẑj ;xi, κv,j). Thus, we obtain

`(ẑj |i) =

∫ 2π

0

fVM(ẑj ;xi, κv,j)fVM(xi; x̂p,i, κp,i) dxi

=

∫ 2π

0

1

2πI0(κv,j)2πI0(κp,i)

· eκ
v,j cos(ẑj−xi)eκ

p,i cos(xi−x̂p,i)dxi .

(2)

The expression in the integral is a multiplication of the two
von Mises densities fVM(xi; x̂p,i, κp,i) and fVM(ẑj ;xi, κv,j) =
fVM(xi; ẑj , κv,j). From the formula for the update step of the
von Mises filter [1], we know that the multiplication result is
proportional to a von Mises density with the parameters

C = κp,i cos(x̂p,i) + κv,j cos(ẑj) , (3)

S = κp,i sin(x̂p,i) + κv,j sin(ẑj) , (4)

x̂e,i,j = atan2(S,C) , (5)

κe,i,j =
√
C2 + S2 . (6)

Hence, we obtain

1

2πI0(κv,j)2πI0(κp,i)
eκ

v,j cos(ẑj−xi)eκ
p,i cos(xi−x̂p,i)

∝ 1

2πI0(κe,i,j)
eκ

e,i,j cos(xi−x̂e,i,j)

and thus also

eκ
v,j cos(ẑj−xi)eκ

p,i cos(xi−x̂p,i) ∝ eκ
e,i,j cos(xi−x̂e,i,j) . (7)

In App. A, we show that (7) is actually an equality. This
allows us to rewrite (2) as

`(ẑj |i) =
1

2πI0(κv,j)2πI0(κp,i)

∫ 2π

0

eκ
e,i,j cos(xi−x̂e,i,j)dxi .

The integral over the exponential function is the reciprocal
of the normalization constant of the von Mises density with
circular mean x̂e,i,j and concentration parameter κe,i,j . Using
the formula for the normalization constant, we obtain the
formula

`(ẑj |i) =
I0(κe,i,j)

2πI0(κv,j)I0(κp,i)

for the association likelihood.

B. Particle Filter

As explained in Sec. II, the particle filter can be interpreted
to use a wrapped Dirac mixture to represent the prior density.
To perform an update step, we require a likelihood function
that can be evaluated for arbitrary values x ∈ [0, 2π). Given
such a likelihood function, we obtain

`(ẑj |i) =

∫
[0,2π)

fL,j(ẑj |xi)f p,i(xi) dxi

=

∫
[0,2π)

fL,j(ẑj |xi)
L∑
k=1

wikδ(x
i − sik) dxi (8)

as the formula for the association likelihood. We specifically
use the half-open interval to avoid any confusion as to how the
first integral is defined if there is a sample at xi = 0. Using
the properties of the Dirac delta distribution, the closed-form
expression

`(ẑj |i) =

L∑
k=1

wikf
L,j(ẑj |sik) (9)

can be derived from (8). This formula can also be used for the
discrete filter presented in [4] that uses the same representation
of the prior density.

C. Fourier Filters

To derive the formulae for the association likelihood for the
Fourier filters, we proceed similarly as in [13, Sec. 7.1.2]. We
begin by considering the Fourier identity filter. As the first
step to obtaining a closed-form expression for (1), we calculate
the Fourier coefficients of f̆ e,i,j . The Fourier coefficient vector
of the multiplication of two functions represented by their
Fourier coefficient vectors is equal to the discrete convolution
(denoted by ∗) of the two coefficient vectors. Thus, if cL,j is
the Fourier coefficient vector of fL,j and cp,i is the Fourier
coefficient vector of f p,i, the Fourier coefficient vector c̆e,i,j

representing the unnormalized posterior density f̆ e,i,j can be
calculated according to

c̆e,i,j = cL,j ∗ cp,i .

The integral of a Fourier series over [0, 2π) is equal to the
zeroth coefficient multiplied by 2π [13, Sec. 6.2.2]. Using the
formula for the convolution, we obtain

`(ẑj |i) = 2πc̆e,i,j
0 = 2π

kmax∑
k=−kmax

cL,j
k cp,i

−k . (10)

This formula can also be expressed as a vector–vector multi-
plication. For real functions, the Fourier coefficient with index



(a) True von Mises prior density as used by
the von Mises filter.

(b) Von Mises approximations of the likeli-
hoods.

(c) Unnormalized posterior densities ob-
tained by multiplying the von Mises approx-
imations of the likelihoods with the prior
density.

(d) Association
likelihoods (von
Mises filter).

(e) A possible representation of the prior
density used by the particle filter (obtained
via random sampling).

(f) True likelihoods used by the particle
filter.

