
Estimating Uncertainties of Recurrent Neural Networks
in Application to Multitarget Tracking

Daniel Pollithy, Marcel Reith-Braun, Florian Pfaff, and Uwe D. Hanebeck

Abstract— In multitarget tracking, finding an association
between the new measurements and the known targets is a
crucial challenge. By considering both the uncertainties of all
the predictions and measurements, the most likely association
can be determined. While Kalman filters inherently provide
the predicted uncertainties, they require a predefined model.
In contrast, neural networks offer data-driven possibilities, but
provide only deterministic predictions. We therefore compare
two common approaches for uncertainty estimation in neural
networks applied to LSTMs using our multitarget tracking
benchmark for optical belt sorting. As a result, we show that the
estimation of measurement uncertainties improves the tracking
results of LSTMs, posing them as a viable alternative to manual
motion modeling.

I. INTRODUCTION

Multitarget tracking is a challenging task. In the past
five decades, a variety of solutions have been proposed and
implemented in different industrial areas, including air traffic
control, oceanography, robotics, and biomedical research [1].
They share the necessity to estimate the number and state
of subjects within their domain. In the example of a vehicle
assistance system, this could be the state of the road users
driving in the vicinity, which is important to regulate the
vehicle’s own velocity.

The level of difficulty of a tracking application depends
upon the number of targets, the ability to estimate their states
and to predict how the latter are going to evolve. A common
approach to estimate the states of targets in multitarget
tracking applications is to find a one-to-one correspondence
between the measurements and known objects, which we
also refer to as association, and then employ a Kalman
filter. For every target, the Kalman filter predicts the state in
the next time step, which in turn is used to determine the
association in the subsequent one. For this method to work
reliably, the a priori knowledge about the targets’ motions
has to be formulated, the uncertainty about this motion model
must be subsumed with an appropriate noise term, and other
parameters have to be optimized. For every type of target,
the modeling process needs to be repeated. If a tracking task
involves frequently changing types of targets, this becomes
laborious and also hard to automate. Therefore, we investigate
how this adaptation to new targets can be automated using
data-driven methods.
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(a) Estimation of heteroscedastic aleatoric uncertainties as a function
of the input data. The large uncertainty of the first time step describes
the difficulty of predicting the second measurement if only the first
one is given.

(b) We use Monte Carlo dropout to estimate the epistemic uncertainty
of predictions. The increasing uncertainties of this method are helpful
to track the unusual motion of the particle.

Fig. 1: This figure displays the tracks on a top-down view onto
the belt of a sorting machine. The tracks belong to the same
particle moving along the transport direction from left to right.
It is a challenging out-of-model example because the collision
with the wall does not correspond to the regular behavior.
Variances correspond to calibrated 99.9% confidence regions.

Optical belt sorting is an example of an application that
could benefit from such a data-driven approach. In [2], a
multitarget tracking algorithm is employed in which a Kalman
filter is used to track the particles’ states. Since the main
purpose of the tracking is to derive a prediction that is used
to perform the actual sorting via bursts of compressed air, this
is referred to as predictive tracking. To make this approach
even more versatile, the algorithm is to be extended to sort
heterogeneous materials whose types are changing day by
day.

In this work, we compare the currently used Kalman
filter with a data-driven model based on neuronal networks
that can adapt to new materials using a training phase and
avoid the manual adjustments to the motion models and
hyperparameters.



We started by using long short-term memory (LSTM) [3]
for predictive tracking, inspired by their usage as a learned
motion model in the area of multiobject tracking (MOT).
However, LSTMs only yield point estimates and do not
provide uncertainties that are useful for the association process
of our multitarget tracker.

The novelty of this work is the application and evaluation
of two approaches to uncertainty estimation for LSTMs in
the context of multitarget tracking. The uncertainties are to be
used to improve the associations. Furthermore, we investigate
the obtained uncertainties to gain insights into the underlying
mechanisms of the algorithms employed.

