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Abstract— Estimation for multiple correlated quantities gen-
erally requires considering a domain whose dimension is equal
to the sum of the dimensions of the individual quantities. For
multiple correlated angular quantities, considering a hyper-
toroidal manifold may be required. Based on a Cartesian prod-
uct of d equidistant one-dimensional grids for the unit circle, a
grid for the d-dimensional hypertorus can be constructed. This
grid is used for a novel filter. For n grid points, the update step
is in O(n) for arbitrary likelihoods and the prediction step is
in O(n2) for arbitrary transition densities. The run time of
the latter can be reduced to O(n logn) for identity models
with additive noise. In an evaluation scenario, the novel filter
shows faster convergence than a particle filter for hypertoroidal
domains and is on par with the recently proposed Fourier filters.

I. INTRODUCTION

Angular quantities arise in many real-world phenomena
and may describe, e.g., wind directions, phases of signals,
or orientations. It has been known for a long time that
probability densities on periodic manifolds should consider
the periodicity of the domain [1]. An example of a simple
periodic manifold is the unit circle S1, which can be
parameterized by an angle in [0, 2π). There are applications,
such as in bioinformatics [2]–[5], that involve multiple
correlated angles. A vector comprising d angles lies on a
d-dimensional hypertorus Td, which is the Cartesian product
of d circles. When keeping track of correlated angles, such as
when receiving a signal with multiple antennas, continuously
estimating wind directions at two stations close to each
other, or tracking the orientations of soccer players, recursive
estimators for hypertori are required.

A naı̈ve approach would be to simply use a Kalman filter
as on Euclidean domains. With some modifications [6], this
approach can work for small uncertainties because the domain
is locally similar to a Euclidean domain. However, the larger
the uncertainties get, the less reliable this approach becomes.
In a recently proposed filter for the two-dimensional torus [7],
only the parameters of a parametric density are estimated,
which makes it conceptually similar to the Kalman filter.
Another approach that is more general and can be applied
for arbitrary systems is the particle filter (PF) [8]. However,
the PF only yields a set of particles and not a density that
can be evaluated on the continuous domain.

Recently, two filters for hypertoroidal domains were pre-
sented [9], which are called the Fourier filters. In these filters,
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densities and likelihoods are approximated using trigonomet-
ric polynomials (i.e., a Fourier series with finite nonzero
coefficients). Two variants were proposed. In the Fourier
identity filter (IFF), the density is directly approximated using
a trigonometric polynomial. Due to approximation errors, the
approximation of the density may have function values less
than 0, which is an invalid value for density functions. In
the second filter, the Fourier square root filter (SqFF), the
trigonometric polynomial approximates the square root of the
density. By squaring the function values of the trigonometric
polynomial, a valid density function can be obtained. In [9],
an update step for arbitrary likelihood functions in O(n log n)
and a prediction step for identity system models with additive
noise in O(n) were presented. A general prediction step in
O(n2) for the IFF and O(n2 log n) for SqFF was provided
in [10, Ch. 6].

In this paper, we present a novel grid-based filter for
hypertori, which we call the hypertoroidal grid filter (HTGF).
Grid filters are an established approach for bounded parts of
Euclidean spaces [11]. While they can only cover a finite area,
this is not a strong limitation for periodic domains because
they are inherently of limited size. We provide an update
step, a general prediction step, and a faster prediction step
for identity system models with additive noise. The HTGF
is related to grid filters for arbitrary likelihoods and system
models on the sphere [12] and the hyperhemisphere [13].
For these topologies, no fast prediction step was presented.
The HTGF is also related to the grid filter for the circle
presented in [14] that can only be applied for identity system
models with additive noise. We adopt the idea of [14] to
use trigonometric polynomials as an interpolation scheme to
provide continuous densities. To ensure the nonnegativity of
the approximations, we use insights gained from the Fourier
filters, which are closely related to our novel approach. An
overview of the relationship between the HTGF and the
Fourier filters is provided in the appendix.

The paper contains two key contributions. First, a grid
filter for hypertoroidal manifolds is derived. Second, a grid
generation scheme is presented that allows implementing a
faster prediction step. The paper is structured as follows. In
Sec. II, we describe how we represent the continuous density
using grid values and how a continuous approximation can
be derived from them. In the third section, we derive the
HTGF. In Sec. V, we provide a conclusion and an outlook.

