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Abstract— We consider estimating the parameters of a Gaus-
sian mixture density with a given number of components
best representing a given set of weighted samples. We adopt
a density interpretation of the samples by viewing them as
a discrete Dirac mixture density over a continuous domain
with weighted components. Hence, Gaussian mixture fitting
is viewed as density re-approximation. In order to speed up
computation, an expectation–maximization method is proposed
that properly considers not only the sample locations, but also
the corresponding weights. It is shown that methods from
literature do not treat the weights correctly, resulting in wrong
estimates. This is demonstrated with simple counterexamples.
The proposed method works in any number of dimensions with
the same computational load as standard Gaussian mixture
estimators for unweighted samples.

I. INTRODUCTION

Gaussian mixture (GM) estimation is ubiquitous in signal
processing and machine learning. Given a set of samples,
the parameters of a GM are determined in such a way
as to best fit the samples in a maximum likelihood way.
Solutions for equally weighted samples are readily available,
expectation–maximization (EM) based methods being the
most prevalent because of low computational requirements
and ease of implementation.

So it comes as a surprise that GM estimation for weighted
samples is hard to find in literature. It might be even more
surprising that the standard reference [1] gives incorrect
results, see Fig. 1.

II. CONTEXT

Applications for sample-to-density function approximation
include clustering of unlabeled data [2], [3], multi-target
tracking [4], [5], group tracking [6], multilateration [7], [8],
and arbitrary density representation in nonlinear filters [9],
[10].

Why may data sets have observational weights associated
to their data? Sample weights are used in information fusion
methods, especially in the update step of nonlinear filters.
Unweighted prior samples are, according to the Bayes rule, re-
weighted according to the likelihood function [10]. Thereby
the prior information, encoded in sample locations, is fused
with the measurement, encoded in the new weights. Cluster
analysis in data mining applications does not require an
accurate density representation reflecting the data set, but
instead to identify and localize all clusters, whether they
are represented with many or few samples in the data set.
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Fig. 1: Two-dimensional GM parameter estimation using
EM from [1] (blue line), and EM according to our proposed
method (red line). Compare the ground truth (black line).
Equidistant samples (grey dots) were weighted with the GM
density function and given to the EM algorithms.

Cluster sizes are sometimes distributed according to the
Zipf distribution, i.e., very big and very small clusters are
both commonly present. One method to equalize such an
imbalanced data set is to discard samples from big clusters
(undersampling) and/or generate new samples related to small
clusters (oversampling) [11], but the more elegant way is to
introduce weights. This is called density-biased sampling [12],
[13]. A similar concept is “boosting” from machine learning.
Mis-classified samples are assigned higher weights, and after
a new training step, the performance of the classificator is
improved [14]. Conversely, scattered samples that probably
represent noise can be penalized by down-weighting, using
prior knowledge [15]. Finally, sample weights may simply be
natural numbers stating how many instances of the respective
sample were counted [16].

A popular basic solution to this is the k-means algorithm.
It does not find a complete density representation, only the
means of the individual clusters. The k-means algorithm uses
hard sample-to-mean associations, therefore yields merely
approximate solutions but can be computationally optimized
using k-d trees [17], [18]. Moreover, the global optimum can
be found deterministically [19], therefore it can be used to
provide an initial guess for more elaborate algorithms. The



k-means algorithm is already available for weighted data [13],
[16].

A sample-to-density approximation that is optimal in a
maximum likelihood sense can be searched with numerical
optimization techniques such as the Newton algorithm that
has quadratic convergence but high computational demand
per iteration, quasi-Newton methods, the method of scoring,
or the conjugate gradient method with slower convergence
but less computational effort per iteration [20]. Finally, there
is the EM algorithm, which we will focus on in this work.

A. State-of-the-art

The EM algorithm has been used for decades [21], [22]
to solve statistical problems. It provides a valid parameter
set in every iteration step, i.e., nonnegative and normalized
component weights and positive semidefinite covariance
matrices, without the need of artificial safeguards. The EM
algorithm features good global convergence to some local
optimum, is very easy to implement, has low computational
cost per iteration when using optimized libraries for standard
statistical tasks, and needs little storage [20].

On the downside, EM converges rather slowly, especially
if the GM components are poorly separated. Furthermore,
for GMs, EM merely finds local optima. Thus, in order to
obtain a good result, several optimizations with different
initial conditions should be performed. While covariance
matrices are guaranteed to be positive semidefinite in every
intermediate step, there should be some logic in place that
deals with singular covariance matrices.

Extended versions of the EM can automatically determine
the optimal number of Gaussian components [23], [24], [25],
[26]. In this work we will introduce the basic method and
assume the desired number of Gaussian components is given
and fixed. However, an extension that includes automatic
detection of an optimal number of components similar to one
of these methods is possible.

B. Contribution

The contribution of this paper is a fast, simple, and practical
EM method for the correct treatment of weighted samples in
Gaussian mixture estimation.

III. PROBLEM FORMULATION

For an observed set of L weighted samples

Y = {{α1, s1} , {α2, s2} , . . . , {αL, sL}}

with sample locations si as vectors in the D-dimensional
Euclidean space RD, and scalar weights αi, we want to find
a GM density function with M Gaussian components
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with nonnegative component weights wm ≥ 0 that are
normalized,

∑M
m=1 wm = 1, component means µ

m
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and positive definite component covariances Cm ∈ RD×D.
The GM should explain the observed samples as good as
possible. We thus estimate GM parameters Θ
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from the weighted samples Y, ideally in a maximum
likelihood sense
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This can be done via numerical optimization or, more
efficiently and gradient-free, using the EM algorithm. For the
EM algorithm, we additionally consider a hidden variable H.
It contains the association probabilities ηi,m between samples
{αi, si} and GM components

{
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}
.

