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Abstract— We present a novel deterministic sampling ap-
proach for von Mises–Fisher distributions of arbitrary dimen-
sions. Following the idea of the unscented transform, samples
of configurable size are drawn isotropically on the hypersphere
while preserving the mean resultant vector of the underlying
distribution. Based on these samples, a von Mises–Fisher
filter is proposed for nonlinear estimation of hyperspherical
states. Compared with existing von Mises–Fisher-based filtering
schemes, the proposed filter exhibits superior hyperspherical
tracking performance.

I. INTRODUCTION

Modeling uncertainties on directional domains requires
consideration of the underlying manifold structure [1]. Being
inherently defined on the unit hyperspheres1, the von Mises–
Fisher (vMF) distribution has been a popular statistical tool
for hyperspherical inference in various application scenarios,
such as omnidirectional vision [2], [3], scene understand-
ing [4], protein analysis [5], and remote sensing [6], etc.

For recursive hyperspherical estimation with nonlinear
dynamics, vMF-based filters typically rely on sample ap-
proximations. For instance, a random sampling approach
was introduced for the vMF distribution on S2 in [7].
For vMF distributions of arbitrary dimensions, approaches
with generally unbounded run time were introduced using
rejection sampling in [8], [9]. These approaches were further
improved for deterministic run time in [10], with analytic
expressions for an odd number of dimensions.

In contrast to random sampling-based approaches, fil-
tering schemes with deterministic samples yield repeatable
results and show better accuracy for nonlinear recursive
estimation [11], [12]. Deterministic sampling schemes on
directional manifolds have been established for various dis-
tributions from directional statistics [1]. These methods are
all based on moment matching for fitting prior and posterior
densities to given propagated or reweighted samples during
the prediction and update steps, respectively. Samples are
drawn from corresponding continuous densities that preserve
moments up to a certain order [13], [14].

Following the idea of the unscented transform (UT) [11],
a deterministic sampling approach was proposed for the
Bingham distribution in [15] with hyperspherical samples
maintaining the moments of the first two orders. Compared
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1We use the term “hypersphere” to denote both spherical and hyperspher-
ical domains throughout this paper.

with random sample-based filters, the resulting unscented
Bingham filter has shown superior tracking accuracy and run-
time efficiency for quaternion-based nonlinear orientation
estimation. Similar ideas were also realized on the circu-
lar domain. In [16], the wrapped normal and von Mises
distributions were approximated by wrapped Dirac mixtures
with three components up to the first trigonometric moment
for nonlinear angular estimation. Furthermore, a UT-based
sampling scheme was proposed for the von Mises–Fisher
distribution on Sn−1 ⊂ Rn in [17]: 2 (n−1)+1 deterministic
samples are drawn to maintain the mean resultant vector.
These samples are used in the unscented vMF filter (UvMFF)
for nonlinear orientation estimation.

To improve the performance of directional estimation with
strong nonlinearities induced by complex system and mea-
surement models, much effort has been devoted to generating
larger numbers of deterministic samples. For circular densi-
ties such as the wrapped normal and von Mises distributions,
a method was proposed in [18] to draw five deterministic
samples according to a scaling factor to preserve the first
and second trigonometric moments. Superposition is used
to merge sample sets with different scaling factors into a
larger set while maintaining the first two moments. In [19],
an arbitrary number of deterministic samples is generated
by minimizing a von Mises kernel-based statistical distance
between the underlying continuous circular density and
its approximating circular Dirac mixture while preserving
higher trigonometric moments. Another optimization-based
approach was proposed in [20], where circular distributions
are approximated by discrete samples via Voronoi quanti-
zation. To improve the computational time for large sample
sizes, a binary tree-based sampling approach was proposed
in [18] via recursive division of the circular domain. The
numbers of Dirac components in each interval are set to
be proportional to the local probability mass with a post-
processing for preserving the first trigonometric moment.

Within the scope of deterministic sampling for hyper-
spherical continuous distributions, approaches generating
configurable numbers of samples were only proposed for
the Bingham distribution. In [13], [14], spherical geometry
was exploited to establish a tangent space around the mode.
There, samples are drawn via a sampling scheme originally
proposed for multivariate Gaussian distributions in [12]. An
extra moment correction is needed after mapping the samples
back to the hypersphere. The sampling scheme itself relies on
minimizing a distance measure built upon the localized cu-
mulative distribution (LCD) [21]. By utilizing larger numbers



of samples, improved performance was shown in recursive
quaternion estimation.

