
Shape Estimation and Tracking using Spherical Double Fourier Series
for Three-Dimensional Range Sensors

Tim Baur1, Johannes Reuter1, Antonio Zea2 and Uwe D. Hanebeck2

Abstract— In this paper, a novel measurement model based
on spherical double Fourier series (DFS) for estimating the
3D shape of a target concurrently with its kinematic state is
introduced. Here, the shape is represented as a star-convex
radial function, decomposed as spherical DFS. In comparison
to ordinary DFS, spherical DFS do not suffer from ambiguities
at the poles. Details will be given in the paper. The shape
representation is integrated into a Bayesian state estimator
framework via a measurement equation. As range sensors only
generate measurements from the target side facing the sensor,
the shape representation is modified to enable application of
shape symmetries during the estimation process. The model is
analyzed in simulations and compared to a shape estimation
procedure using spherical harmonics. Finally, shape estimation
using spherical and ordinary DFS is compared to analyze the
effect of the pole problem in extended object tracking (EOT)
scenarios.

I. INTRODUCTION

As the resolution and accuracy of modern sensors in-
creases, more information can be extracted out of recorded
environment data when applying appropriate measurement
models. When multiple measurements per time step from a
single target are gathered, estimating the targets extent during
the tracking procedure [1] instead of tracking the target as
a single point is feasible. This procedure is known as EOT.
Nowadays, tracking extended objects has to be performed in
a variety of disciplines including robotics and autonomous
systems and in different environments like on-road, off-road
or in maritime systems.

In EOT, different approaches to model the target extent
and shape have been proposed. Early approaches model the
shape using a spatial distribution [2] that associates the shape
parameters with the observed measurements. A famous and
frequently used example are the well-known random matrices
[3]. However, spatial distribution models are complicated to
derive and not very flexible in terms of different shapes
or even shape estimation techniques. In contrast, random
hypersurface models [4] try to associate a measurement to a
specific measurement source by application of a greedy asso-
ciation rule. Thus, measurements can easily be associated to
measurement sources gathered from various shapes and even
shape estimation techniques can be developed. However, one
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major drawback of these models is that by adopting a greedy
association rule, an estimation bias is introduced [5], [6].

If prior knowledge of the target extent is available, basic
geometric shapes such as rectangles [7], [8], [9] or ellipses
[3], [4] can be applied in EOT. For example, ellipses ap-
proximate the top view shape of a ship reasonably well
and can be applied in maritime environments. In contrast,
rectangles in 2D or cuboids in 3D space nearly perfectly fit
targets like cars and are applied in automotive applications.
However, in many cases prior knowledge is not available or
many targets with different shapes are present. A solution to
this problem is to estimate the shape itself [10], [11] during
the tracking procedure, avoiding to potentially corrupt the
estimation outcome by modeling the measurement sources
on the target accurately.

If 3D contour measurements gathered by devices such as
multilayer LiDAR sensors or depth cameras are available,
shape estimation algorithms using Gaussian processes [12],
[13], [14] or spherical harmonics [15] for star-convex shape
representation can be applied. In addition, 3D EOT mea-
surement models using basic geometric shapes [16], [17]
or restricted shape estimation [18] have been proposed if
prior knowledge is available, detailed shape information is
not required in the application or computational complexity
is to be reduced.

The contribution of this paper is to propose a novel
measurement model that allows for concurrent shape and
pose estimation of an extended object in 3D space using
spherical DFS [19]. Using ordinary DFS, functions defined
on a rectangular domain [x,y] ∈ [a,b]× [c,d] can be decom-
posed. However, when radial functions are defined on the
unit sphere [θ ,φ ] ∈ [0,π)× [0,2π], the rectangular domain
is mapped to the surface of a sphere that differs completely
from a rectangle. Thus, ambiguities at the poles where the
domain resolves into a single point are imposed on the
radial function, see Fig. 1. Spherical DFS can handle this
issue in analogy to spherical harmonics but have some nice
advantages for EOT in comparison. In order to estimate
the 3D shape concurrently to the target pose, we propose
a greedy association model using a proper association rule.
The model can be applied to 3D contour measurements. In
order to enable modeling the possibly unseen backside of
the target, we propose a second representation of spherical
DFS where the radial function is “even” in azimuth angle φ

introducing a vertical plane of symmetry.
An advantage of 3D shape estimation is the possibility

of target classification using 3D range sensors. In contrast
to visual sensors, depth devices such as multilayer LiDAR
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(a) Rectangular domain. (b) Spherical domain.