II. DENSITY REPRESENTATION AND APPROXIMATION

We start by describing how densities can be represented
using a finite number of grid values in the first subsection.



In the second subsection, we provide details on the grid
generation scheme we use in our filter.

A. Grid Representations and Interpretations

In the derivation of our filter, we use a partition A =
{A1, . . . , An} of the domain Td that comprises n regions
that do not overlap but cover the entire domain when joined.
In this paper, we limit ourselves to partitions comprising
equally sized regions. In a grid-based representation, our
knowledge about the state is described by a vector of grid
values γ. Different interpretations of these grid values exist,
which we also explain in [12], [13]. In the first interpretation,
all elements of the partition are considered to be different
discrete states and the vector γ consists of the probability
masses of a probability mass function (pmf) on the discrete
space. In the second, the grid values describe the function
values of a continuous density at the grid points β

1
, . . . , β

n
.

In the first interpretation, the grid value γi describes the
probability mass in the region Ai. To obtain the probability
mass in Ai based on a continuous density function, one can
integrate the density over Ai. The prediction and update
steps are essentially those of a Wonham filter [15]. A
filter adopting these ideas for the unit circle was proposed
in [16]. The Wonham filter requires matrices for its prediction
and update steps. Obtaining these from the system and
measurement models defined on the continuous domain
involves integrals, which can be prohibitively expensive for
hypertoroidal domains.

Therefore, we focus on the second interpretation for the
HTGF and say the grid values γ1, . . . , γn describe the
function values on the grid points β

1
, . . . , β

n
. To provide a

continuous pdf, additional assumptions about the underlying
pdf are required. For an interpolation using a piece-wise
constant function, we use a partition such that (for all i
from 1 to n) Ai contains β

i
and the interpolation yields γi

everywhere in Ai . A different approach to providing a smooth
interpolation is to use trigonometric polynomials. In some
tests, the interpolations based on trigonometric polynomials
were closer to the actual densities than the interpolations
based on piece-wise constant functions. However, in this
interpolation scheme, the individual grid values not only
influence the function values in Ai but also in other regions.
Considering this would make the derivation of the filter more
complicated, and thus, the interpolation scheme with piece-
wise constant functions is used for the derivation of our
filter.

However, the interpolation based on trigonometric poly-
nomials can still be used to interpolate the filter results as
the grid values are always function values on the grid, and
interpolating them differently can still yield valid densities.
Unlike an interpolation based on piece-wise constant func-
tions, an interpolation based on trigonometric polynomials
can lead to negative function values. To obtain a nonnegative
interpolation, we employ additional steps reminiscent of the
SqFF. We first take the square root of the function values,
interpolate them, and finally square the function values of the
interpolation. Since all values are squared in the last step, the

Algorithm 1: Generate Default Grid
Input: Number of grid points per dimension m,

dimension d
Output: Grid points β

1
, . . . , β

md

I ← { 2π
m , 2 ·

2π
m , . . . , (m− 1) · 2π

m }; // 1-D grid

B ← dfoldCartesianProduct(I, d);
/* Turn

{
{ 2π
m

, . . . , 2π
m
}, { 2π

m
, . . . , 2 · 2π

m
}, . . .

}
into{[

2π
m

, . . . , 2π
m

]>}, [ 2π
m

, . . . , 2 · 2π
m

]>
, . . .

}
. */

{β
1
, . . . , β

md} ← TupelsToVectors(B);

function values are guaranteed to be nonnegative. One only
has to ensure that the grid values are always nonnegative,
which is also required for valid interpolations using piece-wise
constant functions.

Generally, the grid points should be chosen carefully to
ensure that they represent the corresponding regions well.
Using the center of each region as the grid point is thus a
reasonable choice. To obtain estimates that are useful and easy
to interpret, the regions should be small by some additional
measure, e.g., the maximum distance between two points
in the region. Good grids could be obtained by employing
tessellation schemes such as Lloyd’s algorithm [17]. In the
next subsection, we provide details on an easy grid generation
scheme that we use for the HTGF. While the corresponding
partition does not minimize the maximal distance between
two points in each region, the grid is fast to generate and
lends itself well to a smooth interpolation via a trigonometric
polynomial.