So far, no method for generating deterministic samples of
arbitrary sizes for the von Mises–Fisher distribution is avail-
able. Suitable optimization-based schemes require sophisti-
cated statistical distances between the underlying continuous
densities and their discrete sample approximations. For dis-
tributions from directional statistics, such distances typically
require costly numerical integration on hyperspheres. As the
sample set is restricted to the surface of a hypersphere,
special optimization algorithms are required, such as Rie-
mannian optimization [22]. Furthermore, optimizing large
sample sets can lead to undesired local minima with poor
approximation quality. In summary, these factors prohibit ef-
fective deployments of optimization-based schemes to online
vMF filtering.

In this paper, we propose an efficient deterministic sam-
pling approach for von Mises–Fisher distributions on hy-
perspheres. Unlike existing sampling schemes for hyper-
spherical distributions, our method does not rely on opti-
mization. User-configurable numbers of samples are drawn
with an isotropic layout to preserve the mean resultant
vector of a vMF distribution. Based on these samples, a
novel von Mises–Fisher filter is proposed for nonlinear
hyperspherical estimation.

The remainder of this paper is formulated as follows. In
Sec. II, fundamentals about the von Mises–Fisher distribution
will be introduced. The proposed deterministic sampling
approach for the vMF distribution will be explained in
Sec. III. After that, we will develop a novel von Mises–
Fisher filter in Sec. IV followed by a quantitative evaluation
on nonlinear spherical estimation in Sec. V. The work will
be concluded in Sec. VI.

II. PRELIMINARIES

A. The von Mises–Fisher Distribution

The von Mises–Fisher distribution VMF(x; ν, κ) is de-
fined on the unit hypersphere Sn−1 ⊂ Rn and has the
following probability density function (PDF)

fVMF (x) = Nn exp (κ ν>x) , x ∈ Sn−1 , (1)

with ν ∈ Sn−1 being the mode of the distribution and
κ ≥ 0 controlling the concentration. Nn is the normalization
constant and is computed as

Nn =

(∫
Sn−1

fVMF (x) dx
)−1

=
κn/2−1

(2π)n/2 In/2−1(κ)
.

Here, In/2−1 denotes the modified Bessel function of the
first kind and order n/2 − 1. Thus, the vMF distribution is
unimodal and has an isotropic dispersion on the hypersphere.
Its mean resultant vector is defined as the expectation

α = E(x) =

∫
Sn−1

x fVMF (x) dx , (2)

which can be interpreted as the generalization of the trigono-
metric moment of circular densities on the hypersphere.

Furthermore, we have α = νAn(κ), with

An(κ) =
In/2(κ)

In/2−1(κ)
, (3)

namely, the direction of the hyperspherical mean is identical
to the mode of the vMF distribution. Fitting a vMF distri-
bution via moment matching to the mean resultant vector is
equivalent to a maximum likelihood estimation (MLE) [23,
Sec. A.1]. Therefore, the parameters of the vMF distribution
can be obtained with ν = α/‖α‖ and κ = A−1n (‖α‖). An
efficient algorithm for computing the inverse of the Bessel
function ratio A−1n is given in [24].

B. Hyperspherical Geometry

As shown in (1), the vMF distribution measures uncer-
tainty according to the length of the geodesic curve on the
hypersphere, i.e., the arc length between x and ν. Any point
x ∈ Sn−1 can be mapped to the tangent space TνSn−1 at
the mode ν via the logarithm map

x̃ = Logν(x) =
(
x− cos(α) ν

) α

sin(α)
∈ TνSn−1 . (4)

Here, α = arccos(ν>x) is essentially the arc length between
the mode ν and the point x. It is trivial to prove that
‖α‖ = ‖Logν(x)‖. Therefore, the geodesic curve length
is preserved in the tangent space under the logarithm map.
Conversely, any point xt ∈ TνSn−1 can be retracted back to
the hypersphere via the exponential map

x = Expν(x̃) = cos(‖x̃‖)ν +
sin(‖x̃‖)
‖x̃‖

x̃ ∈ Sn−1 . (5)

W.r.t. a local orthonormal basis Bν at ν, the tangent space
TνSn−1 can be viewed as a (n − 1)-ball of radius π, i.e.,
Bn−1π .