Fig. 1: Illustration of pole problem and different domains.

sensors can still be used without ambient light justifying
classification with these sensors. It is indisputable that clas-
sification must be an essential part in many automated and
autonomous systems for scene interpretation and prediction.

The remainder of this paper is organized as follows. Our
model is based on work done over the past fifty years by
the international meteorological society in order to model
and predict atmospheric circulations and physics. Sec. II
is therefore devoted to spherical DFS, its properties, and
the redefinition of spherical DFS to incorporate a vertical
plane of symmetry. These representations of a star-convex
radial function are then included in a greedy association
measurement model in Sec. III to be able to concurrently
estimate the targets shape and pose. Subsequently, our model
is investigated and compared to a model using spherical
harmonics [15] in simulated scenarios in Sec. IV. For a better
understanding of the pole problem in EOT, spherical and
ordinary DFS measurement models are compared in Sec. V.
Finally, the paper ends with conclusions and future work in
Sec. VI.

II. SPHERICAL DOUBLE FOURIER SERIES

Representing arbitrary star-convex shapes can be achieved
by using radial functions r(θ ,φ) as contour functions where
angle pairs (θ ,φ)T are mapped to the radius r of the contour,
see Fig. 1b. As stated before, ordinary truncated DFS of the
form

r(θ ,φ) =
N

∑
m=−N

N

∑
l=−N

cm,l exp(2 i l θ)exp(imφ) (1)

representing star-convex radial functions are defined on the
rectangular domain [θ ,φ ] ∈ [0,π) × [0,2π), see Fig. 1a.
However, a spherical domain differs completely from a rect-
angular one, see Fig. 1b. Thus, using (1) for representation of
star-convex radial functions suffers from ambiguities at the
poles θ = 0 and θ = π as the surface of a sphere cannot be
unwrapped into a rectangle. In Fig. 1 this is illustrated with
blue and red arrows for north and south poles, respectively.
As can be seen, for a rectangular domain in Fig. 1a different
north and south poles can be found in comparison to a
spherical domain in Fig. 1b. For more details on the pole
problem the reader is referred to [20].

A. Spherical cosine-sine DFS

In order to decompose a radial function to angles θ

and φ , the representation has to meet several boundary
conditions to ensure continuity at the poles [20]. Using
spherical harmonics, these boundary conditions are naturally
met. However, when using DFS some considerations must be
made. First, the radial function is expanded to a truncated
Fourier series for angle φ as

r(θ ,φ) =
N

∑
m=−N

rm(θ)exp(imφ) , (2)

where rm(θ) is the decomposition in angle θ . A first sug-
gestion for spherical DFS was presented in [21]. However,
constraints were necessary as discontinuities at the poles
were still present without. Several other representations were
compared in [22]. Note that spherical harmonics and spher-
ical DFS representation only differ in the decomposition of
rm(θ) where spherical harmonics use associated Legendre
polynomials, while spherical DFS use a Fourier series de-
composition. A comparison of both approaches is given in
[20], [23]. In this paper we use the decomposition proposed
by Cheong [19], [24] given as

rm(θ) =


∑

N
l=0 ψm,l cos(l θ) for m = 0

∑
N
l=1 ψm,l sin(l θ) for odd m

∑
N
l=1 ψm,l sin(θ)sin(l θ) for even m 6= 0

(3)

where ψm,l are the complex Fourier coefficients. In order for
the spherical DFS to be applicable in a nonlinear Gaussian
state estimator we propose to use the cosine-sine represen-
tation given as

r(θ ,φ) = a0(θ)+
N

∑
m=1

N

∑
l=1

am,l sins(θ)sin(l θ)cos(mφ)

+
N

∑
m=1

N

∑
l=1

bm,l sins(θ)sin(l θ)sin(mφ)

(4)

with

a0(θ) =
N

∑
l=0

a0,l cos(l θ) (5)

and

s =

{
0 for odd m
1 for even m

. (6)

B. Vertical plane of symmetry

As already stated above, devices such as multilayer LiDAR
sensors or depth cameras gather 3D range data from the
targets side facing the sensor. Thus, modeling the backside
of the target is essential in shape estimation. This can be
achieved by involving a vertical plane of symmetry in the
shape estimation procedure. Such an assumption is reason-
able as many real world targets such as cars or ships in
maritime environments involve a vertical plane of symmetry
along their length axis. When using spherical DFS, a vertical
plane of symmetry can be integrated by forcing the function
to be even in the azimuth angle φ . This can be achieved
by discarding the sine components of the Fourier series



belonging to the azimuth angle φ [25], [26]. The spherical
DFS is then given as

r(θ ,φ) = a0(θ)+
N

∑
m=1

N

∑
l=1

am,l sins(θ)sin(l θ)cos(mφ) (7)

where a0(θ) and s are still given by (5) and (6), respectively.

