
Comparative Study of Track-to-Track Fusion
Methods for Cooperative Tracking with

Bearings-only Measurements
Susanne Radtke, Kailai Li, Benjamin Noack, and Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology (KIT), Germany
susanne.radtke@kit.edu, kailai.li@kit.edu, benjamin.noack@ieee.org, uwe.hanebeck@ieee.org

Abstract—Using a network of spatially distributed sensors to
track a moving object can be a challenging task. In applications
with limited communication between sensor nodes and packet
loss, it may be impossible to process measurements from these
distributed sensor nodes in a central unit. Therefore, it is often
necessary to use only the locally available measurements at
the sensor nodes and afterwards merge all local tracks into
one consistent result. In this paper, several different track-to-
track fusion algorithms are compared to cooperatively track a
moving object using only bearing measurements. It is shown
that the Sample-based Fusion that uses a set of deterministic
samples to reconstruct the cross-covariances is a suitable fusion
algorithm for the considered setup. Furthermore, it provides the
means to efficiently keep track of the cross-covariances between
sensor nodes and therefore outperforms conservative methods.
The proposed approach is also tested in a real-world indoor
localization setup using bearings-only acoustic measurements
from three microphone arrays.

I. INTRODUCTION

Target tracking is an important task in the field of surveil-
lance [1], where different sensors are used to obtain infor-
mation about the current state of a moving target. Distance
or angle measurements are often utilized for target track-
ing, which are related to nonlinear measurement equations.
Possible setups could use passive sensors, such as acoustic
sensors or electro-optical sensors that detect only the angle
towards the target [2]. Bearing measurements are particularly
challenging as they may not allow full observability of the
target position [3]. Therefore, the Bearings-only Tracking
(BoT) problem has been studied intensively during the last
decades, resulting in a large number of different approaches
and strategies, e.g., [4]–[7].

Using a centralized Kalman filter to obtain suitable results
is not possible in all applications. Especially in scenarios
with limited bandwidth and lossy communication, distributed
estimation is a more robust, flexible, and modular solution [8].
In distributed estimation, a local Kalman filter is used to
process the locally available sensor data. The quality of this
locally estimated track can further be improved by fusing it
with the tracks from other sensor nodes so that the fused
result is more accurate and the uncertainty is reduced. This
Track-to-Track Fusion (T2TF) problem is challenging since

the local estimates are correlated due to common prior in-
formation, double counting, and the incorporation of common
process noise [9]–[11]. By an adequate representation of these
correlations, a bandwidth-efficient exchange of the required
information among the nodes can be realized allowing various
interesting applications.

In [12], a decentralized solution for tracking in a sen-
sor network with varying coverage has been presented. The
performance of various fusion methods has been compared,
including Safe Fusion [13], Covariance Intersection (CI) [14],
Inverse Covariance Intersection (ICI) [15], [16], and the Gen-
eralized Information Matrix Filter (GIMF) [17]. Many fusion
methods, e.g., Ellipsoidal Intersection [18] and Covariance
Intersection, employ an approximation or bound of the actual
covariance matrix and may therefore be too optimistic or pes-
simistic, respectively. Keeping track of the cross-covariances
yields optimal results but is cumbersome and often not feasible
in sensor networks with many nodes and unreliable com-
munication. Therefore, approaches to reconstruct the cross-
covariances between state estimates in a distributed fashion
were recently investigated to allow more accurate fusion
results [19]. In [20], a set of deterministic samples was used to
reconstruct the cross-covariances. This so-called Sample-based
Fusion (SbF) method yields optimal results if all process noise
terms are included and suboptimal results if the user-defined
time horizon is chosen to be smaller [21].

This paper offers a comparative study for different T2TF
methods used in an indoor tracking application, where a
moving, sound-emitting object is cooperatively localized by
a network of passive acoustic sensors in a distributed fashion.
The problem of estimating these bearings-only measurements
using passive acoustic sensors was introduced in [22]. The
necessity for distributed estimation is induced by the limited
feasibility of sending all acoustic measurements to a central
processing unit. In order to process the acoustic measure-
ments directly, the sensor nodes need to be synchronized
accurately, which is not feasible in the considered setup.
Moreover, the communication of the locally preprocessed
bearing measurements is not appropriate since the loss of
measurements can lead to significant performance drops and
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Fig. 1: Setup for the localization using three sensor nodes
measuring the bearing θ ∈ [−π, π] towards a single target of
velocity ν in a joint global coordinate system.

loss of tracks. Therefore, a distributed estimation approach
with local estimators using the Unscented Kalman filter (UKF)
[23] to handle the nonlinear measurements and a T2TF using
the SbF is proposed.