(g) Weighted samples representing the pos-
terior densities (result of the particle filter
before resampling is employed).

(h) Association
likelihoods (par-
ticle filter).

(i) Approximation of the prior density used
by the Fourier square root filter.

(j) Trigonometric polynomial-based approx-
imations of the likelihoods.

(k) Posterior densities before the normaliza-
tion obtained by using the Fourier square
root filter.

(l) Association
likelihoods
(Fourier filter).

Figure 1. The compatibility of one track to three measurements is assessed by using the von Mises filter, the particle filter, and the Fourier square root
filter. For the Fourier filter, 21 coefficients are used and 21 particles are used for the particle filter. The true prior density is a von Mises density and von
Mises mixtures are used as the likelihoods. For each filter, the representations of the prior density and the likelihoods are given. Moreover, the corresponding
unnormalized posterior densities are depicted along with the resulting association likelihoods. We do not depict the ground truth results as a reference because
the results are visually indistinguishable from those of the Fourier square root filter. As we only consider a single track, we omit the upper index of x that is
used in the formulae for the derivation of the association likelihoods.

−k is the complex conjugate of the Fourier coefficient with
index k. Thus, we obtain

`(ẑj |i) = 2π (cL,j)>cp,i . (11)

By concatenating the vectors (cL,j)> vertically and cp,i hori-
zontally for all indices, two matrices are obtained, which, when
multiplied, yield a matrix containing the coefficients c̆e,i,j

0 for
all combinations of tracks and measurements.

As mentioned in Sec. II, the approximations of the functions
used in the Fourier identity filter may have negative function
values. If the likelihood or the prior density have negative
function values, the association likelihood may be negative,
which is not a valid value for a likelihood. If (11) yields a
negative value when a valid association likelihood is required,
it can make sense to replace the value with its absolute value
or zero.

For the Fourier square root filter, there are two ways to obtain
the association likelihood. The first involves determining the
coefficient vectors cL,j and cp,j directly describing the prior

density and likelihood from the coefficient vectors dL,j and
dp,j describing their square roots using

cL,j = dL,j ∗ dL,j , cp,j = dp,j ∗ dp,j .

Then, the same formula as for the Fourier identity filter can be
employed. Since the functions represented by cL,j and cp,i are
nonnegative everywhere, the multiplication result represented
by c̆e,i,j is also nonnegative. Further, since the trigonometric
polynomials approximating the prior density and likelihood
can only have a finite number of roots, the integral over f̆ e,i,j

is always positive for the Fourier square root filter.
In the second way to obtain the association likelihood, we

begin by calculating the coefficient vector d̆
e,i,j

representing
the square root of the unnormalized posterior density via

d̆
e,i,j

= dL,j ∗ dp,i .

Then, we can use Parseval’s formula [14, Vol. I, Sec. II.1,
Thm. 1.12] to obtain a formula for the integral over the square



of the function. Thus, we obtain the formula

`(ẑj |i) = 2π
∥∥d̆e,i,j∥∥2

= 2π
∥∥dL,j ∗ dp,i∥∥2

for all combinations of indices i and j.

IV. DETERMINING THE MOST LIKELY ASSOCIATION

For simplicity, we limit ourselves to equal numbers of tracks
and measurements, i.e., n = m. In this case, an association can
be described by a permutation τ mapping each track index to
a measurement index. The most likely permutation maximizes

`(ẑτ(1), ẑτ(2), . . . , ẑτ(n)|1, 2, . . . , n) =

n∏
i=1

`(ẑτ(i)|i) . (12)

The same permutation minimizes

−log `(ẑτ(1), ẑτ(2), . . . , ẑτ(n)|1, 2, . . . , n)=−
n∑
i=1

log `(ẑτ(i)|i),

which is the negative logarithm of (12). This formula motivates
the so-called association matrix [9, Ch. 11] containing the
negative logarithms of the association likelihoods for all
combinations of indices i and j. Based on this matrix, the
permutation resulting in the smallest sum can be obtained via
a solver for linear assignment problems (LAPs), such as the
LAPJV [15].

If a closed-form formula for the association likelihood is
known, the logarithms of the association likelihoods can be
calculated efficiently. However, the actual negative logarithms
of the association likelihoods may not be required to obtain the
optimal association. In some cases, it is possible to simplify the
formula for the entries of the matrix by performing changes that
do not alter the optimal permutation derived. Such a simplified
formula is derived for multivariate Gaussian densities in [8,
Section 10.3, Equations (10.27)–(10.29)].

