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Abstract— Sensor data fusion in wireless sensor networks
poses challenges with respect to both theory and implementa-
tion. Unknown cross-correlations between estimates distributed
across the network need to be addressed carefully as neglecting
them leads to overconfident fusion results. In addition, limited
processing power and energy supply of the sensor nodes
prohibit the use of complex algorithms and high-bandwidth
communication. In this work, fast covariance intersection using
both quantized estimates and quantized covariance matrices is
considered. The proposed method is computationally efficient
and significantly reduces the bandwidth required for data
transmission while retaining unbiasedness and conservativeness
of fast covariance intersection. The performance of the proposed
method is evaluated with respect to that of fast covariance
intersection, which proves its effectiveness even in the case of
substantial data reduction.

I. INTRODUCTION

Wireless sensor networks (WSNs) comprise many au-
tonomous but interconnected sensor nodes typically con-
sisting of a power supply, sensors with associated data
acquisition units, a processing unit, and wireless communi-
cation hardware. The sensor nodes are constrained in several
respects: Available energy is severely limited, processing
power is low, and wireless bandwidth has to be shared
between sensor nodes [1]. In fact, wireless transmission
of data is the single most energy-intensive operation per-
formed by a sensor node, whereas the energy expenditure
of processing data is comparatively low [2]. WSNs have
numerous applications (cf. [3]), for instance in environmental
monitoring [4], [5], [6], building automation [7], [8], or
moving object tracking [9], [10].

Estimates and associated covariance matrices computed
across a WSN can be combined through fusion algorithms to
increase accuracy or to improve robustness to outliers. How-
ever, unknown cross-correlations between those estimates
often exist. Neglecting them can cause the uncertainty of
the fusion result to be underestimated. Several algorithms
that mitigate the effects of unknown cross-correlations have
been proposed. Examples of such algorithms are covariance
intersection (CI) [11], fast covariance intersection (FCI) [12],
[13], and inverse covariance intersection (ICI) [14], [15],
which are guaranteed to produce results with a conservative
uncertainty estimate in the form of a covariance matrix. Other
algorithms such as ellipsoidal intersection (EI) [16], [17]
provide no such guarantee and, on average, result in tighter
approximations to the true covariance matrix.
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All of the above methods require the transmission of the
estimates and covariance matrices to other sensor nodes and
/ or the fusion center to perform the fusion. Since wireless
data transmission is energy-intensive, reducing the amount
of transmitted data through prior compression is key to
ensure long operating times of the sensor nodes in a WSN.
A comprehensive survey of lossless and lossy compression
methods that are suitable for WSNs is given in [18]. The sur-
veyed methods include multiple probabilistic quantization-
based approaches [19], [20], [21], [22] tailored to estimation
problems. However, only scalar measurements are considered
and their respective variances are assumed to be known to
the receiver. Quantization as a means of data reduction has
also been applied to Kalman Filtering, a prominent example
being the sign of innovations Kalman filter [23], [24]. Again,
the covariance matrices associated with the measurements
are assumed to be known to the receiver. In contrast to
the previous works, it is assumed in [25] that the receiver
has no prior knowledge of the covariance matrices, which
therefore need to be transmitted via the wireless network.
The authors develop data reduction methods for covariance
matrices based on conservative diagonal approximations.

In this paper, similarly to [25], we assume that the co-
variance matrices are unknown to the receiver and therefore
need to be transmitted alongside the estimates. In general,
the covariance matrix will not be diagonal and dominates
the amount of data that needs to be transmitted, as the
number of elements grows quadratically with the dimension
of the estimate. Consequently, we quantize both the covari-
ance matrices and the estimates prior to transmission and
use covariance intersection (CI) at the receiver to obtain a
fused estimate. The proposed quantization scheme retains the
properties of CI such as unbiasedness of the fusion result and
conservativeness of the associated covariance matrix.

This paper contains three contributions: (1) We extend the
probabilistic quantization method from [19], [26] to vector-
valued correlated random variables. (2) We propose a conser-
vative covariance matrix quantization based on scalar quan-
tization of individual matrix elements. (3) Both quantization
methods are combined with fast covariance intersection to
produce a conservative quantized covariance intersection
(QCI) algorithm. Due to the low computational complexity
of the quantization, QCI is well suited for application in
resource-constrained environments.