B. Subdivision of Td and Grid Generation

A grid for a Cartesian product of manifolds can be
derived from the Cartesian product of grids for the individual
manifolds. Since Td is the Cartesian product of d circles, we
take the dfold Cartesian product of a grid for the circle. As
explained in Algorithm 1, we then convert the tuples into
vectors to obtain a grid on Td. The number of grid points n
for Td is the dth power of the number of grid points m for
the circle, i.e., n = md and m = logd(n). The equidistant
grid for S1 with m points that we use as the basis for the
Cartesian product is trivial to provide. Starting at 0, one places
a grid point after each 2π/m, with the last point being at
2π− 2π/m. Due to the periodicity of the circle, the distance
between the first and the last point is also 2π/m.

All points on the d-dimensional grid can be described by an
integer vector k ∈ (Z/mZ)d = {0, . . . ,m − 1}d according
to [ 2π

m k1,
2π
m k2, . . . ,

2π
m km]> = 2π

m k. There are partitions
(which are compatible with this grid) in which each region
can be fully specified by two angles for each dimension.
A simple partition comprises regions that are described by
[2πk1/m, 2π(k1 + 1)/m)× · · · × [2πkd/m, 2π(kd + 1)/m).
This partition is easy to comprehend without taking the
periodicity of the domain into account. However, the grid
points are in the corners and not in the centers of the regions.
A partition that ensures that the grid points are in the centers
is [2πj1/m − π/m, 2πj1/m + π/m) × · · · × [2πjd/m −
π/m, 2πjd/m+ π/m). In this definition, the periodicity has



to be taken into account because values outside of [0, 2π)
can arise. It is a valid partition since none of the points is in
two regions, even when considering the periodicity.

This type of grid is well suited for both interpolations
we consider. For the interpolation that is constant in each
region, we can determine the region in which the point lies
very efficiently. Since the grid points are spaced equidistantly
along each dimension, modulo arithmetic can be used to
find the region in which a point lies. Thus, the interpolation
using a piece-wise constant function can be evaluated in
O(d). For the interpolation via a trigonometric polynomial,
we can arrange the vector of grid values γ in a d-dimensional
m ×m · · · ×m tensor Λ that stores the function value at
2π
m k in the entry with the vector-valued index k (our indices
start with zero). When applying the fast Fourier transform
(FFT) [18] to this tensor, we obtain a tensor of Fourier
coefficients. This also holds when including the square root
for the nonnegative interpolation we mentioned before. The
effort is in O(n log n) for the transformation and in O(n) for
each function evaluation because all n Fourier coefficients
are required for calculating a single function value.

III. THE HYPERTOROIDAL GRID FILTER

We now describe the HTGF, starting with our approach
to density approximation and normalization in the first
subsection. The update step presented in the second subsection
and the general prediction step in the third subsection are
similar to those of other grid filters (see [12], [13]). In
the fourth subsection, a more efficient prediction step for
identity system models with additive noise is presented. This
prediction step makes use of the structure of the grid. As
mentioned in Sec. II-A, we focus on the interpolation that
provides a piece-wise constant function in our derivation.
Regardless of the interpolation scheme, the nonnegativity of
the grid values always needs to be preserved throughout the
prediction and update steps to ensure that the interpolation
always describes a valid density function.

A. Density Approximation and Normalization

We start by describing how we approximate and normalize
densities on the hypertorus. Afterward, we give details on
joint and conditional densities, which will be required in the
prediction step.

1) Obtaining Normalized Approximations: To obtain a
grid-based representation, we generate a grid as described in
Sec. II-B and evaluate the density on the grid points. Since
the true probability mass in a region may not correspond to
the function value at the grid point multiplied by the size of
the region, the interpolation of the grid values may not be
normalized.

To obtain a normalized density, we first calculate the inte-
gral over the unnormalized density f̆ obtained by interpolating
the grid values γ̆. For this, we use that the integral over the
entire domain is equal to the sum of the integrals over all
regions in the partition. Further, we use that all regions are

equally sized. This leads to the formulaˆ
Td

f̆(x) dx =

n∑
i=1

ˆ
Ai

f̆(x) dx =

n∑
i=1

γ̆i

ˆ
Ai

1 dx

= (2π)d

n

n∑
i=1

γ̆i = (2π)dmean(γ̆) .