The paper is organized as follows. After an explanation
of multitarget tracking and its application to optical belt-
sorting in Sec. II, we go into uncertainty estimation for
neural networks and calibration of uncertainties. In Sec. III,
we show how the existing approach for estimating aleatoric
uncertainties can be adapted to recurrent neural networks
(RNNs). Sec. IV explains our different models. The results
of the evaluation in Sec. V are discussed in Sec. VI and a
conclusion is provided in the Sec. VII.

II. BACKGROUND & RELATED WORK

In the following subsections, basic knowledge about
Bayesian filtering with the Kalman filter (KF) and time series
predictions with RNNs is assumed.

A. Multitarget Tracking (MTT)

The goal of multitarget tracking (also known as multiobject
tracking) is to estimate the number and states of all targets
at time step t given sensor inputs from the time steps 0 to t.
The multitarget tracker used for the bulk material sorting task
proposed in [2] is used as the basis for our work. Sensor data
is preprocessed by extracting the centroids of all particles
that are visible in the current image. These centroids are the
input to the multitarget tracker, which runs in an infinite loop.
It consists of several components described in [4].

A central component is the observation-to-track association.
For trackers that assume that each target only gives rise to
a single measurement, the association of the measurements
with the tracks is determined that maximizes some measure of
compatibility. For example, one may choose the association
that maximizes the likelihood of association, which includes
both the uncertainty in the measurement and the prediction.
For simplicity, we assume for now that all known particles are
visible and no new particles enter the observable area (some
additional considerations are required if this is not the case).
Then, the association can be described by a permutation τ .

If all densities and likelihoods involved are Gaussians,
the association that maximizes the likelihood is identical to
the one that minimizes the sum of the squared Mahalanobis
distances d(Hx̂it, ŷ

τ(i)

t
,Σ

i,τ(i)
t )2, in which x̂it denotes the

predicted state of track i at time step t, H is the measurement
matrix of the linear measurement model, and ŷτ(i)

t
denotes

the centroid of the measurement that is associated with track
i.

Fig. 2: Model of our experimental belt sorting machine [5]
used for the DEM simulation. Multitarget tracking is applied
only to the particles on the conveyor belt. In actual sorting
scenarios, a camera is mounted above this part of the machine.

Based on these distances, the optimal association for this
criterion can be found in O(n3) using a solver for linear
assignment problems. In practical implementations, an extra
step is frequently added. In the gating step, certain possible
association decisions are ruled out before using the solver,
which helps to speed up the process.

Based on the association decision, tracks are initialized,
maintained and deleted in the track management compo-
nent. The association decisions and the result of the track
management are then used by the filtering and prediction
component. In this, each track that was measured is updated
with its corresponding new measurement and a prediction
for the time step t+ 1 is generated. This is then fed into the
association component to determine the association decision
at the next time step.

B. Uncertainty Estimation for Neural Networks

A neural network fω(u) → y, which maps inputs u
to outputs y, approximates an unknown, arbitrary, and
continuous function with its parameters ω. During training, the
parameters ω are estimated based on the set of training data
in form of the inputs U = {u1, . . ., uN} and outputs (labels)
Y = {y

1
, . . ., y

N
}, which constitute N pairs of samples from

the unknown function. We assume all samples in U (and thus
also Y) are i.i.d.

1) Characterization of Stochastic Uncertainties: In stochas-
tic system modeling, uncertainties in the estimates are caused
either by system noise, measurement noise, or the inaccuracies
of the models. All of these shall be modeled as stochastic
uncertainties. In the neural network literature, they are
sometimes characterized as aleatoric or epistemic, depending
on how they are modeled by the neural network and thus on
the properties they may have [6].

Uncertainties in neural networks that capture noise inherent
in the data, i.e., stemming from measurement noise, are often
referred to as aleatoric uncertainties [7]. They are said to
have the property that, similar to measurement noise, they



can usually not be reduced drastically without changing the
sensor. Kendall and Gal [6] further distinguish two kinds of
aleatoric uncertainty. It can be homoscedastic, which means
that it is independent of the input data, or heteroscedastic.
In the latter case, the noise can be thought of as a function
of the input data. In our example, measurements that stem
from different bulk material particles may have different
measurement uncertainties due to, e.g., different positions on
the belt.