II. BACKGROUND

A. Notation

Lower case letters x ∈ R denote scalar quantities and
additional underlining x ∈ Rn indicates n-dimensional



vector-valued quantities. n×n-Matrices are denoted by bold
upper-case letters X ∈ Rn×n. The i-th element of a vector
and the ij-th element of a matrix are xi and Xij , respectively.
The use of boldface as in x ∈ R and x ∈ Rn indicates
random scalars and random vectors, respectively. Upper-case
calligraphic letters A indicate sets. In particular, Sn+ is used
to denote the set of symmetric positive semidefinite matrices
in Rn×n. For X ∈ Sn+ and Y ∈ Sn+, the notation X � Y
signifies that Y−X ∈ Sn+. If X � Y then Y ∈ Sn+ is called
an upper bound for X ∈ Sn+. Probabilities are written as P(·),
conditional probabilities as P(·|·). The lower-case letter p is
reserved for (conditional) probability density functions, as
in p(·) or p(·|·). For (conditional) expectations the symbols
E(·) and E(·|·) are used. The covariance between two
random quantities is designated by C(·, ·) or by C(·) if
the arguments are identical. The conditional covariance of
a random quantity is denoted by C(·|·). For brevity, given
two random vectors x ∈ Rn and y ∈ Rn, their covariance
matrix C(x,y) is alternatively written as Cxy .

B. Covariance Intersection
The covariance intersection algorithm, originally devised

by Julier and Uhlmann [11], enables the conservative fusion
of two estimates of the mean of a random quantity, regard-
less of the generally unknown cross-covariance between the
estimates. More specifically, given two unbiased estimates
xa ∈ Rn and xb ∈ Rn of the mean x ∈ Rn of some
random variable and upper bounds Ĉaa, Ĉbb ∈ Sn+ of the
true covariance matrices Caa,Cbb ∈ Sn+ of xa and xb,
the covariance intersection algorithm computes an unbiased
fused estimate xc ∈ Rn and an upper bound Ĉcc ∈ Sn+ of
the true covariance matrix Ccc ∈ Sn+ of the fused estimate.
Covariance intersection is conservative in the sense that the
confidence ellipsoid

Êcc =
{
x ∈ Rn | (x− xc)

>Ĉ−1cc (x− xc) ≤ ε
}

induced by the upper bound Ĉcc contains the confidence
ellipsoid

Ecc =
{
x ∈ Rn | (x− xc)

>C−1cc (x− xc) ≤ ε
}

induced by Ccc for any ε > 0. For fixed ε this is visualized
in Fig. 1.

The covariance intersection algorithm itself is defined by

Ĉ−1cc = ωĈ−1aa + (1− ω)Ĉ−1bb ,

Ĉ−1cc xc = ωĈ−1aa xa + (1− ω)Ĉ−1bb xb ,

where any ω ∈ [0, 1] gives an unbiased estimate and an upper
bound on its true covariance matrix. The weight ω is usually
determined numerically by minimizing either the trace or the
determinant of Ĉcc. The fast covariance intersection (FCI)
algorithm [12] uses the specific weight

ω =
tr(Ĉbb)

tr(Ĉaa) + tr(Ĉbb)

that can efficiently be computed in closed form, but may
result in more conservative upper bounds Ĉcc compared to
those obtained by using the optimal ω.
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Fig. 1. Confidence ellipsoids of Ĉaa and Ĉbb (dark blue), Ĉcc (light blue)
and Ccc (dashed light blue) for exact input data. Confidence ellipsoids of
Ĉcc (orange) and Ccc (dashed orange) for naively quantized input data.

C. Probabilistic Quantization

The process of quantization maps a continuous quantity
to an approximate discrete representation. For the purpose
of this paper, a quantizer is a map q : D → C, where the
domain D is a closed, element-wise bounded subset of either
Rn or Rn×n, and the codomain C, the so-called codebook,
is a finite set. If D is a subset of R, q is called a scalar
quantizer. Assuming a scalar quantizer q : D → C with
min(D),max(D) ∈ C and given a bounded random variable
x ∈ D, the quantized random variable q(x), in general,
does not have the same mean as x. This can be rectified
by introducing randomization into the quantizer.