III. ISOTROPIC DETERMINISTIC SAMPLING
ON HYPERSPHERES

Given a vMF distribution in the form of (1), we aim
to approximate the continuous density with a set of m
deterministic samples X = {xi}mi=1 ⊂ Sn−1 ⊂ Rn. The
samples are equally weighted with weights set to 1/m so
that each sample contributes equally to the estimation result.
Moreover, the samples are to preserve the mean resultant
vector of the vMF distribution given in (2). This guarantees
the best approximation in the sense of maximum likelihood
estimation. When approximating an arbitrary hyperspherical
density with a vMF distribution, moment matching to the
mean resultant vector also minimizes the information loss
in the sense of Kullback–Leibler divergence [25]. We avoid
optimization-based sampling schemes for a better trade-off
between the approximation accuracy and computational cost.

As the vMF distribution has an isotropic dispersion on
the hypersphere, we design the layout of the deterministic
samples to be isotropic as well. The whole sample set is
composed of one sun sample, the sample located at the mode,
and the planet samples, samples surrounding the sun sample
in a circle-wise manner. We configure l hyperspherical circles
with uniform intervals of δ w.r.t. the longitude, where each



l = 1, p = 5 l = 1, p = 10 l = 3, p = 5 l = 3, p = 10 l = 5, p = 5 l = 5, p = 10

l = 1, p = 5 l = 1, p = 10 l = 3, p = 5 l = 3, p = 10 l = 5, p = 5 l = 5, p = 10

l = 1, p = 5 l = 1, p = 10 l = 3, p = 5 l = 3, p = 10 l = 5, p = 5 l = 5, p = 10

Fig. 1: Isotropic deterministic samples (red dots) of equal weights given by the proposed sampling scheme on S2. The vMF
distributions on the same line have the same concentration parameter (κ = {0.6, 2, 6} from top to bottom).

Algorithm 1: Isotropic Deterministic Sampling
Input: VMF(x; ν, κ), layer number l, per-layer

resolution p
Output: deterministic sample set X

1 X← ν ;
2 Bν ← getBasis (ν) ;
3 {σ̃s}

p
s=1 ←equalPartition (Sn−2, p) ;

4 δ ← computeInterval (p, l) ;
5 for r ← 1 to l do
6 for s← 1 to p do
7 σs ← Expν(r δ Bν σ̃s) ;
8 X← X ∪ σs ;

9 return X ;

circle contains p uniformly distributed samples. In total, m =
p l+1 deterministic samples are obtained. When undergoing
the logarithm map in (4) at mode ν, points on the rth circle
are mapped to the rth layer of the hypersphere Sn−2r δ of radius
r δ within the hyperball Bn−1π of TνSn−1.

The sampling procedure is detailed in Alg. 1. The sun
sample is added first (Alg. 1, line 1). Subsequently, we
compute the null space of the mode ν to obtain Bν ∈
Rn×(n−1) as the local basis of the tangent space TνSn−1
at ν (Alg. 1, line 2). To guarantee a uniform placement of
the samples on the same hyperspherical circle, we apply
the equal area partitioning algorithm of [26] on the unit
hypersphere Sn−2 with the per-layer resolution p (Alg. 1,

line 3). The obtained points {σ̃s}
p
s=1 ⊂ Rn−1 are of unit

length and evenly distributed on Sn−2. When multiplied by
the scaling factor r δ w.r.t. the local basis Bν and mapped
back to Sn−1 via the exponential map in (5), they preserve
the even placement on the hyperspherical circle surrounding
the mode ν (Alg. 1, line 5-8).

The equal area partitioning algorithm is recursive and
does not rely on any optimization. It runs efficiently for
hyperspheres of arbitrary dimensions and has been applied
to multiple scenarios of nonlinear state estimation [27]–[30].
As indicated in [26], points given by the equal partitioning
are numerically zero-centered, i.e.,

∑p
s=1 σ̃s = 0, when p is

an even number or an odd number larger than 2 (n− 2)− 1.
Per-layer resolution values that are odd and smaller than
2 (n − 2) − 1 are not considered as the original UvMFF
in [17] already exploits 2n− 1 samples.

As explained in Sec. I, the isotropic samples need to
maintain the mean resultant vector of the underlying vMF
distribution to guarantee an approximation in the MLE sense.
Intuitively, the moment constraint can be satisfied by a
proper scaling interval δ due to the isotropic dispersion of
the vMF distribution. Given the equally partitioned samples
σ̃s ∈ Sn−2 w.r.t. the local basis Bν , we scale the samples to
the rth layer by the factor r δ and perform the exponential
map in (5), namely,

σr,s = Expν(rδ Bν σ̃s)
= cos(rδ) ν + sin(rδ)Bν σ̃s ∈ Sn−1 .