The second source of uncertainty is the system model.
Errors can arise both from the stochastic nature of the
underlying system and the deviations between the real system
and the system model. In the context of neural networks,
uncertainties capturing these error sources are also referred
to as epistemic uncertainties [6]. A higher modeling power of
the network (obtained by, e.g., using more neurons and layers)
can help to reduce such uncertainties, but can also lead to
overfitting. With a suitable network architecture, increasing
the training data can help to reduce the error in the model
and thus the uncertainties [6].

2) Estimating Heteroscedastic Aleatoric Uncertainties:
When regarding a regression problem, the measurement
uncertainty is often modeled as an additive Gaussian noise
placed on the model’s output. Likewise, in modeling aleatoric
uncertainties for neural networks, the likelihood p(y

i
|ui, ω)

is often assumed to be Gaussian-distributed with the mean
given by the output of the neural network and σ2

i describing
its variance. Thus, σ2

i is a direct measure for the network’s
aleatoric uncertainties.

Along with the function to generate the outputs fω,
our neuronal network learns a function σω that yields an
uncertainty for any input. For brevity, we shall write σi :=
σω(ûi). To learn the correct parameters, we minimize the
negative log-likelihood (NLL)

L(ω) =
1

N

N∑
i=1

1

2σ2
i

||ŷ
i
− fω(ûi)||2 +

1

2
log σ2

i (1)

of the data samples to obtain an estimator for the expectation
value and the variance of the posterior [6]. Note that in this
case, (1) serves as a loss function for the neural network.
When fixing σi to the same constant value for all predictions,
the loss reduces to the well-known MSE loss.

3) Bayesian Neural Networks: To estimate the epistemic
uncertainty, we make use of Bayesian neural networks
(BNNs) [8]. Whereas weights in ordinary neural networks can
be interpreted as point estimates given by maximum likelihood
estimation (MLE) or maximum a posteriori estimation (MAP),
BNNs place distributions over their weights, i.e., treat them
as random variables. A standard Gaussian distribution is the
most common assumption for the prior of the weights.

To model a BNN, we then have to define p(ω|U ,Y),
describing the joint distribution of all weights given the
training dataset and p(y|u, ω), describing the distribution
of the output given the input and the network’s weights.
For regression, the latter is (similar to modeling aleatoric
uncertainties) usually assumed to be Gaussian with its mean

given by the model’s output. Then, given a new input û that
is not in the training dataset, we can get the distribution of
the output y

p(y|û,X ,Y) =

∫
Ωω

p(y|û, ω) p(ω|U ,Y) dω (2)

by marginalizing out the weights ω by integrating over the
sample space Ωω of the weights. Usually, the posterior of
the weights p(ω|U ,Y) is intractable and must therefore be
approximated, e.g., using variational inference [9].

4) MC Dropout: Monte Carlo dropout is a method to
perform approximate variational inference in neural networks.
In variational inference, the true posterior p(ω|U ,Y) is
approximated by a surrogate model q(·).

Gal et al. [9] state that the use of the neural network
regularization technique dropout during training can be seen
as a variational approximation to the posterior of a BNN
when using standard MSE loss and L2 regularization. Thus,
after training a neural network with dropout, we obtain a
surrogate model q(·).

Substituting p(ω|U ,Y) in (2) with the surrogate model
and using Monte Carlo integration with T Monte Carlo
runs (referred to as dropout during inference [9], denoted
f
ω
Drop), the first moment of the predictive posterior q(y|û) is

approximated simply by their average, i.e.,

Eq(y|û)(y) ≈ 1

T

T∑
t=1

fω
Drop

(û) . (3)

In contrast to the standard application of dropout, in which
it is only used during the training, it is also applied during
the application of the network. Gal et al. [9] refer to this
approximation as MC (Monte Carlo) dropout.