The randomized scalar quantizer qs : Ds → Cs proposed
in [20] (see also [26], [27]) is defined by

qs(x) =

bxc with probability dxe−x
δs

dxe with probability 1− dxe−x
δs

. (1)

The brackets d·e and b·c indicate rounding up to and rounding
down to the next codeword (element of the codebook),
respectively. The codebook is given by

Cs =
{
xmax − kδs | 0 ≤ k < 2b

}
,

where xmax is the maximum codeword, δs = xmax/2
b−1

is the increment between adjacent codewords, and b is the
number of bits required to represent a codeword. Note that
the assumption min(Ds),max(Ds) ∈ Cs is crucial for qs to
be well defined. The quantizer in (1) satisfies [20]

E(qs(x)) = E(x) (2)

C(qs(x)) ≤ C(x) + δ2s (3)

that is, it provides an unbiased estimate of the scalar input
and there is an upper bound on the variance of the estimate.

III. CONSIDERED PROBLEM

We apply covariance intersection to quantized estimates
and covariance matrix bounds in order to reduce the amount
of transmitted data in a WSN. This reduces the power con-
sumption and extends the operating life of the sensor nodes.



However, applying covariance intersection to quantized data
is not straightforward. Deterministic quantization of the
estimates introduces bias and additional noise, which causes
(1) biased fusion results and (2) invalid covariance matrix
bounds. In addition, naive element-wise quantization of the
covariance matrix bounds can lead to quantized matrices that
are no longer valid upper bounds, or for that matter, not even
valid covariance matrices in the sense of being symmetric
positive semidefinite. Fig. 1 illustrates the repercussions of
naive quantization for the results of covariance intersection.
Clearly, the upper bound computed by applying covariance
intersection to naively quantized data is not conservative.

The issue of bias can be addressed by using probabilistic
quantization for the estimates. Probabilistic quantization has
been introduced in Sec. II-C for the scalar case and will be
extended to the vector-valued case in Sec. IV-A. The issue of
conservative quantization of covariance matrix bounds can
be approached by accounting for the noise introduced by
the quantization of the estimates and by enforcing certain
conditions on the quantization errors of the covariance matrix
bounds. This will be discussed in detail in Sec. IV-B.

IV. QUANTIZED COVARIANCE INTERSECTION

A. Unbiased Estimate Quantization

In this section, the unbiasedness and variance bound
results for the probabilistic quantization approach reviewed
in Sec. II-C are extended to element-wise bounded random
vectors with potentially correlated entries. It is shown that
element-wise application of the aforementioned approach
results in unbiasedness of the quantized vectors. An upper
bound for the covariance matrix of the quantized random
vector, analogous to the scalar bound in (3), is derived.

The proposed probabilistic quantizer qm : Dm → Cm
for element-wise bounded random vectors x ∈ Dm ⊂
Rn is an element-wise version of the one given by (1).
Correspondingly, its domain and codebook are the Cartesian
products Dm = Dns and Cm = Cns of the scalar domain Ds
and codebook Cs from Sec. II-C. Each element of a random
input vector x is quantized according to (1), resulting in the
random output vector y = q(x). This quantization process
can be described by the conditional probabilities

P(y|x) =
n∏
i=1

P(yi|x) , (4)

P(yi|x) =


dxie−xi

δs
, yi = bxic

1− dx
ie−xi

δs
, yi = dxie

. (5)

As before, d·e rounds up to and b·c rounds down to the next
codeword in the scalar codebook Cs and δs is the distance
between adjacent codewords in said codebook.

The next corollary is an immediate consequence of (2)
applied element-wise to the random vector y = q(x).

Corollary 1 (Unbiasedness): Let qm : Dm → Cm be the
quantizer defined by (4) and (5). Let x ∈ Dm be a random
vector. Then E(qm(x)) = E(x) holds.