For the von Mises filter, the negative sum of the logarithms
can be reformulated according to

−
n∑
i=1

log

(
I0(κe,i,τ(i))

2πI0(κv,τ(i))I0(κp,i)

)
=

n∑
i=1

− log
(
I0(κe,i,τ(i))

)
+ n2π +

n∑
i=1

log
(
I0(κv,τ(i))

)
+

n∑
i=1

log
(
I0(κp,i)

)
=

n∑
i=1

− log
(
I0(κe,i,τ(i))

)
+n2π +

n∑
i=1

log
(
I0(κv,i)

)
+

n∑
i=1

log
(
I0(κp,i)

)
︸ ︷︷ ︸

independent of τ

.

All additive terms that are independent of the permutation
τ can be disregarded because they do not influence which
permutation minimizes the expression. By applying an LAP
solver to the matrix containing the entries − log

(
I0(κe,i,j)

)
for all i and j, the most likely association can be derived.

For the particle filter, the entries of the association matrix
can be determined by calculating the negative logarithm of the
association likelihood obtained via (9). For the Fourier filters,
we have to be aware that (10) can result in negative values for
the Fourier identity filter. If an association likelihood of zero
or less is obtained, a large value can be used as the entry of
the association matrix. This makes it (almost) impossible that
the respective track–measurement pair is part of the association
obtained using the LAP solver.

For filters for which no closed-form formula for the as-
sociation likelihood is known, a way to efficiently generate
suboptimal values for the association matrix can be used instead.
Using a measure of distance between the circular means of
the likelihood and the prior density as a substitute for the
actual negative logarithm of the likelihood can lead to good
association results. In [6], the cosine distance

dcos(x̂
p,i, ẑj) = 1− cos(x̂p,i − ẑj)

was used as the distance measure. A downside of this approach
is that the uncertainties are not taken into account. Further, the
circular means need to be well defined, which may not be the
case, e.g., for antipodally symmetric densities. In such cases,
reformulating the estimation problem may make it possible to
use the distance-based association process nonetheless [6].

V. EVALUATION

In our evaluation, we compare five different filters. The first
four filters are the filters for which the association likelihoods
were presented in this paper, namely the von Mises filter, the
particle filter, the Fourier identity filter, and the Fourier square
root filter. For all of these filters, the association matrices are
generated as explained in Sec. IV. For the particle filter and the
Fourier filters, different numbers of parameters are employed.
As the fifth filter, an adapted version of the Kalman filter is
considered. The adapted Kalman filter can be interpreted as
follows. If the means of the prior density and the likelihood
are more than π apart, the border of periodicity is shifted
so that the means are no longer more than π apart. This
significantly improves the estimation quality as the periodicity
of the estimation problem is taken into account to some
degree. For the Kalman filter-based multitarget tracking, the
entries of the association matrix are calculated according to the
cosine distance. Experiments with an adapted version of the
Mahalanobis distance showed that using the cosine distance
yields better results, which is why only the results based on
the cosine distance are provided in our evaluation.

The filters are compared based on the number of association
errors. In Fig. 2, we illustrate how the errors are counted. The
initial assignment of measurements to tracks is irrelevant to
our error measure. In every further step, if the measurement
associated with a track does not stem from the same object
as the measurement that was associated with the track in the
previous time step, this is counted as an error. In our scenarios,
we have a constant number of tracks, and thus, a single error
cannot occur in isolation. As illustrated in Fig. 2, confusing
two objects is counted as two errors. When the association is
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Figure 2. Illustration of how the association errors are counted. The number
in each box is the ID of the actual object from which the measurement stems.

Figure 3. Number of association errors for the individual filters in the scenario
involving only von Mises-distributed noise terms. The results of the von Mises
filter and the Kalman filter are given as horizontal lines because the number
of parameters cannot be varied. These two lines are almost identical due to
the very similar performance of the filters. The same holds for the lines of
the two Fourier filters.

incorrect for more than two tracks in one time step, the number
of errors corresponds to the number of tracks for which the
new measurement stems from a different object than in the
previous time step.

We consider a simulated tracking scenario involving multiple
objects that move along a circular path at an approximately
constant, known velocity. This can, for example, be seen as
a simplified version of a task to track objects in an identical
orbit in space. Five objects are tracked for nine time steps. The
concentration parameter of all prior densities is κ = 10 and
the individual means are placed at every integer from 1 to 5.
Thus, the distance between neighboring objects is 1, except
for the distance between the last and the first object. The true
initial values are drawn from the individual prior densities.

A topology-aware identity model with additive noise is used
as the system and measurement model. This means, for every
time step t and object i, the random variable (written in bold
letters) for the measurement zτ(i)

t is a topology-aware sum of
the respective state xit and the measurement noise v

τ(i)
t , i.e.,

z
τ(i)
t = xit + v

τ(i)
t mod 2π .