Thus, the samples’ hyperspherical mean µ can be derived as

µ =
1

p l + 1

(
ν +

l∑
r=1

p∑
s=1

σr,s
)

=
1

p l + 1

(
ν +

l∑
r=1

p∑
s=1

(cos(rδ) ν + sin(rδ)Bν σ̃s)
)
.

Considering that points from the equal area partitioning are
zero-centered for typical configurations, we obtain

µ =
1

p l + 1

(
1 + p

l∑
r=1

cos(rδ)
)
ν ,

which is then imposed to be identical to the mean resultant
vector α in (2), namely µ !

= α = νAn(κ), with An(κ) given
in (3). Therefore, the following equation can be derived

l∑
r=1

cos(rδ) =
(p l + 1)An(κ)− 1

p
, δ ∈ (0, π/l ] .

The finite series on the left-hand side can be simplified with
Lagrange’s trigonometric identity [31, Sec. 2.4.1.6] and we
obtain

sin
(
(l + 1/2)δ

)
2 sin(δ/2)

=
(p l + 1)An(κ)− 1

p
+

1

2

for δ ∈ ( 0, π/l ]. The left-hand side can be rewritten as
πDl(δ), with Dl(δ) = sin((l+1/2)δ)

2π sin(δ/2) being the Dirichlet
kernel [32] and we finally obtain

Dl(δ) =
(p l + 1)An(κ)− 1

π p
+

1

2π
.

It is trivial to confirm that the equation above has one single
root in the range of ( 0, π/l ]. By applying typical numerical
equation solvers, we can obtain the δ preserving the mean
resultant vector of the underlying vMF distribution (Alg. 1,
line 4). In Fig. 1, we show a few examples given by the
proposed sampling algorithm for different vMF distributions
and different configurations.

IV. THE VON MISES–FISHER FILTER

We consider the following nonlinear hyperspherical filter-
ing problem. The system model is given as

xk+1 = a(xk,wk) , (6)

with the hyperspherical state xk,xk+1 ∈ Sn−1, system noise
wk ∈ W, and hyperspherical transition function a : Sn−1 ×
W→ Sn−1. The measurement model is given by

zk = h(xk,vk) , (7)

with measurement zk ∈ Z, measurement noise vk ∈ V, and
measurement function h : Sn−1 × V→ Z.

Given an arbitrary nonlinear system model in (6), the
following prior density can be derived

fP(xk+1) =

∫
Sn−1

∫
W
f(xk+1,xk,wk) dwk dxk

=

∫
Sn−1

f e(xk)

∫
W
f(xk+1,wk |xk) dwk dxk

=

∫
Sn−1

f e(xk)

∫
W
δ
(
xk+1 − a(xk,wk)

)
fw(wk) dwk dxk .

Similar to the sampling-based nonlinear prediction step
in [17, Alg. 3], we represent the previous posterior with
a Dirac mixture supported by the isotropic deterministic
samples from the proposed approach, namely f e(xk) =∑m
i=1 ωi δ(xk − xe

k,i). Furthermore, given an arbitrary noise
distribution represented by the Dirac mixture fw(wk) =∑mw
j=1 ω

w
j δ(wk − wk,j), the predicted vMF is fitted to

a Cartesian product of state and noise samples that are
propagated through the transition function, i.e.,

fP(xk+1) ≈
m∑
i=1

mw∑
j=1

ωi ω
w
j δ(xk+1 − xP

k+1,ij) .

Here, xP
k+1,ij = a(xe

k,i, wk,j) denotes the prior samples.
For the update step, we reweight each prior sample xP

k,i

by fusing its likelihood given the measurement ẑk via

f e(xk | ẑk) ∝ fL(ẑk |xk) fP(xk)

=

m∑
i=1

ωi f
L(ẑk |xP

k,i) δ(xk − xP
k,i) .

(8)

Based on the reweighted samples, the posterior vMF distri-
bution can be obtained again by means of moment matching.

V. EVALUATION

For highly nonlinear systems, a small sample set is usually
not sufficient for describing the corresponding densities.
In addition, it often leads to sample degeneration in the
measurement update step, especially in the case of low-
noise observations. In contrast to methods using only a few
samples, such as one generating 2n − 3 samples in [17],
the proposed deterministic sampling approach gives a more
accurate representation of the transition densities and likeli-
hoods while satisfying the condition of unscented transform.
Thus, an improved performance of nonlinear vMF filtering
can be expected.