Due to quantization, the random vector y = qm(x) contains
additional noise compared to the input x. Consequently, the
covariance matrix of the input must be adapted to reflect
the increased uncertainty due to quantization. In general,
computing the exact covariance matrix of y is infeasible
without knowledge of the distribution1 of x. Therefore, a
conservative upper bound for C(y) in the same vein as (3),
is determined.

Theorem 1 (Upper Bound): Let qm : Dm → Cm be the
quantizer defined by (4) and (5). Let x ∈ Dm be a random
vector. Then C(qm(x)) � C(x) + δ2sI holds.

Proof: As can easily be checked using (5) and dxie−δs =
bxic, the conditional mean of yi is given by E(yi|x) = xi

from which E(y|x) = x follows. The conditional covariance
of y given x then has zero off-diagonal (i 6= j) elements

C(y|x)ij = E((yi − xi)(yj − xj)|x)
= E(yi − xi|x)E(yj − xj |x) = 0

due to conditional independence. Straightforward computa-
tion using (5) and dxie− δs = bxic shows that the diagonal
elements of C(y|x) are given by

C(y|x)ii = E
(
(yi − xi)2

∣∣x) = δse
i − (ei)2 ,

where ei = dxie−xi. The law of total covariance states that
C(y) = C(E(y|x)) + E(C(y|x)), which results in

C(y) = C(x) + E(C(y|x))
due to conditional unbiasedness of y given x. Note that
ei < δs and 0 ≤ (ei)2 hold. This gives upper bounds on
the expectation of the diagonal entries of the conditional
covariance matrix: δsE(ei) − E

(
(ei)2

)
≤ δ2s . Due to these

bounds and because E(C(y|x)) is diagonal, the upper bound

C(y) � C(x) + δ2sI

holds for the covariance of y.
The upper bound given above is fast to compute and

does not require any knowledge of the distribution of the
input vector x. However, it overestimates the true covariance
matrix of the quantized vector especially when a component
of x is concentrated between two codewords or for large δs.

B. Conservative Covariance Quantization

In the following, a conservative quantizer for covariance
matrices, i.e., symmetric positive semidefinite matrices, is
derived. To that end, let qc : Dc → Cc be a quantizer
that maps symmetric positive semidefinite matrices from an
element-wise bounded and closed domain Dc ⊂ Sn+ to a
finite codebook Cc ⊂ Rn×n. The quantizer map qc : Dc →
Cc should satisfy the conservativeness condition

∀X ∈ Dc : X � qc(X) , (6)

to ensure that the quantized matrix qc(X) is an upper
bound of the original matrix X. With the quantization error

1If the distribution of x was known, the approach in [28], which is based
on a series expansion, could be used to approximate C(y) arbitrarily well.



matrix defined as ∆ = qc(X) − X, the following lemma
gives an alternative characterization of the requirement for
conservativeness expressed by (6).

Lemma 1: Let qc : : Dc → Cc and ∆ be as above, then
it holds that ∀X ∈ Dc : X � qc(X)⇐⇒ 0 �∆(X).

Proof: From (6) and ∆ = qc(X)−X it follows that X �
X + ∆. Then 0 � ∆ holds by definition of �. Assuming
0 �∆ and X ∈ Sn+, X � X + ∆ follows immediately.
In other words, the quantization error matrix must be sym-
metric positive semidefinite for the quantized matrix to be
an upper bound of the original matrix. A simple sufficient
condition for that is the quantization error matrix being
diagonally dominant, as described in the next theorem, which
follows directly from the Gershgorin circle theorem [29].

Theorem 2 (Diagonal Dominance): Let ∆ ∈ Rn×n be
symmetric and diagonally dominant, i.e., let it satisfy

∣∣∆ii
∣∣ ≥ n∑

j=16=i

∣∣∆ij
∣∣ (7)

for i = 1 . . . n, then 0 �∆ holds.
The approach to conservative quantization of a symmetric
positive semidefinite matrix X ∈ Dc pursued here is to first
quantize the off-diagonal elements of X using a codebook Co
and to then quantize the diagonal elements using a codebook
Cd such that Ineqs. (7) are satisfied. This leads to a quantizer

qc(X)ij =

{⌈
Xij +

∑n
k=16=i

∣∣rd(Xik)−Xik
∣∣⌉ , i = j

rd(Xij) , i 6= j
,

(8)

where rd(·) rounds to the nearest codeword in the off-
diagonal codebook Co and d·e rounds up to the nearest
codeword in the diagonal codebook Cd. The codebooks are
given by