(1)

By dividing all the grid values by a constant, we can
scale the function represented by the grid values. Thus, we
can obtain the vector γ describing a normalized density
from the vector describing an unnormalized one via γ =
γ̆/(2π)dmean(γ̆). In the appendix of [14], we have proven
that the interpolation based on trigonometric polynomials
(both with and without the modification involving the square
root) is also normalized in the one-dimensional case. Evi-
dently, if we initialize our filter by deriving the grid values
from the initial prior density as described in this subsection,
we start with a vector containing only nonnegative values.

2) Joint and Conditional Densities: In the derivation of the
general prediction step, we will use joint densities f(xt+1, xt)
and conditional densities f(xt+1|xt). The joint density is a
2d-dimensional function, while the conditional density is a
d-dimensional function for every fixed xt. The conditional
density can also be interpreted as a 2d-dimensional function
when the variable that it is conditioned on is not fixed and
we allow both xt+1 and xt to vary. Thus, we can use grid
values for a grid on T2d to describe both conditional and
joint densities.

For joint and conditional densities, we store the grid values,
which correspond to the function values of f(β

i
, β

j
) or

f(β
i
|β
j
), in a matrix Γ. The index i is increased along the

columns and j along the rows. A valid joint density should
integrate to 1 when integrating over both xt+1 and xt. A
conditional density f(xt+1|xt) should integrate to 1 for every
fixed xt. However, in our tests, normalizing the approximation
of the conditional density did not offer a benefit over allowing
unnormalized ones.

B. Update Step
We can perform an update step with any measurement

model if we have the likelihood function fL
t (zt|xt) that

describes the probability density of the measurement zt if
the state is xt. For a specific measurement, fL

t (zt|xt) is a
function on Td. Before the update step, we have a prior density
f p
t (xt|ẑ1, . . . , ẑt−1) that considers all measurements from the

initialization until time step t− 1 (or none at all at t = 1).
Bayes’ rule provides us a way to determine the posterior
density f e

t (xt|ẑ1, . . . , ẑt) that considers all measurements
until time step t according to

f e
t (xt|ẑ1, . . . , ẑt) =

fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1)´

Td fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1) dxt

∝ fL
t (ẑt|xt)f

p
t (xt|ẑ1, . . . , ẑt−1)︸ ︷︷ ︸

f̆ e
t(xt|ẑ1,...,ẑt)

.

The update step can thus be seen as a multiplication
of the prior density and the likelihood (which yields
f̆ e
t (xt|ẑ1, . . . , ẑt)) followed by a normalization.



Algorithm 2: Update Step of the HTGF
Input: Current grid values γp

t
, grid points β

1
, . . . , β

n
,

likelihood function fL
t , measurement ẑt

Output: New grid values γe
t

/* Determine unnormalized grid values. */

for i← 1 to n do
γ̆e
t,i ← γp

t,if
L
t (ẑt|βi);

end
γe
t

= n
(2π)d

γ̆e
t
/
∑n
i=1(γ̆e

t,i); // Normalize result.

In our filter, we have γp
t

(which comprises the function val-
ues of f p

t (xt|ẑ1, . . . , ẑt−1)) from the previous prediction step
or the initialization. The function values of f̆ e

t (xt|ẑ1, . . . , ẑt)
can then be obtained by multiplying the values in γp

t
with

the likelihoods at the grid points, i.e.,

γ̆e
t

=
[
γp
t,1f

L
t (ẑt|β1

) · · · γp
t,nf

L
t (ẑt|βn)

]>
. (2)

If γp
t contains the actual function values of f p

t , γ̆e
t

contains
the true function values of the unnormalized posterior density.
To obtain a vector of grid values γe

t
describing a normalized

density, we apply a normalization, as explained in Sec. III-A.1,
to γ̆e

t
. All steps are summarized in Algorithm 2.

In general, γe
t

does not contain the actual function values
of f e

t (xt|ẑ1, . . . , ẑt) because the normalization constant
used may not be the same constant that would normalize
f̆ e
t (xt|ẑ1, . . . , ẑt). For example, if the function values of

the unnormalized posterior are high in regions where there
are no grid points, the value of the integral over the true
unnormalized posterior may be larger than (2π)dmean(γ̆e

t
).