The variance of the output is obtained by calculating the
sample variance of the Monte Carlo runs (epistemic part) and
integrating the inverse model precision (aleatoric part)

Covq(y|û)(y) ≈ τ−1ID +

T∑
t=1

fω
Drop

(û)
>
fω

Drop
(û)

− Eq(y|û)(y)> Eq(y|û)(y) , (4)

in which τ is the inverse variance (precision) of the Gaussian
likelihood p(y|û, ω). It is assumed to be fixed for all examples
and can be calculated from the dropout probability (1− p),
the weight decay hyperparameter λ, the number of training
samples N and the prior length-scale l according to τ =
(p l2)(2Nλ)−1 [9].

Under the assumptions of [9], MC dropout is said to be
applicable to any deterministic neural network that is trained
with the mean squared error loss function, dropout, and L2

regularization.
5) Variational Recurrent Neural Networks: Gal et al. [10]

state that if the dropout masks are held constant throughout
the Monte Carlo runs during all time steps of an RNN, then
the use of MC dropout is also a method for obtaining the
expectation value of the posterior distribution when applying
the RNN to generate predictions. There exist a few other
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Fig. 3: Reliability curve of the NLL-LSTM evaluated on the
DEM dataset before calibration. The closer the curve is to
the diagonal, the better calibrated it is. The calibration curve
for a given expected confidence level is calculated from the
cumulative histogram depicted in light blue.
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Fig. 4: Reliability curve of the predictions made by the dropout
LSTM with a sample size of 250 evaluated on the DEM dataset.
The model clearly overestimates the uncertainty. For example,
over 90% of all realization in the held out dataset are within
the 0.1 confidence region.

approaches to model epistemic uncertainties of RNNs, for
example, Bayesian recurrent neural networks, which make
use of a scheme called Bayes-by-Backprop [11].

C. Uncertainty Calibration & Calibration Methods
Kuleshov et al. [12] point out that the covariances of the

uncertainties provided by neural networks using MC dropout
are not aligned with the actual prediction errors. For example,
a 90% confidence region for the predicted positions might
contain only half of the points, which effectively makes it an
empirical 50% confidence region. The mapping from expected
confidence levels to empirically observed confidence levels is
called reliability curve. A model is said to return calibrated
uncertainties if its calibration curve is a straight line from
[0, 0] to [1, 1]. The authors of [10] have found that the dropout
rate used in MC dropout has an important influence on how
well the uncertainty of a BNN is calibrated. Therefore, they
proposed a novel loss function called ConcreteDropout that
can be used to adapt the dropout rate in a way that improves
the calibration.

To achieve calibrated uncertainties, [12] proposed a simple
regression scheme that can be fitted on held out data to obtain
a mapping from empirical to predicted confidence levels. It
makes use of monotonic regression in order to account for
the monotonicity of the calibration curve. [12] also compared
their method to ConcreteDropout and to tuning the dropout
rate by line search. They report that the uncertainties provided
by their approach are more reliable than those of the two
other methods.

III. ESTIMATING ALEATORIC UNCERTAINTIES FOR RNNS

In this section, we describe how an RNN can be trained
to capture aleatoric uncertainties by considering the negative
log-likelihood. For this, we adapt the approach presented by
Kendall and Gal [6] to a probabilistic model of an RNN.

x1 x2 . . . xT

y1 y2 . . . yT

Fig. 5: Probabilistic graphical model representation of a
recurrent neural network used for modeling (yt)

T
t=1.

A. Probabilistic Model of RNNs

In terms of a generative model, the forward pass of an RNN
comprises two different functions: x̂t = f

x
(x̂t−1, ŷt) maps

the old RNN’s hidden state x̂t−1 with a given input to the
new state x̂t. f y

(x̂t) provides a value for the measurement at
the next time step. For our interpretation as a graphical model
in Fig. 5, we convert the generative model into a probabilistic
one. The state transition probability density function is then
given by p(xt|xt−1, yt) = δ(xt − f x

(xt−1, yt)). For the first
time step, the prior hidden state is set to the zero vector:
p(x1|x0, y1

) = δ(x1 − f x
(0, y

1
)). Moreover, we assume a

Gaussian likelihood for p(y
t
|xt−1). A similar approach for

discrete random variables can be found in [13].