Co = {xmax − kδo | 0 ≤ k < 2b} , (9)

Cd = {xmax + (n− 1)δo/2− kδd | 0 ≤ k < 2b} , (10)

where xmax is the maximum off-diagonal codeword, δo =
xmax/2

b−1, and δd = (xmax + (n− 1)δo/2)/(2
b − 1) with

b the number of bits per codeword. The quantizer qc is
well defined as long as the off-diagonal elements of the
matrices in Dc are in the interval [min(Co),max(Co)] and
the diagonal elements are smaller than or equal to max(Co).
This is because Cd is defined such that, even for the worst
possible off-diagonal quantization errors, there always are
sufficiently large codewords to round up to when quantizing
the diagonal elements. When not stated otherwise, the above
conditions for well-defined qc are implicitly assumed to hold.
The next theorem confirms that the output of qc is indeed an
upper bound for its input.

Theorem 3 (Conservativeness): The quantizer qc : Dc →
Cc as in (8) has positive semidefinite quantization error
matrix ∆ = qc(X)−X.

Proof: The off-diagonal quantization errors are ∆ij =
rd(Xik)−Xik and the diagonal quantization errors are

∆ii =

Xii +

n∑
k=16=i

∣∣∆ik
∣∣−Xii .

By the definition of d·e we have

∆ii ≥
n∑

k=16=i

∣∣∆ik
∣∣

and the claim follows from Theorem 2.
Furthermore, the quantizer defined by (8) is optimal in

the sense that, given the codebooks Cd/o, there is no quan-
tizer with symmetric diagonally dominant quantization error
matrix ∆ that has smaller Frobenius norm ‖ · ‖F of ∆.

Theorem 4 (Optimality): Let qc : Dc → Cc be defined by
(8) with element-wise codebooks Cd and Co defined by (10)
and (9). Given X ∈ Dc, the quantization error matrix ∆ =
qc(X)−X is the optimal solution of

minimize
∆∈Rn×n

‖∆‖2F (11)

subject to

n∑
j=1 6=i

|∆ij | ≤∆ii ∀i = 1 . . . n (12)

Xii + ∆ii ∈ Cd ∀i = 1 . . . n (13)

Xij + ∆ij ∈ Co ∀i 6= j (14)
Proof: The problem can be reformulated as a nested

minimization, the inner one being over the diagonal elements
and the outer one being over the off-diagonal elements. The
inner minimization can be split into decoupled minimizations

minimize
∆ii∈R

|∆ii|2

subject to

n∑
j=16=i

|∆ij | ≤∆ii

Xii + ∆ii ∈ Cd
for i = 1, . . . , n. By definition of the d·e operation ∆ii∗ =⌈
Xii +

∑n
j=16=i

∣∣∆ij
∣∣⌉ − Xii are the optimal solutions to

these subproblems. They exist because qc is well defined.
The minimum cost of each decoupled problem is thus

|∆ii∗|2 =

∣∣∣∣∣∣
Xii +

n∑
j=16=i

∣∣∆ij
∣∣−Xii

∣∣∣∣∣∣
2

,

which is non-decreasing in each
∣∣∆ij

∣∣. Using this interme-
diate result, the outer minimization problem is given by

minimize
∆ij∈R,i6=j

n∑
i=1

|∆ii∗|2 +
n∑
i=1

n∑
j=16=i

|∆ij |2

subject to Xij + ∆ij ∈ Co ∀i 6= j

and its minimum is obtained by minimizing the |∆ij |2
separately, as due to the non-decreasing property, |∆ii∗|2
is minimal if each |∆ij |2 is minimal. Thus the minimum is,



by definition of rd(·), attained by setting ∆ij∗ = rd(Xij).

Although the above approach minimizes the conservativeness
of the quantized matrix in the sense of Theorem 4, the
inequalities in (7) are only a sufficient condition for the
quantization error matrix to be positive semidefinite. Hence,
the results of this method are usually more conservative
than strictly necessary. Note that the proposed quantization
method can be computed efficiently thanks to the individual
quantization of the matrix elements.