C. General Prediction Step

The Chapman–Kolmogorov equation

f p
t+1(xt+1|ẑ1, . . . , ẑt) =

ˆ

Td

fT
t (xt+1|xt)f e

t(xt|ẑ1, . . . , ẑt)︸ ︷︷ ︸
f j
t(xt+1,xt|ẑ1,...,ẑt)

dxt

provides a formula for the prior density of the next time step
f p
t+1(xt+1|ẑ1, . . . , ẑt) based on all measurements until time

step t. We can implement it by performing a multiplication
(which yields the joint density f j

t(xt+1, xt|ẑ1, . . . , ẑt)) and
subsequently marginalizing the result. In this subsection, we
begin by explaining how both operations can be realized
based on the grid values. At the end of this subsection, the
two operations are merged into one concise formula.

We start with the vector γe
t

from the previous update step
and the matrix ΓT

t describing fT
t (xt+1|xt), which we generate

as explained in Sec. III-A.2. For all (i, j) ∈ {1, . . . , n}2,
we obtain the function value of f j

t(βi, βj |ẑ1, . . . , ẑt) via
γT
t,[i,j]

γe
t,j , with γT

t,[i,j]
describing the entry at row i and

column j of ΓT
t . Thus, we can obtain all entries of the matrix

Γj
t, which describes f j

t(xt+1, xt|ẑ1, . . . , ẑt). Then, we use
formula (1) to marginalize xt out and obtain

γp
t+1,i =

(2π)d

n

n∑
j=1

γj
t,[i,j] =

(2π)d

n

n∑
j=1

γT
t,[i,j]γ

e
t,j . (3)

Algorithm 3: General Prediction Step for Time-
Variant Transition Densities

Input: Current grid values γe
t
, transition density fT

t ,
grid points β

1
, . . . , β

n
Output: New grid values γp

t+1

ΓT
t ← EvalAtCartProductOfPoints(fT

t , {β1
, . . . , β

n
});

γp
t+1
← (2π)d

n ΓT
t γ

e
t
; // Predict using formula (4).

Multiplying the row vector γT
t,[i,:]

, which is the ith row of

Γj
t, and the column vector γe

t
yields the same result as the

rightmost sum in (3). To obtain the entire vector γp
t+1

, we
can thus use the matrix–vector product

γp
t+1

= (2π)d

n ΓT
t γ

e
t
. (4)

Since all values in ΓT
t and γe

t
are nonnegative, the values

in γp
t+1

are nonnegative and can thus be used to obtain
an interpolation that is a valid density. An overview of the
general prediction step is given in Algorithm 3.

D. Prediction Step for Identity Models With Additive Noise

When the state is only perturbed by additive noise, the
random variable for the state at the next time step xt+1

can be written based on the state xt at time step t and the
additive noise wt according to xt+1 = xt + wt mod 2π
with wt ∼ fw(wt). Then, fT

t (xt+1|xt) = f
w
t (xt+1 − xt).

Thus, we obtain the simpler form

f p
t+1(xt+1|ẑ1, . . . , ẑt)=

ˆ

Td

fw(xt+1 − xt)f e
t(xt|ẑ1, . . . , ẑt)︸ ︷︷ ︸

f j
t(xt+1,xt|ẑ1,...,ẑt)

dxt

for the Chapman–Kolmogorov equation.
In our efficient update step for identity models with additive

noise, we consider the specific shape of the grid described
in Sec. II-B. All grid points can be written as 2π

m k with
k ∈ (Z/mZ)d. For two grid points 2π

m l and 2π
m k (with both

k and l in (Z/mZ)d), we obtain

f j( 2π
m l,

2π
m k
)

= f
w
t

(
2π
m l −

2π
m k
)
f e
t

(
2π
m k|ẑ1, . . . , ẑt

)
as the formula for the joint density. Due to the 2π-periodicity
along each dimension,

f
w
t

(
2π
m l −

2π
m k
)

= f
w
t

(
2π
m (l − k mod m)

)
holds. Since (l−k mod m) ∈ (Z/mZ)d, the point 2π

m (l−k
mod m) is one of the grid points of the d-dimensional grid
that we use for f e

t . If we have the function values of the noise
density on this grid, we have all relevant values to determine
the function values of the joint density on the grid.