The remainder of the paper is structured as follows. In Sec-
tion II, the problem is formulated and different T2TF methods
are briefly introduced. In Section III, the results of different
fusion methods are evaluated based on both simulation and real
data from an experimental setup. The results are concluded in
Section IV and further research objectives are shown.

II. PROBLEM FORMULATION

To increase robustness and flexibility for tracking in sen-
sor networks, distributed estimation is used to obtain local
tracks of the target using the locally available bearings-only
measurements. These local tracks are later fused to obtain
more accurate results. The problem of tracking a single target
is divided into two parts. First, we will formulate a local
tracker that will process only bearing measurements and prior
information about the position of the target. Second, we will
discuss the track-to-track fusion problem and give a short
introduction to some state-of-the-art fusion methods.

A. Local Tracking

The target tracking algorithm will be developed for a sensor
network with multiple sensor nodes measuring the bearing
towards a moving object. For example, the nodes are equipped
with microphone arrays measuring the direction, from which
the target emits an acoustic wave front. Figure 1 shows the
setup with three sensor nodes that measure the noisy angle
θ(i) towards the target.

The state of the moving object can be modeled as a discrete-
time time-variant stochastic dynamic system

xk+1 = Akxk + Bkuk + wk, with wk ∼ N (0,Qk) ,

with state matrix Ak and input matrix Bk, state vector xk
with state dimension N , and input vector uk. The system is
disturbed by white Gaussian system noise wk with covariance
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Fig. 2: Error ellipses and state estimate of a local Kalman
filter over time when tracking a moving target going from left
to right with bearings-only measurements at sensor node 2 of
Fig. 1 at position [0, 0]T.

matrix Qk. The measurement model of sensor node i is given
by the nonlinear function

y
(i)
k = h(i)(xk) + v

(i)
k = z

(i)
k + v

(i)
k , v

(i)
k ∼ N (0, R

(i)
k ) , (1)

with additive white Gaussian noise vk with covariance matrix
Rk. Since the sensors in this application measure the bearing
towards the target, the measurement is the angle

z
(i)
k = θ

(i)
k = atan2

(
xy,k − P (i)

y ,xx,k − P (i)
x

)
,

which is obtained from the target position x = [xx,k,xy,k]T

with respect to a local sensor node i at position [P
(i)
x , P

(i)
y ]T.

For each sensor node, the local angular measurements are
all computed with respect to the same global coordinate sys-
tem. Recursive estimation using bearings-only measurements
is a highly nonlinear problem. In order to address these
nonlinearities, various algorithms based on the Kalman filter
have been developed. The most common approaches include
the Extended Kalman Filter (EKF) [24] and the Unscented
Kalman Filter (UKF) [23]. The UKF offers better accuracy
in the considered bearings-only setup than the linearization of
the EKF, because it accounts for the asymmetry of the non-
linear transformation [2]. Therefore, the UKF is used in this
application to locally track the target. To compare the fused
results in the evaluation part of this paper, a global unscented
Kalman filter will be used additionally, which fuses the angle
measurements from all sensor nodes. It should be noted, that
due to the limited bandwidth and possible package loss this is
not a suitable solution for the considered application. Figure 2
shows the result of the local unscented Kalman filter when
tracking a moving target for several time steps from one sensor
node. The estimation of the angle towards the target yields
sufficiently accurate results, but the uncertainty for the distance
grows very fast since no information about the distance can be
obtained using only angle measurements. However, it can also
be seen that the Gaussian uncertainty characterization does not
capture the actual uncertainty and therefore, a systematic error



between the target position and the estimate is introduced. The
limitation of this local estimation can be overcome by using
the information of other sensor nodes to achieve more accurate
tracks.