We consider the following simulation scenario in the
evaluation. The system state xk = [x1

k,x
2
k,x

3
k ]> ∈ S2 is a

spatial orientation vector that undergoes uncertain rotations
given by the following unit quaternion

wk =
[

cos
( acos(x3

k)+θk

2

)
, sin

( acos(x3
k)+θk

2

)
u>k

]>
. (9)

Given the uncertain input wk above, the system model is
formulated as xk+1 = wk ⊗ xk ⊗ w∗k, with ⊗ being the
Hamilton product and w∗k the conjugate of wk [14]. The
rotation axis uk of quaternion (9) is fixed. The rotation angle,
however, is synthesized by the polar angle of the current
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Fig. 2: Comparison of the proposed sampling scheme with UT-only and random samplings for nonlinear spherical tracking.
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Fig. 3: (a) Run time with large measurement noise. (b) Typical run of spherical tracking with medium measurement noise.

state and an uncertain angular input θk. We further assume
that the angular input is von Mises-distributed, namely,
θk ∼ VM(µθ, κθ), with µθ and κθ being the mean and
concentration of the von Mises distribution. Note that such
a system model is highly nonlinear and induces a state-
dependent transition density. The measurement model is the
observation of the state xk with a zero-mean Gaussian-
distributed noise following

zk = xk + vk, vk ∼ N (0,Σv) . (10)

Here, Σv denotes the covariance matrix of the Gaussian
distribution. The additive noise term above then induces a
likelihood function in the form of fL(zk|xk) = fN (zk−xk),
which is then deployed for updating the prior samples via (8).

We compare the vMF filter using the proposed deter-
ministic sampling scheme with the unscented vMF Filter
(UvMFF) in [17] and a vMF filter using random sampling.
The uncertain angular input θk in (9) follows a von Mises
distribution of µθ = π/6 and κθ = 50. The fixed rotation
axis is uk = [ 1/

√
3, 1/

√
3, 1/

√
3 ]>. The initial state of all

the filters are set to be a vMF distribution with ν = [ 0, 0, 1 ]>

and κ = 50. To further evaluate the filtering performances,
three levels of measurement noise in (10) are simulated with
Σv = λ I3×3, λ = {10−2, 5 · 10−3, 10−4}. Here, a smaller
λ indicates a more peaky likelihood function, therefore
strengthening the effect of potential sample degeneration.
The proposed vMF filter exploits p l + 1 = 20 · 5 + 1 =
101 deterministic samples, whereas the stochastic modeling-
based one relies on 5000 random samples. For spherical
filtering (n = 3), the originally proposed UvMFF has a fixed

sample size of 2 (n− 1) + 1 = 5. In all three test cases, 200
Monte Carlo runs are performed with 10 time steps each.

The estimation error is quantified as the arc length be-
tween the estimate x̂k and the ground truth xk, i.e., e =
acos(x̂>k xk). As shown in Fig. 2 with the boxplot function
of MATLAB, the proposed deterministic sampling scheme
gives better estimation accuracy than the UvMFF under all
three noise levels. In particular, the UvMFF almost totally
fails under low measurement noise level (no box is plotted)
due to the peaky likelihood function. As several outliers in
Fig 2-(c) show, it can rarely track the orientation state and
induces large estimation error. Moreover, 101 deterministic
samples given by the proposed sampling scheme achieves
similar tracking accuracy as 5000 random samples.

As further justified in Fig. 3-(a) w.r.t. computational cost
for filtering under the large measurement noise level, the pro-
posed sampling scheme provides a good trade-off between
run-time efficiency and accuracy. Fig. 3-(b) further shows
one example run of the evaluated spherical tracking under
medium measurement noise level. In addition to the spher-
ical location estimates, the posterior distribution from the
proposed filter is also plotted at each step for justifying the
estimated uncertainty. Compared with the original UT-based
method [17], the proposed sampling scheme considerably
improves the performance of nonlinear vMF filtering.

VI. CONCLUSION

In this work, we propose a novel deterministic sampling
scheme with user-configurable sample sizes for von Mises–
Fisher distributions of arbitrary dimensions. It provides



equally weighted samples located isotropically on the hy-
persphere while preserving the mean resultant vector of the
underlying vMF distribution. When deployed for nonlinear
vMF filtering, the proposed scheme provides a more accurate
representation of the transition densities and likelihoods,
improving estimation performance on hyperspheres.

The proposed method could be enhanced in two ways:
(1) For non-identity measurement models with a known
likelihood function, the progressive update method [33], [34]
could be used in conjunction with the proposed sampling
scheme for further improvement on filtering performance.
(2) Instead of relying on single vMF distributions, the
proposed sampling scheme could be extended to mixtures for
capturing more complex real-world distributions [35]–[37].
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