As explained in Sec. II-B, we can also arrange the grid
values in d-dimensional m×· · ·×m tensors. We now do this
to provide a formula for the tensor for the predicted density
Λp
t+1 based on the tensors Λe

t and Λ
w
t for the posterior density

and the noise density. We denote individual entries, which
are indexed using a vector-valued index l, by λ[l]. In this
representation, λ[l] = γi for β

i
= 2π

m l. We now perform the



Algorithm 4: Prediction Step for Identity Models
With Time-Variant Additive Noise Terms

Input: Current grid values as a tensor Λe
t, noise

density fwt , grid points β
1
, . . . , β

n
Output: New grid values as a tensor Λp

t+1

Λ
w
t ← ToTensor(EvalAtPoints(fwt , {β1

, . . . , β
n
}));

Λp
t+1 ←

(
2π
m

)d
CycConv(Λ

w
t ,Λ

e
t);

marginalization via (1) with the sum running over all vector-
valued indices k ∈ (Z/mZ)d instead of over the indices 1 to
n. Then, we obtain

λp
t+1[l] =

(
2π
m

)d ∑
k∈(Z/mZ)d

f j
t

(
2π
m l,

2π
m k
)

=
(

2π
m

)d ∑
k∈(Z/mZ)d

f
w
t

(
2π
m (l − k mod m)

)
· f e
t

(
2π
m k|ẑ1, . . . , ẑt

)
=
(

2π
m

)d ∑
k∈(Z/mZ)d

λ
w
t [l − k mod m]λe

t[k] .

Evidently, this formula yields nonnegative values if Λw
t and

Λe
t only contain nonnegative values. Since O(n) operations

are required to determine an individual grid value λp
t+1[l],

naı̈vely computing all n entries of Λp
t+1 would involve

O(n2) operations. However, using a scaled cyclic (also called
circular) convolution [19, Sec. 2.2.1] of Λ

w
t and Λe

t, the
tensor Λp

t+1 can be determined more efficiently. For the cyclic
convolution, implementations involving FFTs can be used to
obtain the result in O(n log n) [19, Sec. 3.3]. Finally, we can
reshape the tensor Λp

t+1 into a vector γp
t+1

for the next update
step. However, if the general prediction step is never used,
we can stay in the tensor-based representation and also use it
in the update step by adapting formula (2) appropriately. In
Algorithm 4, we summarize the operations of this prediction
step when staying in the tensor-based representation.

IV. EVALUATION

Our evaluation involves a scenario with an identity mea-
surement model and a nonlinear system model. We compare
the HTGF with the PF, IFF, and SqFF with different numbers
of parameters (i.e., grid points, particles, or coefficients). All
filters are available in the GitHub repository of [20]. The
prediction step of the IFF in libDirectional is implemented
using operations in O(n2 log n) because this allows the
use of highly optimized routines, leading to superior run
times in tests. In the first subsection, we describe the
evaluation scenario. Then, we explain the evaluation metrics
and conclude the section with a presentation and discussion
of the evaluation results.

A. Scenario Description

We consider a scenario on the hypertorus T3 for ten time
steps from the initialization in time step 1 to the end of the
simulation in time step 10. The initial state x1 is distributed
according to a hypertoroidal uniform distribution. The system
model is applied nine times to transition from the first to the

tenth time step. One measurement is obtained in each of the
ten time steps. As the basis for the nonlinear system model,
we use the (scalar) function (see [21])

aρ(α) = π ·
(

sin

(
sign(α− π)

2

|α− π|ρ

πρ−1

)
+ 1

)
,

which is a continuous bijection on S1. The system model for
our scenario on the hypertorus is

xt+1 =

a4(xt,1)
a5(xt,2)
a6(xt,3)

+ wt ,

wt ∼fWN

wt;
0

0
0

,
0.8 0.8 0.5

0.8 1 0.6
0.5 0.6 0.5

 ,

which involves the density fWN of a trivariate wrapped
normal distribution. The general prediction step needs to
be employed due to the nonlinearity of the system function.
The measurement model is

zt = h(xt)+vt , vt ∼ fWN

vt;
0

0
0

,
1.9 0.5 1.4

0.5 0.9 0.5
1.4 0.5 1.2

 .