III. MEASUREMENT MODEL

In the following, the measurement model to enable concur-
rent shape estimation and tracking is presented. Therefore,
the hidden system state is given as

xk =
[
mT

k ,ϕ
T
k
, x̃T

k , pT
k

]T
(8)

with center mk, orientation vector ϕ
k
, velocity components

x̃k, and shape parameters pk. Note that the orientation vector
ϕ

k
possibly contains all three rotation angles yaw, pitch, and

roll in 3D space. According to [13], also quaternions can be
used as rotational representation in order to prevent gimbal
locks in 3D space but this goes beyond the scope of this
paper. According to Sec. II, the shape parameters are given
as

pk = [a00,a10, . . . ,a11,a12, . . . ,b11,b12, . . .]
T ∈ Rdp (9)

for a full spherical DFS with dp = N +1+2N2 coefficients
or as

pk = [a00,a10, . . . ,a11,a12, . . . , ]
T ∈ Rdp (10)

for spherical DFS with a vertical plane of symmetry
with dp = N + 1 + N2 coefficients. As comparison, for
a measurement model using spherical harmonics [15]
dp = 4N2 +4N +1 coefficients are needed for both a full
decomposition and for a decomposition involving a vertical
plane of symmetry. The hidden system state is about to be es-
timated in a nonlinear state estimator using the measurement
set ZZZk =

{
zk,l

}nk

l=1
gathered at time step k. The objective of

the measurement equation is to link the measurement set
with the hidden system state. In this case the measurements
are assumed to be gathered based on a measurement source
model

zk,l = yk,l + vk,l (11)

with measurement source yk,l and white Gaussian zero-
mean noise term vk,l ∼ N (0,ΣΣΣv). Due to the assumption
of gathered contour measurements, the measurement sources
are located on the target boundary B(pk) given as

yk,l ∈ mk +B(pk) . (12)

Substituting (12) into (11), the measurement can be related
to the targets boundary given as

zk,l ∈ mk +B(pk)+ vk,l . (13)

Using (13), various measurement models can be derived by
plugging in a desired parametric shape representation for
B(pk). In this paper we are aiming to estimate the targets
outer contour by representing the shape using spherical DFS

rk,l = r(θk,l ,φk,l) (14)
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Fig. 2: Illustration of measurement source association rule.

of (4) or (7) presented in Sec. II. Given a proper shape repre-
sentation, the final measurement equation can be represented
as

zk,l = mk +q(mk)r
(
θ̂k,l , φ̂k,l

)
+ vk,l (15)

with unit length orientation vector q(mk) =
zk,l−mk
‖zk,l−mk‖

and

measurement source
(
θ̂k,l , φ̂k,l

)
. As the measurement source

on the targets outer contour is unknown we adopt a greedy
measurement source association rule. The association rule
we use in this publication is illustrated in Fig. 2. The mea-
surement source is assumed to be located at the intersection
of a straight line from center to measurement with the
predicted shape. This association rule is very comfortable as
the measurement source is calculated quite easily. However,
also different association rules such as taking the closest
point on the contour to the measurement can be applied.
Here, the measurement in local coordinates given as

ẑk,l = RRR−1
ϕk

(
zk,l−mk

)
(16)

with rotation matrix RRRϕk
is needed for calculating the mea-

surement source. Note that the rotation matrix is not limited
to a single rotation but rather can be applied to all three
spatial axes. Then the measurement source can be calculated
as

θ̂k,l = arccos

(
xẑ

‖ẑk,l‖

)
, (17)

φ̂k,l = atan2(yẑ,xẑ) (18)

with xẑ and yẑ as x and y coordinate of ẑk,l , respectively. Us-
ing (15), our shape estimation algorithm is implemented with
an unscented Kalman filter [27] in this paper. However, any
other nonlinear state estimation technique can be applied.