B. Negative Log-Likelihood Loss

Starting from an MLE/MAP objective, we model the joint
probability of a single track p(y

1:T
) = p(y

1
, y

2
, . . . , y

T
).

(y
t
)Tt=1 are the realizations from (yt)

T
t=1. We assume p(y

1
)

to be uniformly distributed on the input domain as a



noninformative prior about the initial position of tracks.

p(y
1:T

) = p(y
1
)

∫
Ωx1

· · ·
∫

ΩxT−1

T−1∏
t=1

p(xt|xt−1, yt)

p(y
t+1
|xt) dxT−1 · · · dx1 (5)

is calculated according to our model in Fig. 5 by marginalizing
over the latent variables x1, . . .,xT−1. (5) can be simplified by
applying the sieve property of the Dirac-distributed transition
density p(xt|xt−1, yt). This can be seen as using f

x
(·)

repeatedly (t times) until we reach the very beginning of the
chain, where the state is defined to be 0. Thus, (5) becomes

p(y
1:T

) = p(y
1
)

T∏
t=2

p(y
t
| f

y
(· · · f

x
(0, y

1
), · · · , y

t−1
)︸ ︷︷ ︸

xt−1

) .

(6)
Considering the likelihood of all N tracks, we take the log

and neglect constant terms to get the loss

L =
1

2N

N∑
i=1

1

Ti − 1

Ti∑
t=2

1

σ2
i,t

||ŷi
t
− f

y
(x̂it−1)||2 + log σ2

i,t .

(7)
This equation is equivalent to the mean over a negative
log-likelihood loss (see Sec. II-B.2) for every time step. It
therefore coincides with an RNN trained with standard RNN
training methods with the objective to minimize the negative
log-likelihood. As in (1), for a fixed value of σ2

i,t, the standard
MSE loss for RNNs can be used.

IV. PREDICTIVE TRACKING WITH LSTM
Our measurement space is two-dimensional and comprises

the position along (x) and orthogonal to the transport direction
(y). We train two different LSTMs to predict the next position
of a particle (xt, yt) along with a diagonal covariance matrix
Σt = diag(σ2

x,t, σ
2
y,t) based on the past measurements of the

corresponding track. In Sec. IV-B and Sec. IV-C, we describe
these models, which we call NLL-LSTM and dropout LSTM.
The first one captures the aleatoric uncertainties, whereas
the second model subsumes the epistemic uncertainty. We
consider the individual models separately to measure their
influence on the data association and compare them with the
standard LSTM (Sec. IV-D) used as a baseline.

We use the calibrated uncertainties (see Sec. IV-E) as
the basis for calculating the Mahalanobis distances for the
association component of our tracker. The tracker works as
described in Sec. II-A and the utilization of the LSTM’s
uncertainties works analogously to the use of the predicted
covariance matrices obtained by a Kalman filter. To our
knowledge, no one has previously estimated the uncertainties
of LSTMs and used them for association decisions in
multitarget tracking.

A. LSTM Architecture & Training

All of our trained RNNs share the following settings1:

1Our implementation can be found at https://github.com/
KIT-ISAS/TrackSort_Neural_Public/tree/MFI2020.

• Network topology: LSTM with two layers and 64 and 32
hidden units, respectively. Final dense layer without an
activation function. The number of output units depends
on the uncertainty estimation method.

• L2 regularization with λ = 10−5.
• Optimizer: Adam (β1 = 0.9, β2 = 0.999, ε = 10−7).
• The initial learning rate is 0.01. It is decayed every 200

epochs. 1000 training epochs in total.
• Backpropagation through time is used with the same

type of loss function for every time step.