Further, the state of the object i at the next time step t+ 1 is
given by

xit+1 = xit + uit mod 2π , uit = c+ wi
t ,

with a constant c describing the displacement in every time
step caused by the constant velocities of the objects. As the

Figure 4. Number of association errors in the scenario involving a von Mises
mixture as the measurement noise. Again, the lines for the Kalman filter and
the von Mises filter are identical, which holds similarly for the lines of the
Fourier filters.

means of the velocities of all objects are identical and known,
the estimation problem can be reduced to one involving objects
that perform a topology-aware random walk according to the
system noise wi

t. The noise terms v
τ(i)
t and wi

t are distributed
according to a von Mises distribution with µ = 0 and κ = 30
in every time step.

The scenario was simulated 20000 times and the associations
were recorded for all approaches. The maximum number of
association errors is equal to the number of time steps minus
one multiplied by the number of objects, which yields 40
in the described scenario. A certain number of association
errors may be inevitable for the system model used. When one
object passes another, even a perfect filter based on noise-free
measurements may deem an incorrect association to be the
most likely.

The evaluation results are shown in Fig. 3. The two Fourier
filters perform equally well and outperform all other filters
evaluated. The association quality of the particle filter surpasses
those of the adapted Kalman filter and the von Mises filter
but does not reach the quality of the Fourier filters even for
high numbers of samples. The number of association errors
of the von Mises filter is only slightly different from the
number achieved using the adapted Kalman filter. This indicates
that calculating the cosine distance is a viable alternative to
determining the actual negative logarithm of the association
likelihood.

To provide a more comprehensive evaluation, we also
consider a modified version of the scenario, in which the
measurement noise density is a mixture of von Mises densities
according to

v
τ(i)
t ∼ 1

2
fVM(v

τ(i)
t ; 2π − 0.3, 50) +

1

2
fVM(v

τ(i)
t ; 0.3, 50) .

Further, the system noise density was replaced by a von Mises
density with κ = 50. While the numbers of errors shown
in Fig. 4 are different from those in the original scenario,
the results clearly resemble. A notable difference is that the
absolute differences in the qualities of the filters are higher in



the modified scenario. Further, the Fourier filters require more
coefficients to achieve their optimal performance.

VI. CONCLUSION

In this paper, we have presented formulae for the association
likelihood for density representations used by important filters
for circular domains. The formulae allow for efficiently
determining the most likely association for multitarget tracking
when one of the considered filters is used. Since all formulae
presented are in closed form, they can be used even in real-time
applications. In the evaluation, we showed that the multitarget
tracking approaches based on the particle filter and the Fourier
filters outperform a Kalman filter-based approach. The von
Mises filter-based multitarget tracking, however, did not prove
to be superior to the Kalman filter-based tracking. Future
work includes considering density representations on higher
dimensional manifolds such as the torus or the unit sphere.

APPENDIX

To prove that (7) is an equality, we first drop the indices i
and j to obtain more compact expressions. Since the left-hand
and right-hand sides of (7) are proportional and nonzero for
all input values, it is sufficient to show that the equality holds
for a single input value x. We choose x = 0 and prove

eκ
v cos(ẑ)eκ

p cos(x̂p) = eκ
e cos(x̂e) . (13)

The left-hand side of (13) can be rewritten using a single
exponent. Further, due to the strict monotonicity of the
exponential function, it is sufficient to show

κv cos(ẑ) + κp cos(x̂p) = κe cos(x̂e) (14)

to prove (13).
We now write out x̂e to obtain

cos(x̂e) = cos(atan2(S,C)) .

Next, we use cos(atan(α)) = 1√
1+α2

[16] and consider the
atan2 for all quadrants and quadrant borders [17] separately,
yielding

cos(x̂e)=



cos(atan(S/C))
= 1√

1+S2/C2
= C√

C2+S2
C > 0, S > 0

cos(π + atan(S/C))

= − 1√
1+S2/C2

= − |C|√
C2+S2

= C√
C2+S2

C < 0, S > 0

cos(−π + atan(S/C))
= cos(π + atan(S/C))
= C√

C2+S2

C < 0, S < 0

cos(atan(S/C)) = C√
C2+S2

C > 0, S < 0

cos(0) = 1 = C√
C2

= C√
C2+S2

C > 0, S = 0

cos
(
π
2

)
= 0 = C√

C2+S2
C = 0, S > 0

cos(π) = −1 = C√
C2

= C√
C2+S2

C < 0, S = 0

cos
(
− π

2

)
= 0 = C√

C2+S2
C = 0, S < 0

undefined C = S = 0 .

Finally, we also write out κe to obtain

κe cos(x̂e) =
√
C2 + S2

C√
C2 + S2

= C = κp cos(x̂p) + κv cos(ẑ) ,

which proves (14) and thus also (13) and (7).
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