IV. SIMULATION EXPERIMENTS

In this section, our shape estimation algorithm is investi-
gated in simulated static and dynamic scenarios. In the static
scenario, only the Fourier coefficients defining the shape are
estimated and compared to the procedure using spherical
harmonics [15]. Afterwards, our shape estimation procedure
is investigated in a dynamic tracking scenario.
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Fig. 3: Monte Carlo simulation of static shape estimation using spherical DFS and spherical harmonics.

A. Static scenario

In the static scenario, shape estimation is performed for
different degrees N and performance is compared after con-
vergence. The shape estimation outcome is analyzed using
shape root mean squared errors (RMSE) as defined in (19).
Thus, angles θi ∈ [0,π] and φ j ∈ [0,2π] are sampled and
related radii ri j and r̂i j of the reference and the estimation
respectively are calculated. Subsequently, the RMSE

RMSEs =

√
∑

n
i=1 ∑

m
j=1(r̂i j− ri j)2

nm
(19)

for shape estimation can be calculated. In Fig. 3, RMSEs
for a static scenario with a cuboid shape after a Monte
Carlo simulation of 100 runs are shown. In this simulation,
a single measurement is drawn, the shape is estimated, and
RMSEs are calculated at the end of the scenario. Time
is measured for an update step of a single measurement
using MATLAB R2020b on a Intel(R) Xeon(R) X5680 CPU
with 3.33 GHz. For a full spherical DFS, measurements
are drawn uniformly distributed from the angle intervals
θ ∼ U (0,π) and φ ∼U (0,2π), thus from the whole sur-
face. For a spherical DFS with a vertical plane of sym-
metry, measurements are drawn uniformly distributed from
the angle intervals θ ∼U (0,π) and φ ∼ U (0,π), thus
from half the surface. The shape is initialized as Gaus-
sian with mean pk =

[
1,0T ]T ∈ Rdp and covariance matrix

diag(0.3, . . . ,0.3) ∈ Rdp×dp , i.e., as uncertain sphere, for all
following experiments. Note that the dimension dp depends
on whether a full or a spherical DFS involving a vertical
plane of symmetry is used. The measurements are generated
normally distributed around the surface point with a variance
of σz = 0.1m in all three dimensions.

In Fig. 3, it can be seen that shape estimation of a cuboid
shape performs best for degree N = 7 or higher for both types
of spherical DFS presented in Sec. II. This is due to the fact
that a cuboid shape entails sharp corners while the shape
function is discontinuous. Thus, higher degrees of spherical
DFS are needed for an adequate shape estimate. In com-
parison to shape estimation using spherical harmonics [15],
spherical DFS tend to be more accurate in shape estimation
precision. Specifically, when measurements are only gathered

from half the target’s surface, spherical DFS with a vertical
plane of symmetry show a clear improvement in shape
estimation. This is particularly important as measurements
of common range devices such as multilayer LiDAR sensors
or depth cameras only gather measurements of the targets
side facing the sensor.

Finally, spherical DFS not only tend to be more accurate
than spherical harmonics. They are also faster in computation
as can be seen in Fig. 3c. This is mainly caused by the
need of computation for associated Legendre polynomials
when using spherical harmonics. In our implementation,
we use an efficient hard coding of associated Legendre
polynomials that is still slower than using spherical DFS. In
contrast, spherical DFS are faster in computation and easier
to implement as the decomposition only consists of sine and
cosine functions. In Fig. 3c, computation time comparison
of both spherical DFS and spherical harmonics processing
measurements distributed on the full surface and half the
surface of a cuboid is illustrated. It can be seen that spherical
DFS are much faster in computation, especially when using
a representation involving a vertical plane of symmetry.

B. Dynamic scenario

Shape estimation is now investigated in a dynamic track-
ing scenario. In Fig. 4, the shape estimation and tracking
outcome is illustrated for a single simulated scenario with a
cuboid shape and measurements drawn uniformly distributed
from the angle intervals θ ∼U (0,π) and φ ∼U (0,π). Thus,
a spherical DFS with a vertical plane of symmetry according
to (7) is used in the measurement model (15). The degree of
the DFS is chosen as N = 8. The number of measurements
is simulated as Poisson distributed random number with an
average of 30 measurements. Measurement noise was chosen
as σz = 0.1m in all three dimensions.