B. NLL-LSTM

The loss function for this LSTM is the negative log-
likelihood plus an L2 regularization term. Its final dense
layer has four outputs: The predicted x- and y-coordinate at
time step t + 1 and the two corresponding variances. The
variances need no supervision as they are learned implicitly
using the NLL.

As in [6], we train the network to predict the log variance
si,t = log σ2

i,t for every time step. The logarithm is used
to avoid a division by zero and to mitigate the problem of
invalid negative variances. With this change, the loss in (7)
becomes

L ∝ 1

N

N∑
i=1

1

Ti − 1

Ti∑
t=2

exp(−si,t)||ŷit − f y
(x̂it−1)||2 + si,t.

C. Dropout LSTM

In contrast to the NLL-LSTM, we do not describe how
MC dropout can be derived for RNNs, but instead refer to
the detailed description in [9]. With the output of every time
step being Gaussian-distributed, MC dropout (3) provides an
estimator for the expected value of the posterior of an RNN.
It follows from [9] that the variance of the posterior can be
approximated as in (4).

Our dropout LSTM has two units in its last layer that
output an estimate for the next position. The loss function
is the MSE. The prior length scale l is set to 10−2. The
dropout probability and the number of Monte Carlo runs
are determined by performing a grid search with the aim to
maximize the predictive log-likelihood [10]. Dropout rates
between 1% and 0.1% yielded the highest predictive log-
likelihoods. We chose to work with a rate of 0.2%.

D. Standard LSTM

An LSTM trained with the MSE loss that does not consider
uncertainties serves as a baseline. A scaled identity matrix is
used as the covariance matrix for calculating the Mahalanobis
distance for the association decision. A line search is used to
find a scaling factor that yields a good association accuracy.

E. Calibration

We now go into the post-processing step that calibrates
the uncertainties for use in the association component. First,
we generate the calibration curve for a held out dataset,
which is explained in the next paragraph. Second, we use the
monotonic regression procedure proposed in [12] to find a
function R : [0, 1]→ [0, 1] that maps the observed empirical
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Fig. 6: Evaluation results for data-driven models and classical models used in combination with a Kalman filter on the
peppercorn dataset. The box plots show the distances between the predictions and corresponding ground truths.

confidence levels to the expected ones. Last, this function is
used to rescale the covariance ellipsoids. The uncertainties
are scaled solely based on their magnitude and irrespective
of which particle and time step the uncertainty was provided.
In practice, this is generally an oversimplification, but it
significantly reduces the amount of data required.

To determine the calibration curves in our two-dimensional
case, we first calculate the squared Mahalanobis distance
d(fy(x̂it−1), ŷi

t
,Σi

t)
2 to obtain the uncertainty-aware sum

of the squared errors for every prediction. For Gaussian-
distributed predictions with calibrated uncertainties, the
squared Mahalanobis distances are χ2-distributed with two
degrees of freedom. Using the inverse CDF F−1

χ2 (pexp) of
the χ2-distribution, we can calculate a confidence region2

in which a share of pexp should be on average. Afterward,
we calculate the corresponding empirical confidence level
pemp = 1

N

∑N
i=1 I{d(fy(x̂it−1), ŷi

t
,Σi

t)
2 ≤ F−1(pexp)}

as the fraction of the number of tuples whose squared
Mahalanobis distances lie within the mentioned confidence
interval. Repeating this procedure for various confidence
levels pexp provides us with the calibration curve. An example
can be found in Fig. 3.

In our calibration, we do not change the shapes of the
covariance ellipsoids but only rescale them with a rescaling
factor r, i.e., Σcal

i = rΣi. For this, we first have to chose
a pdes for which we want the expected confidence level to
be equal to the empirical one. Afterward, we calculate r as
the ratio r = F−1

χ2 (R(pdes))/F
−1
χ2 (pdes) using the mapping R

derived from the calibration curve. Note that in our calibration,
r is the same constant for all predictions, thus preserving the
ratios between all covariances.

2In our setting, the described region is effectively a credible region.
However, for reasons of consistency with the literature on calibration
(see Sec. II-C), we refer to it as a confidence region.