B. Evaluation Metric

We compare all filters regarding the errors and run times.
To calculate the error, we determine the distance

d0(x̂10, x̃10) =

√√√√ d∑
i=1

min(x̂10,i−x̃10,i, 2π−(x̂10,i−x̃10,i))2

between the estimate provided by the filter x̂10 and the true
value x̃10 at the last time step. The mean directions derived
from the filters’ states are used as the estimates. It should be
noted that the mean direction does generally not minimize
the error defined above (in the 1-D case, the mean direction
minimizes an error involving the cosine, as shown in [22]).

All run times were measured on a laptop with an Intel
Core i7-7500U CPU and 16 GB of RAM running Matlab
2020a on Windows 10. The run times do not include
computations involved for the initialization, such as drawing
the initial samples for the PF, determining the matrix ΓT,
or generating the matrices for the Fourier filters. Since the
accuracies of the filters vary from run to run, we averaged
the errors and run times over 2500 runs.

C. Evaluation Results

The grid with the lowest number of grid points considered
comprises 27 grid points and is based on the threefold
Cartesian product of a grid on S1 with three grid points. As
can be seen in Fig. 1a, a PF with 27 particles achieves a higher
estimation accuracy. However, when using 53 parameters, the
HTGF and the Fourier filters achieve an accuracy that is
not even achieved by a PF with 2000 particles. Since the
accuracies of the HTGF and the Fourier filters do not change
significantly for higher numbers of parameters, we believe
the mean direction determined by the filters is close to the
mean direction of the true posterior density.



(a) Error over number of grid points, particles, or Fourier coefficients.

(b) Time over number of grid points, particles, or Fourier coefficients.

Fig. 1: Errors and run times for the evaluation scenario.

The increase in the run time of the PF is linear as the
PF is in O(n). However, in the PF, the noise density needs
to be sampled for each particle in every prediction step,
which is a rather expensive operation. While the HTGF has
a complexity in O(n2), the operations it uses are cheaper
and highly optimized routines are available in programming
languages like Matlab. In the configurations considered, the
IFF is faster than the HTGF, while the SqFF is slower (see
Fig. 1b). The long run times of the SqFF are caused by the
larger sizes of the tensors in its intermediate steps, which lead
to huge increases in the computational effort in this scenario
with a six-dimensional transition density.

When considering both the accuracy and run time, the PF is
good for very few parameters but is then quickly outperformed
by the HTGF and IFF for higher numbers of parameters.
While the IFF is faster than the HTGF for equal numbers of
parameters, the HTGF is more accurate. When comparing
the IFF and HTGF for configurations of comparable run time,
the accuracies of the mean directions are similar.

V. CONCLUSION AND OUTLOOK

Grid filters are versatile and can be applied with success to
hypertoroidal manifolds. Grids for hypertoroidal domains can
be generated based on the Cartesian product of grids for the
circle. For the derivation of the update and prediction steps,
we subdivided the domain into equally sized regions, each
containing a grid point. While an interpolation that is constant
in each region was used in the derivation of the formulae for
the filter, a smooth interpolation can be provided based on

trigonometric polynomials. While the employed partitioning
scheme is not optimal in regard to an additional criterion
involving the maximum distance between two points in a
region, it allows for a fast prediction step when the system
is only perturbed by additive noise.

In our evaluation, the convergence of the mean direction
of the filter to the true mean direction was much faster
for the HTGF than for the PF. While the HTGF has a
complexity in O(n2), it was slightly faster than the PF
in the considered configurations. While the results may be
different for scenarios that require even more parameters, the
HTGF appears preferable in many scenarios due to its good
convergence speed and deterministic nature. The HTGF was
faster than the SqFF while having a comparable estimation
accuracy, which indicates that the HTGF is the superior filter.
In our evaluation, the IFF was faster but yielded less accurate
results than the HTGF. When comparing configurations of
comparable run times, the IFF and HTGF performed similarly.
In such cases, we recommend the use of the HTGF as it
always provides an interpolation that is guaranteed to be
nonnegative on the entire domain. When choosing the optimal
filter for a scenario with an identity system model with
additive noise, one should consider that the HTGF has a
complexity in O(n) for the update step and O(n log n) for
the prediction step. Since these complexities are swapped for
the IFF, the HTGF may be faster than the IFF if multiple
measurements are obtained in each time step.