As motion model, a coordinated turn model with po-
lar velocity [28] is applied for tracking and for reference
trajectory generation. For evaluating the robustness of the
proposed method, the model in [28] is extended by a roll
angle and a roll rate, similar to the yaw angle and yaw rate,
however uncoupled to position transition. Thus, system state
uncertainties are taken as σv = 2.2m/s for polar velocity,
σω = 1.5deg/s for yaw rate and σψ = 1.5deg/s for roll rate.
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Fig. 4: Simulated tracking scenario of a cuboid at different time steps. The reference cuboid is shown with black lines,
reference trajectory with green crosses, estimated center as black dot, measurements as red dots, and estimated shape as
light blue surface.

The z-component of position mk is modeled as being constant
over time. As aforementioned, rotation angles can also be
stated as quaternions compared to [13] which would lead to
modifying the motion model. Shape parameters are chosen
to be constant in the dynamic model.

In Fig. 4a, the first time step of the simulated scenario
is depicted. It can be seen that the shape function follows
the measurements and no larger outgrowths appear. The
spherical DFS involving a vertical plane of symmetry is
applied as only measurements from the front side are present
and shape estimation at the back side still performs well. At
time step 5 in Fig. 4b, the shape is already nearly converged.
Only a few parts of the shape need some more measurements
for a proper shape representation. Finally in Fig. 4c at the
end of the scenario, the shape is completely converged. It can
be seen that roll and yaw movement can be integrated in 3D
shape estimation and tracking using spherical DFS involving
a vertical plane of symmetry.

V. COMPARISON OF ORDINARY AND SPHERICAL DFS
In this section, spherical DFS of (2) are compared to

ordinary DFS of (1) for EOT in a static scenario. In this
simulation, at every time step a single measurement is drawn
and the shape of a cuboid is estimated using spherical DFS
and ordinary DFS as radial function of measurement equation
(15). RMSEs are calculated for every single measurement
update. This simulation is performed with both spherical and
ordinary DFS involving a vertical and no plane of symmetry.
All presented results of this section show mean values after
a Monte Carlo simulation of 100 runs.

In Fig. 5a, convergence rate of spherical and ordinary DFS
involving a vertical and no plane of symmetry is illustrated.
Markers indicate the value of RMSEs where differences
between single time steps fall below the threshold of 10−5

for the first time for different degrees N of spherical and or-
dinary DFS. Numbers indicate the amount of measurements
needed for convergence. In Fig. 5b maximum RMSEs of a
simulation run are depicted for different degrees N. Markers

indicate maximum value while numbers indicate amount of
measurements already processed.

In Fig. 5a, it can be seen that spherical DFS converge to
lower values of RMSEs especially involving a vertical plane
of symmetry. Additionally, spherical DFS need fewer mea-
surements to converge compared to ordinary DFS. Fig. 5b
shows that using ordinary DFS, RMSEs initially become
worse at the beginning and maximum values are very high.
Maximum RMSEs values increase with degree N for both
ordinary and spherical DFS, as higher curvatures are possible
which can lead to larger deviations compared to the reference
shape. In comparison, RMSEs start to decrease with the first
measurement using spherical DFS and maximum values are
much lower.

Both effects can be attributed to the pole problem de-
scribed in Sec. II. Due to the fact that radial functions
decomposed using ordinary DFS suffer from ambiguities at
the poles, shape estimation needs more measurements to
converge compared to spherical DFS. Additionally, larger
outgrowths appear at the beginning of shape estimation using
ordinary DFS which decrease only after a certain amount of
measurements at corresponding locations. Therefore, shape
estimation using ordinary DFS gets worse at first while shape
estimation using spherical DFS starts converging from the
very beginning of the scenario as no ambiguities at the poles
have to be resolved.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a novel measurement model for 3D shape
estimation using spherical DFS. The shape was estimated
using contour measurements assuming a star-convex radial
function for shape representation. Our measurement equation
can be integrated in nonlinear state estimation techniques
like the well-known UKF [27]. To be able to process
measurements that stem from the side of the target facing
the sensor only, we modified the spherical DFS to involve
a vertical plane of symmetry. We investigated our model
in comparison to spherical harmonics and ordinary DFS in
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Fig. 5: Results for static comparison of spherical and ordinary DFS in a Monte Carlo simulation of 100 runs.

simulated scenarios. Shape estimation using spherical DFS
showed clear advantages in estimation accuracy compared
to spherical harmonics and ordinary DFS. In future work
we will apply our shape estimation technique to real-world
shapes such as cars or ships in simulations and to basic
geometric and real-world shapes in real data experiments.
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