V. EVALUATION

A. Datasets

We use two slightly different datasets to evaluate the
predictions: A real one, which captures the movement of
peppercorns, and an artificial one comprising simulated
cylinders. Both involve particles that fall onto the begining
of a conveyor belt, are then accelerated while moving to the
end, and finally disappear at the edge of the belt, which is
shown on the right in Fig. 2.

1) Peppercorn Dataset: This dataset contains the tracks
of a few thousand peppercorns that were captured on our
experimental belt sorting machine. The true association of the
measurements with the tracks was generated by running the
existing tracker and correcting false associations manually.

2) DEM Dataset: The second dataset used in this evalua-
tion was generated by the discrete element method (DEM),
which uses a three-dimensional model of our experimental belt
sorter [14]. The dataset contains the ground truth positions of
simulated cylinders at high frame rates. Due to the artificial
nature of the dataset, there are no measurement errors. Further,
the true associations are available, which can be used to verify
the results. As in [5], the frame rate is downsampled from
10,000 Hz to a realistic frame rate of 100 Hz. In the time the
particles are on the belt, 20 to 48 measurements are obtained
per particle. Measurements of up to 150 different particles
are obtained in the individual time steps.

B. Evaluation of the Position Prediction

As a first step, we compare the accuracy of the predicted
positions of all LSTM-based approaches with a Kalman
filter with constant velocity or constant acceleration model
in Fig. 6. To determine the prediction accuracy, we calculate
the deviations between the measurements and the predicted
measurements. The box plots show the absolute prediction



errors averaged for each track in the peppercorn dataset when
using the ground truth associations.

It can be observed that the magnitudes of the errors are
comparable and the majority of all predictions deviate less
than 0.3 mm from the true value. The accuracy of the dropout
LSTM is dependent on the number of samples k. This matches
the observations in [9]. Even sampling 1000 forward passes
results in predictions that are inferior to those of the constant
acceleration model. Note that the dropout LSTM yields errors
at the level of the standard LSTM if MC dropout is not used.

Both the standard LSTM and the NLL-LSTM do not
perform better than the Kalman filters. This clearly shows
the difficulty to model physical phenomena without addi-
tional world knowledge. However, the NLL-LSTM achieves
significantly better results than the standard LSTM.

Kendall and Gal [6] interpret the negative log-likelihood
loss in (1) as a learned loss attenuation. This is a possible
explanation for the NLL-LSTM’s increased accuracy as the
loss for every time step gets scaled according to the predicted
uncertainty. Therefore, the network can continue to minimize
its loss, even though the predictions of the first time step have
a far larger mean squared error than the later time steps. This
is due to the decreasing aleatoric uncertainty in the dataset.

C. MTT Evaluation

To evaluate whether the estimated uncertainties are ben-
eficial for the data association, we compare the number of
errors made by the different methods when applied to the task
of tracking the particles of the DEM dataset. All experiments
were done with a confidence level of pdes = 99.9% for the
calibration.

In [15], two metrics to quantify the number of errors in
the association in the bulk material sorting scenario were
introduced. In the optimal case, all measurements of a
specific particle are assigned to the same track and only
these measurements are assigned to the track.

An error of the first kind occurs when measurements of
multiple tracks were associated with one track. The number
of such errors is denoted e1. The number of errors of the
second kind (e2) provides the number of particles whose
measurements were assigned to more than one track. In

TABLE I: Comparison of additive noise and aleatoric uncer-
tainty evaluated using the peppercorn dataset. The uncertainty
area of a prediction is approximated by the size of the
bounding rectangle around the covariance ellipse with size
4σxσy. The positive correlation between additive noise and
mean aleatoric uncertainty area suggests that the NLL-LSTM
adapts its uncertainty predictions to the measurement noise.