Future work may involve considering other manifolds, such
as discs and polydiscs. Further research on the Fourier filters
may also lead to alternative ways to ensure the nonnegativity
of the density represented by the coefficients. Last, the
HTGF could be used as the basis to develop a filter for
arbitrary Cartesian products of circles and Euclidean spaces
via Rao–Blackwellization.

APPENDIX

Relationship of the HTGF to the Fourier Filters

In this appendix, we consider the relationship of the HTGF
to the Fourier filters. The basic operations that are performed
in the HTGF (multiplications, integrals, convolutions) are also
done in the Fourier filters (albeit differently) in the frequency
domain. While the interpolation of the HTGF is similar to
that of the SqFF, the update and prediction steps are more
closely related to the IFF. A thorough comparison of a grid
filter and the Fourier filters is given for a related grid filter
for the circle in [14]. In the evaluation in [14], the filters are
compared based on the quality of the interpolations when
performing an approximation, a prediction step, or an update
step. However, the general prediction step is not considered.

a) Approximation: When no closed-form formulae are
used to determine the Fourier coefficients, they are calculated
based on the same function values on the grid that are used
by the HTGF. For the SqFF, the square root of the function
values is taken before performing the FFT. If we use the
interpolation for the HTGF that involves taking the square
root before obtaining the Fourier coefficients via an FFT, the
functions provided by the SqFF and HTGF are identical.



b) Update Step: In the HTGF, each grid value is
multiplied with the respective likelihood. Thus, we have
a complexity in O(n). The IFF and SqFF use a non-cyclic
convolution of the Fourier coefficients of the likelihood and
the prior density, leading to a complexity in O(n log n). If
both the prior density and likelihood can be represented
perfectly using n Fourier coefficients, the non-cyclic con-
volution yields the coefficients of the function that is the
true multiplication result. However, the resulting coefficient
vector may be longer than the original vectors because
additional Fourier coefficients may be required to represent
the multiplication result. To prevent an increase in the number
of coefficients over time, the coefficient vector is truncated in
the IFF and SqFF. This can be interpreted as low pass filtering
the result. Besides the errors stemming from approximating
the densities and likelihoods with trigonometric polynomials,
this truncation is the only source of error in the Fourier filters.

The HTGF only uses n grid points to describe the multipli-
cation result. Thus, we act as if the number of grid points was
sufficient to precisely describe the multiplication result. If we
disregard all errors from previous time steps, we obtain the
true function values of the (unnormalized) product at the grid
points. The interpolation of the grid values is generally not
identical to the result of the SqFF. The characteristics of the
error introduced by simply assuming the grid is sufficiently
dense to precisely describe the multiplication result (although
it is not) are different from those of the error introduced by
a low pass filter.

Prediction Step for Identity Models with Additive Noise:
In the grid filter, a cyclic convolution in O(n log n) is used.
In the Fourier filters, an entry-wise product in O(n) is used.
Additional transformations are used in the SqFF. If the Fourier
coefficients used in the IFF correspond to those obtained by
applying FFTs to Λ

w
t and Λe

t, the prediction step of the
HTGF and IFF are equivalent. The reason for this is that
a cyclic convolution can be implemented using an FFT, an
entrywise product, and an IFFT [19, Sec. 3.3].

c) General Prediction Step: The grid filter uses a ma-
trix–vector product that is in O(n2). In the IFF, a convolution
is required for determining all Fourier coefficients of the joint
density. However, due to the marginalization that follows, only
a part of the coefficients is required and all these entries can
be obtained via a matrix–vector multiplication [10, Rem. 4]
in O(n2). Under the assumption that the transition density
and the posterior density are perfectly represented using the
Fourier coefficients, no approximation errors are done in the
IFF. The multiplication in the Chapman–Komogorov equation
only increases the complexity of the function in xt and this
dimension is marginalized out. In the HTGF, the formula for
the joint density can already introduce an error, and thus, the
marginalized result is generally not error-free. Therefore, there
is no direct correspondence between the general prediction
steps of the two filters.
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