B. Track-to-Track Fusion (T2TF)

Because of the one-dimensional bearings-only measure-
ments, the estimates of a local tracker might diverge and get
lost at some point. Since there are multiple local estimators
that are tracking the target from different angles, it is possible
to perform T2TF. The fused results can then be utilized to
reinitialize the local estimators to enhance the performance
of the filter and to prevent loss of track. There are various
methods that are able to perform T2TF. In the well known
Bar-Shalom/Campo formulas [25], the fusion rule to optimally
merge two tracks into a consistent result were stated. These
formulas were further extended for the multi-sensor case in
[26]. The fusion result can be obtained by using the joint state
estimate

m̂k|k =
[(
x̂
(1)
k|k
)T

, . . . ,
(
x̂
(L)
k|k
)T
]T

and the joint cross-covariance

Jk|k =


P

(1)
k|k P

(1,2)
k|k . . . P

(1,L)
k|k

P
(2,1)
k|k P
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k|k . . . P

(2,L)
k|k

...
...

. . .
...

P
(L,1)
k|k P

(L,2)
k|k . . . P

(L)
k|k

 ,
where

P
(i,j)
k|k = E[(x̂

(i)
k|k − xk)(x̂

(j)
k|k − xk)T]

is a local covariance or cross-covariance matrix for (i) = (i, i)
or (i, j), i 6= j, respectively. Afterwards, the fused covariance

Pk|k =
(
HT(Jk|k)−1H

)−1
, (2)

and the fused state

x̂k|k = Pk|kH
T(Jk|k)−1m̂k|k . (3)

can be calculated using the matrix H = [I, . . . , I]T with the
identity matrix I of the state dimension that describes how the
local states map into the fused state estimate. Since the cross-
covariances between the state estimates usually are unknown,
there are several techniques to either bound or reconstruct the
cross-covariances. The simplest approach is to simply neglect
all correlations. This naı̈ve fusion approach usually leads to
very poor fusion results, because the uncertainty between the
state estimates is underestimated. Therefore, other approaches
such as Covariance Intersection, Inverse Covariance Intersec-
tion, and the Sample-based Fusion are considered.

1) Covariance Intersection (CI): Covariance Intersection is
a very useful fusion method, since no knowledge about the
underlying correlations between state estimates is required.
The result is a convex combination of both state estimates of
sensor node A and B that is composed by a scalar weighting

factor ω ∈ [0, 1]. The fused state estimate and covariance
matrix are calculated with

PCI =
(
ω(PA)−1 + (1− ω)(PB)−1

)−1
,

x̂CI = PCI
(
ω(PA)−1x̂A + (1− ω)(PB)−1x̂B

)
.

Covariance Intersection has shown to be consistent under
all possible correlations, but is also overly pessimistic in
some applications. Therefore, other approaches try to utilize
some additional information to obtain tighter bounds of the
covariance matrix.

2) Inverse Covariance Intersection (ICI): Inverse Covari-
ance Intersection [15], [16] yields a less conservative fusion
result than Covariance Intersection by striving to find the
maximum possible common information between the state
estimates that are to be fused. To guarantee consistency, the
possibly shared common information is bounded and removed
from the fusion result. The fused covariance matrix can be
calculated by

P−1ICI = (PA)−1 +
(
PB)−1 − (ωPA + (1− ω)PB

)−1
.

Afterwards, the fused state estimated is calculated as a
weighted combination of the local state estimates

x̂ICI = KICI x̂
A + LICI x̂

B ,

with weights KICI and LICI according to

KICI =PICI

(
(PA)−1−ω

(
ωPA+(1−ω)PB

)−1)
,

LICI =PICI

(
(PB)−1−(1− ω)

(
ωPA+(1−ω)PB

)−1)
.

The properties of ICI are still an ongoing research objective
with many promising applications for typical Kalman filter-
based fusion problems.

3) Sample-based Fusion (SbF): The Sample-based Fusion
is a relatively new method to perform T2TF utilizing a set
of deterministic samples. It is able to reconstruct the cross-
correlation between the tracks in a distributed fashion and
therefore enables the use of the Bar-Shalom/Campo formulas.
The usage of samples also allows a straightforward approach
for nonlinear filters [20], [21]. In the beginning, an identity
set is created using the simple deterministic spherical simplex
sampling method described in [27], resulting in the sample set
{p(m)}Mm=1 with

M∑
m=1

p(m) = 0 ,

M∑
m=1

p(m)
(
p(m)

)T
= ID×D ,

with dimension M = D + 1 = N × (T + 1) + 1 where
T is a user-defined time-horizon which denotes how many
noise terms are included in the sample set. The Sample-
based Fusion is basically a square root decomposition of the
underlying covariance matrix. The included noise terms have
to be factorized via Cholesky decomposition into the following
form

Σk = diag
(√

Pk|k,
√

Qk+1, . . . ,
√

Qk+T
)
,



such that the sample set can be initialized as

d
(m)
k = Σkp

(m) , ∀m = 1, . . . ,M

=
[
(s

(i,m)
k|k )T, (w

(m)
k+1)T, . . . , (w

(m)
k+T )T

]T
.