C. Application to Covariance Intersection

By quantizing the estimates and upper bounds used as
input data for fast covariance intersection with the methods
from Sec. IV-A and Sec. IV-B unbiasedness and conserva-
tiveness is retained. Consequently, the output of FCI when
applied to the quantized data is unbiased and conservative as
well. The entire process can be summarized as follows:

1) Quantize estimates xa and xb and adapt their upper
bounds Ĉaa and Ĉbb using the approach in Sec. IV-A.

2) Quantize the adapted upper bounds from the previous
step using the approach from Sec. IV-B.

3) Transmit the quantized data.
4) Apply fast covariance intersection to the quantized

estimates and quantized adapted upper bounds.
It should be noted that covariance intersection could be
used instead of fast covariance intersection, at the expense
of increased computational cost. In the following, we use
the term quantized covariance intersection (QCI) to refer
to the combination of fast covariance intersection with the
introduced quantization schemes.

V. RESULTS AND DISCUSSION

The quantization error of the proposed covariance matrix
quantizer is evaluated using randomly selected covariance
matrices. In addition, the performance of QCI relative to
FCI is evaluated a) by applying both methods to randomly
generated data and b) in a 2D target tracking scenario.
Evaluation a) demonstrates the behaviour of QCI with respect
to coarseness of quantization and dimensionality of the input
data. Evaluation b) benchmarks QCI’s particular performance
for a given target trajectory and varying coarseness of
quantization.

A. Evaluation of Covariance Quantizer

The covariance matrix quantizer from Sec. IV-B is applied
to independent samples of random covariance (symmetric
positive semidefinite) matrices. The random matrices are
generated as X = LL> where L ∈ Rn×n has zero-
mean, normally distributed elements with variance one. It
should be noted that X is not uniformly distributed. The
Frobenius norms of the resulting quantization error matrices
are averaged over all samples.

Fig. 2 shows the aforementioned averaged Frobenius
norms for varying numbers of bits per codeword b and several
matrix dimensions n. The codebook parameter xmax = 50.0
was used and 10 000 samples were included in the average.
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Fig. 2. Frobenius norm ‖∆‖F of quantization error matrix ∆ for varying
dimensions n and bits per scalar b.

The quantization error is negligible for b greater than eight
bits per codeword. Below that threshold the error increases,
with larger n being affected more strongly. The general trend
with respect to b is a result of the quantization steps δo/d
increasing exponentially for decreasing b. The dependency
on n is caused by two factors. On the one hand the quanti-
zation error per element remains roughly the same, whereas
the number of elements increases quadratically. On the other
hand the accumulated off-diagonal quantization error that is
added to the diagonal elements to ensure conservativeness,
grows larger with increasing n. This contributes to a larger
diagonal quantization error and thus a larger error overall.

B. Evaluation of QCI – Randomly Generated Data

Input data for QCI / FCI is generated by first drawing an
element-wise Gaussian random matrix L ∈ R2n×2n whose
elements have mean zero and variance one. Then a random
vector x = [x>a ,x

>
b ]
> ∈ R2n, where xa ∈ Rn and xb ∈ Rn,

is drawn from a normal distribution with mean zero and
conditional covariance matrix C(x|L) = LL>.

FCI and QCI are applied to the thus-generated vectors
xa and xb using C(xa|L) and C(xb|L) as (obviously exact)
upper bounds for their conditional covariance matrices. The
actual mean squared error (MSE) of the estimates produced
by QCI and FCI is computed by repeatedly generating new
input data and averaging the squared Euclidean norm of the
resulting estimates. The traces of the resulting covariance
upper bounds, which are upper bounds for the actual MSEs,
are also calculated for each random input and averaged. The
computed actual MSE and the averaged trace are discarded
if the quantization of any of the involved covariance matrices
fails due to the limited range of the codebooks.

Fig. 3 shows the relative increase of the actual MSE
and of the averaged trace, when using QCI instead of FCI.
Varying dimensions n and numbers of bits per codeword b
are considered. The results were obtained by averaging over
10 000 independent trials and by setting the parameter xmax
of the scalar codebooks Cm, Cd, and Co to xmax = 50.0.