Additive noise standard deviation
in mm

Mean aleatoric uncertainty area in
mm2

0 0.1743
0.1 0.1843
0.2 0.2157
0.3 0.3073
0.4 0.5130
0.5 1.0424

m
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Fig. 7: Comparison of the LSTM models and a Kalman filter
with a constant velocity motion model. Gaussian-distributed
noise with the standard deviations shown on the abscissa was
added. The sample size of the dropout LSTM is 250.

this work, the harmonic mean emean = 2ê1ê2
ê1+ê2

between the
proportions of errors of the first kind (ê1 = e1/ntracks) and
errors of the second kind (ê2 = e2/nparticles) is used to rank
the results.

Since noise-free measurements are unrealistic in real-world
scenarios, we added some artificial white Gaussian noise to
the measurements. In Fig. 7, the emean of the tracker is shown
for different noise levels. The NLL-LSTM provides lower
numbers of errors compared with the standard LSTM. While
the NLL-LSTM was trained only once, a line search was
employed for the standard LSTM to determine the best scaling
factor for the identity matrix used as the covariance matrix
in the calculation of the squared Mahalanobis distance. Since
both, the covariance matrix determined using the line search
and the uncertainties of the NLL-LSTM lead to improvements
in association accuracy, we believe that modeling aleatoric
uncertainty in RNNs does indeed help to improve multitarget
tracking. The error level of the dropout LSTM is inferior to
the other methods. We discuss this in Sec. VI.

D. Reliability of the Uncertainty

The reliability diagram in Fig. 3 shows that the uncalibrated
NLL-LSTM is closer to the diagonal describing the correct
calibration than the curve of the uncalibrated dropout LSTM,
which is shown in Fig. 4. For the latter, an expected confidence
level of 0.2 already contains more than 98% of the predictions
of the held out data. As the curves show, calibration is
necessary for both approaches.

E. Aleatoric Uncertainty

In this subsection, we analyze the aleatoric uncertainties
of the NLL-LSTM. The learned aleatoric uncertainties are
heteroscedastic since they are dependent on the network’s
input, which can be observed in Fig. 8. The figure also
implies a heavy influence of the number of measurements



on the predicted aleatoric uncertainty. In order to investigate
whether the magnitude of the aleatoric uncertainty is not only
affected by the time step, we calculate the mean of the sizes
of the bounding rectangles around all covariance ellipses for
increasing standard deviations of additive noise. The results
are depicted in Table I. The mean area of the variances
are positively correlated with the additive noise terms. This
suggests that the magnitude of the predicted uncertainties is
not just a learned bias in the network.

VI. DISCUSSION

The absolute error of the dropout LSTM’s predictions show
how much this method relies on large sample sizes. Fig. 6
suggests that sample sizes above 1000 could potentially yield
more accurate results. However, since an enormous amount
of computation may be required to obtain acceptable results,
this method is not suitable for our task and we cannot report
advantageous effects on the tracking when using reasonable
sample sizes.

In contrast, the estimates of aleatoric uncertainties, trained
via a negative log-likelihood loss, deliver good results on our
benchmark. The decreasing uncertainty over the number of
observations of a track suggests that the model is capable of
subsuming the noise inherent in the data. In particular, the
model yields a high uncertainty for the very first prediction,
which is the expected result because little is known about
the particle when it was observed only once.

Our uncertainty calibration method rescales the estimated
variances of different time steps with the same factor. In
practice, this is an oversimplification that could be amended
by conditioning the predictions onto their time step, which
may be a subject for future research.

VII. CONCLUSION

In this work, we evaluated Monte Carlo dropout and train-
ing with negative log-likelihoods as methods for predicting
uncertainties for recurrent neural networks. The uncertainties
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Fig. 8: A Negative correlation (r=-0.59) between the number
of observations of a track and the size of the predicted
covariance’s bounding rectangle can be observed when
applying the NLL-LSTM to the peppercorn dataset.

were employed in a multitarget tracking task with the goal of
improving the associations. Quantitative comparisons of the
different methods show promising results for the estimation
of aleatoric uncertainties and that data-driven models can
yield accuracies in the same order of magnitude as Kalman
filters with standard motion models.
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