This results in a weighted sample set {d(m)
k }Mm=1, where

{s(i,m)
k|k }

M
m=1 denotes the common prior information between

sensor nodes and the {w(m)
k+1,...,T }Mm=1 denotes the uncorre-

lated process noise terms until the time horizon T .
The cross-covariance information can be encoded into the

sample set by performing the time update step using the system
equation

s
(i,m)
k|k−1 = Aks

(i,m)
k−1|k−1 + w

(m)
k , ∀m = 1, . . . ,M ,

and afterwards the measurement update is performed. By
using the nonlinear transform of the UKF, the sample set is
propagated during the measurement update [20] by

s
(i,m)
k|k =

(
I−Pxy

k (Py
k)−1(Pxy

k )T(Px
k)−1

)
s
(i,m)
k|k−1 ,

where Py
k is the covariance of the predicted measurement, Pxy

k

is the cross-covariance between the predicted state and the
predicted measurement, and Px

k = Pk|k−1 is the covariance
of the predicted state estimate. To perform the fusion step, the
cross-covariance terms at time horizon T are calculated using

Pi,j
k+T |k+T =

M∑
m=1

s
(i,m)
k+T |k+T

(
s
(j,m)
k+T |k+T

)T
.

The obtained cross-covariance matrices are then used in the
fusion equations (2) and (3), which lead to the fused state
estimate and covariance matrix.

III. EVALUATION

In this section, the proposed distributed estimation and
T2TF are evaluated. First, the results are simulated to allow
an empirical comparison of the used fusion methods. Second,
real data from a moving, sound-emitting target that is tracked
by local microphones is evaluated.

A. Simulation results
The motion of the target is modeled with a time-invariant

stochastic time-discrete system equation

xk+1 = Axk + wk, with wk ∼ N (0,Q) ,

with additive white Gaussian process noise wk and covariance
matrix Q. We are using a constant velocity model

x
y
ẋ
ẏ


k+1

=


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1



x
y
ẋ
ẏ


k

+ wk ,

with ∆T = 0.1 and additive white Gaussian process noise wk
with covariance matrix

Q = q


1
3∆T 3 0 1

2∆T 2 0
0 1

3∆T 3 0 1
2∆T 2

1
2∆T 2 0 ∆T 0

0 1
2∆T 2 0 ∆T

 .
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Fig. 3: Comparison of the simulated track with the estimated
track of the global Kalman filter and the fused tracks of
different fusion methods.

The noise power is assumed to be q = 0.01 and the covariance
R = σ2 = (2 · π

180 )2 of the measurement noise v
(i)
k in (1) has

been determined from the experiment with real sensor data
obtained by the microphone array. The target was observed
from three sensor nodes with node 1 at [2.98, 3]T, node 2 at
[0, 0]T and node 3 at [−0.01, 3.02]T. The filters were initialized
with state estimate x̂ = [1.5, 1.5, 0, 0]T and covariance matrix
P = Q. The fusion step was performed every 10 time steps.
The performance of the Sample-based Fusion (SbF), Covari-
ance Intersection (CI), Inverse Covariance Intersection (ICI),
and the naı̈ve fusion, where all cross-correlations are ignored,
is compared. Figure 3 shows an example of a simulated
trajectory with the ground truth of the target and the results
of the fusion methods. Additionally, the results of the global
filter that utilizes all bearing measurements are shown. All
methods can follow the target trajectory well. The track of
the global filter seems noisier as it contains an estimation
at every time step while the fused tracks only contain an
estimation every fusion step. Figure 4 compares the Mean
Squared Error (MSE) of the state estimates. It can be seen
that the state estimates of all filters except the global Kalman
filter diverge quickly until they are reinitialized with the fused
state estimate after the fusion step. The MSE of the fused state
estimates is shown in Figure 5(a). The evaluation example
shows that the Sample-based Fusion results in the smallest
MSE, followed by the Inverse Covariance Intersection, then
the Covariance Intersection, and lastly the naı̈ve fusion. To
compare the fusion results in terms of consistency, the Average
Normalized Estimation Error Squared (ANEES) is used [28],
where N is the dimension of the system and nMCR is the
number of Monte Carlo runs

ε =
1

NnMCR

nMCR∑
i=1

εi =
1

NnMCR

nMCR∑
i=1

(x̂i − xi)TP−1i (x̂i − xi) .