Fig. 3 indicates that the increase in actual MSE and in the
average trace of the covariance upper bounds is insignificant
except for small b. The dimensionality of the input data has
little influence on performance, although the performance
slightly improves for larger n. The increase in the averaged



0 4 8 12 16 20 24 28 32

b / bit

0

20

40

60

80

100
R

el
.

M
S

E
/

%
n=2

n=3

n=4

n=5

Fig. 3. Relative increase of actual MSE (solid) / averaged trace (dashed)
of QCI with respect to FCI for varying dimensions n and bits per scalar b.

0 20 40

time step k

1

2

3

M
S

E

6 bit

8 bit

12 bit

16 bit

20 bit

24 bit

28 bit

32 bit

FCI

Fig. 4. The mean-squared estimation error of sensor node b for varying
bits per scalar.

traces of the covariance upper bounds is larger than the
increase in actual MSE for all n and b. This is to be expected,
since the quantization process retains conservativeness. The
quantization of the covariance matrices fails below five bits
per scalar, due to excessive inflation of the covariance upper
bounds of the inputs by the probabilistic quantization.

C. Evaluation of QCI – 2D Tracking Scenario

This evaluation scenario considers two sensor nodes that
cooperatively track an object. The object is characterized by
a discrete-time (nearly) constant acceleration model

xk+1 =

[
A 0
0 A

]
xk + wk , wk ∼ N

(
0,

[
Q 0
0 Q

])
,
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Fig. 5. For a single run, the trajectories estimated at sensor node a are
shown. The same quantizations (and color scheme) as in Fig. 4 are used.
The dashed line is the true trajectory.

affected by the zero-mean white Gaussian noise term wk.
The six-dimensional state xk consists of position, velocity,
and acceleration in both the x1- and x2-direction. The
corresponding matrices of the process model are given by

A =

1 τ 1
2τ

2

0 1 τ
0 0 1

 , Q = 0.5

 1
20τ

5 1
8τ

4 1
6τ

3

1
8τ

4 1
3τ

3 1
2τ

2

1
6τ

3 1
2τ

2 τ

 ,
where τ is the time step [30]. For the Monte Carlo simulation
with 10 000 runs, the initial states x0 are drawn from

x0 ∼ N

 0
0
0.2
0
0
0.3

 ,
 0.5 0 0 0 0 0

0 0.1 0 0 0 0
0 0 0.05 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.05

 .

Two sensor nodes a and b are simulated that observe projec-
tions of position and velocity according to

za,bk =
[
cos(θa,b) sin(θa,b) 0 0 0 0

0 0 cos(θa,b) sin(θa,b) 0 0

]
xk + va,bk

with θa = π
4 , θb = −π8 . The zero-mean white Gaussian

measurement noise terms vak ,v
b
k have the covariance matrix

Ra = 0.5

[
1 0
0 0.1

]
, Rb = 0.8

[
1 0
0 0.5

]
,

respectively. Each sensor node uses a Kalman filter to
compute estimates for 50 time steps. Sensor node a transmits
its state and error covariance estimate to sensor node b at
every 5th time step. Prior to transmission it quantizes the
estimates with the proposed method and codebook parameter
xmax = 30.0. Node b fuses its own estimate with the
received one by employing FCI. Every 11th time step, sensor
node b quantizes and transmits its state and error covariance
estimate to node a, which again fuses it with its own estimate
using FCI. The receiving node in both cases reinitializes its
own estimate with the fusion result.

Fig. 4 and Fig. 5 compare QCI using different quantiza-
tion levels against FCI using 64-bit floating point numbers
(denoted as FCI). Lower compression rates are close to the
estimates obtained through FCI with 64-bit floats. However,
even a 6-bit quantization still yields reasonable results.
Quantization using less than 6 bits per codeword leads to too
conservative bounds on the covariance matrices that cannot
be encoded using the given codebook.

VI. CONCLUSION

Data transmission capabilities in wireless sensor networks
are limited by the amount of shared wireless bandwidth and
the energy budget of individual sensor nodes. Algorithms
for information fusion, such as fast covariance intersection,
require the exchange of estimates and, in some cases, covari-
ance matrices between wireless sensor nodes. If covariance
matrices need to be transmitted, they dominate the amount
of transmitted data. In this paper, we propose an efficient
method for unbiased quantization of estimates and conser-
vative quantization of covariance matrices and apply it to
fast covariance intersection. The presented approach retains
unbiasedness and conservativeness of covariance intersection
while reducing the amount of data that must be transmitted.



We empirically demonstrate the effectiveness of the proposed
covariance quantization method and of fast covariance inter-
section applied to estimates and covariance matrices quan-
tized with the aforementioned approach. Further improve-
ments in performance could be achieved by using varying,
possibly data-dependent quantization resolutions for subsets
of the elements of the considered covariance matrices. The
proposed quantization scheme can also be applied to other
sensor fusion algorithms like information matrix fusion or
inverse covariance intersection. For future work, theoretical
results concerning the convergence behaviour of state and
covariance estimates when using QCI in a distributed set-
ting are of interest. Conservative quantization schemes for
covariance matrices that do not enforce diagonal dominance
of the quantization error matrix are also relevant, as they
allow for decreased conservatism. Lastly, conservative vec-
tor quantization schemes for covariance matrices are worth
consideration.

REFERENCES

[1] N. Kimura and S. Latifi, “A Survey on Data Compression in Wireless
Sensor Networks,” in International Conference on Information Tech-
nology: Coding and Computing (ITCC’05) - Volume II, vol. 2, Apr.
2005, pp. 8–13.

[2] T. Rault, A. Bouabdallah, and Y. Challal, “Energy Efficiency in
Wireless Sensor Networks: A Top-Down Survey,” Computer Networks,
vol. 67, pp. 104–122, Jul. 2014.

[3] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless Sensor Network
Survey,” Computer Networks, vol. 52, no. 12, pp. 2292–2330, Aug.
2008.

[4] G. Tolle et al., “A Macroscope in the Redwoods,” in Proceedings
of the 3rd International Conference on Embedded Networked Sensor
Systems (SenSys ’05), San Diego, California, USA, Nov. 2005, pp.
51–63.

[5] G. Werner-Allen et al., “Deploying a Wireless Sensor Network on an
Active Volcano,” IEEE Internet Computing, vol. 10, no. 2, pp. 18–25,
Mar. 2006.

[6] M. S. Jamil et al., “Smart Environment Monitoring System by Employ-
ing Wireless Sensor Networks on Vehicles for Pollution Free Smart
Cities,” Procedia Engineering, vol. 107, pp. 480–484, Jan. 2015.

[7] F. Osterlind et al., “Integrating Building Automation Systems and
Wireless Sensor Networks,” in 2007 IEEE Conference on Emerging
Technologies and Factory Automation (EFTA 2007), Patras, Greece,
Sep. 2007, pp. 1376–1379.

[8] T. Torfs et al., “Low Power Wireless Sensor Network for Building
Monitoring,” IEEE Sensors Journal, vol. 13, no. 3, pp. 909–915, Mar.
2013.

[9] C.-Y. Lin, W.-C. Peng, and Y.-C. Tseng, “Efficient In-Network Moving
Object Tracking in Wireless Sensor Networks,” IEEE Transactions on
Mobile Computing, vol. 5, no. 8, pp. 1044–1056, Aug. 2006.

[10] H.-W. Tsai, C.-P. Chu, and T.-S. Chen, “Mobile Object Tracking in
Wireless Sensor Networks,” Computer Communications, vol. 30, no. 8,
pp. 1811–1825, Jun. 2007.

[11] S. J. Julier and J. K. Uhlmann, “A Non-divergent Estimation Algo-
rithm in the Presence of Unknown Correlations,” in Proceedings of the
IEEE American Control Conference (ACC 1997), vol. 4, Albuquerque,
New Mexico, USA, Jun. 1997, pp. 2369–2373.

[12] W. Niehsen, “Information Fusion based on Fast Covariance Intersec-
tion Filtering,” in Proceedings of the 5th International Conference on
Information Fusion (Fusion 2002), Annapolis, Maryland, USA, Jul.
2002.
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