The ANEES measures the credibility of an estimator that
should be approximately 1, meaning that the estimated co-
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Fig. 4: Comparison of the Mean Squared Error (MSE) of
the global Kalman filter and the local estimates of sensor
node 1 using Covariance Intersection (CI), Inverse Covariance
Intersection (ICI), naı̈ve fusion (Naive) and the Sample-based
Fusion (SbF).

variance matrix matches the actual error. If it is higher than 1,
then the uncertainty is underestimated. Conservative methods
such as CI tend to overestimate the uncertainty, therefore
achieving an ANEES smaller than 1. Figure 5(b) shows that
the Sample-based Fusion results in an ANEES slightly smaller
than 1, meaning that the error is not overly pessimistic, yet
the result is consistent. The results of the naı̈ve fusion show
that ignoring the correlation between sensor nodes yields a too
optimistic assessment of the estimation error. Both ICI and CI
are conservative methods with CI being the most conservative,
as expected.

B. Experimental results with real data

For the experimental results, a noise emitting object was
tracked by three sensor nodes with node 1 at [2.98 m, 3 m]T,
node 2 at [0 m, 0 m]T and node 3 at [−0.01 m, 3.02 m]T, which
corresponds to the same configuration as in the simulation.
Each sensor node was equipped with a microphone array (see
Figure 6) to determine the direction from which an acoustic
wave front is approaching. For the emitted sound, electronic
music with a constantly beating drum was chosen. The object
was moving in a straight line. The initial position of the local
state estimates was set to [1.5 m, 2 m]T which is distant from
the real position of the target to see how robust the proposed
method works. The local estimates are updated every 0.1 s and
the fusion is executed after 1 s. Afterwards, the fusion results
were used to reinitialize the local estimators. The results have
been calculated offline. Therefore, it is also possible to use
a global Kalman filter that utilizes all angle measurements
and obtains a much more precise estimate. Figure 7 shows
that the results of all methods converge rapidly towards the
real trajectory of the object. Again, the results of the global
Kalman filter appear noisier as the T2TF methods only acquire
a result after every fusion step and therefore appear smoother.
All methods except CI are robust against the wrong initial
estimate.
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(a) Mean Squared Error (MSE) from 1000 test runs.
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Fig. 5: Comparison of the fused estimates of Covariance
Intersection (CI), Inverse Covariance Intersection (ICI), naı̈ve
fusion (Naive) and the Sample-based Fusion (SbF).

Fig. 6: Microphone array for measuring the angular locations
of sound sources.

IV. CONCLUSION

This paper compared the performance of different T2TF
methods used in a cooperative tracking application with only
locally available bearing measurements. The results show
that it is possible to use the proposed approach to track a
moving target in a distributed fashion with only locally avail-
able bearings-only measurements. The Sample-based Fusion
achieved the best results compared to the other tested T2TF
methods. To use the method, a set of deterministic samples
has to be communicated additionally to the state estimate
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Fig. 7: Estimated track of a sound emitting target moving very
slowly from right to left with wrong initial position (marked
with x) to test robustness of the approach.

and the covariance matrix. Depending on the state space and
the time horizon until the fusion takes place, this requires
additional communication resources. Assumptions about the
motion model of the target are an important aspect for the
performance of the T2TF and the proposed solution is sensitive
to maneuvering targets and model mismatch. The experiments
with the microphone arrays also showed problems with clutter
that could be addressed with data association. The periodic
domain of the angular measurements could also be handled
using directional estimation approaches [22]. This would lead
to interesting new challenges for reconstructing the cross-
covariances between state estimates. Further research may
investigate the problem of bearings-only tracking with multiple
targets in a distributed fashion.
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