IV. KEY IDEA

We believe that the following two things should give the
same contribution to the result: i) one sample with double
weight, and ii) two single-weight samples that are arranged
with infinitesimally small or zero distance between them.
Therefore, we propose to determine the hidden association
parameters H only based on sample locations. In other words,
we use the observed sample weights only in the maximization
step and not in the expectation step.

For the maximization step, we propose to estimate GM
component weights, means, and covariances as a weighted
average. Thereby we combine the two weightings from
a) the given observed sample weights and b) the sample-
to-GM component associations, via multiplication and re-
normalization.

V. IMPLEMENTATION OF PROPOSED METHOD

Associations H between samples and GM components
are unknown but necessary for an EM algorithm in order
to independently calculate moments of individual mixtures.
Marginalization over all possible associations

fY|Θ(Y|Θ) =

∫
fH,Y|Θ(H,Y |Θ) dH ,

is infeasible, hence the separation into expectation and
maximization steps according to the EM algorithm.

A. Expectation Step

Besides the given observed data Y, we assume an estimate
Θ̂(r) of the parameter vector containing the GM parameters{
w
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normalization such that the row sum is equal to one, Ĥ(r+1)

describes a “probability of association” for each sample i to
each component m of the GM.



B. Maximization Step

Using said estimate of the hidden data Ĥ(r+1) and also
the observed data Y, i.e., sample locations si and sample
weights αi, we obtain a new estimate of the parameter vector
Θ̂(r+1)
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αĩ

=

∑L
i=1 η

(r+1)
i,m αi∑L

ĩ=1 αĩ
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C. Split Sample Linearity

The obtained parameter estimate Θ̂(r+1), after performing
one expectation and maximization step for some given prior
parameter estimate Θ̂(r), is identical whether we have a set
of weighted samples

Y = {{α1, s1} , {α2, s2} , . . . , {αL, sL}} ,

or “split samples” with, e.g., two samples and two weights
at each sample location, i.e.,

Ỹ =

{{
α
(1)
1 , s1

}
,
{
α
(2)
1 , s1

}
,
{
α
(1)
2 , s2

}
,
{
α
(2)
2 , s2

}
,

. . . ,
{
α
(1)
L , sL

}
,
{
α
(2)
L , sL

}}
, (5)

with αi = α
(1)
i + α

(2)
i ∀ i ∈ {1, . . . , L}. This is because

association probabilities η(r+1)
i,m in the expectation step do not

depend on sample weights αi, and for the maximization step
due to its linearity it does not matter whether there are two
samples with weights α(1)

i , α
(2)
i at the same location si , or

only one sample that contains their combined weight αi.
Note that the same holds for any other linear combination

of more than two weights and samples at each same sample
location, moreover not all but only a few sample locations
may exhibit “split samples”. We see this invariance against
“split samples” as a logical sanity check the method should
pass in order to be consistent.

VI. IMPLEMENTATION IN [1]
For comparison, we reproduce the implementation from

[1], [27] and highlight the differences to what we propose.

A. Expectation Step in [1]

For estimating the associations η(r+1)
i,m between samples

si and GM components
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We however propose to use the GM covariances C
(r)
m

without any sample-specific adaptions (1).

B. Maximization Step in [1]

In [1], sample weights αi are not considered when
calculating the Gaussian mixture component weights w(r+1)

m
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is identical to our proposed method (3). For component
covariance estimation C

(r+1)
m , the difference between [1]

and our proposed method (4) is that sample weights αi are
not considered for normalization
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C. Split Sample Linearity in [1]

For the EM method according to [1], the result of each
iteration is different when we “split” some samples in different
ways, e.g., in two parts (5). Therefore, a double sample weight
is not equivalent with two samples at the same location.
The evaluation section will demonstrate that not only the
individual iteration results, but also the final result differs
from our proposed method, and from the ground truth.

VII. EVALUATION AND COMPARISON WITH [1]

As the simplest example, we define a one-dimensional GM
with two components. A large number of equidistant samples
is placed in the relevant region, and the GM density function
at each sample location is used as the respective sample
weight. Furthermore, some random initial guess of the GM
parameters is given. Two algorithms are compared in solving
this density estimation problem. First, our proposed method
as defined in Sec. V, and second, the method as proposed in
[1] and replicated here in Sec. VI.

One setup is defined where the two Gaussian components
are rather “separated”, this can be solved with about 15
iteration steps, see Fig. 2 (a, b, c). A second setup has
Gaussian components that are closer together and exhibit
some “overlap” of probability mass. Both EM algorithms
need much more iteration steps to converge here, see Fig. 2
(d, e, f).

For the “separated” Gaussian components we find that
all algorithms provide a very good estimate of the GM
component means after about three iterations. The weighting
factor estimates need more iterations to converge and are
slightly off with the algorithm from [1]. Standard deviations
from [1] are not reliable at all. Only our proposed method
provides accurate results here. In the “overlapping” setup,
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Fig. 2: A simple scalar example with two GM components. Equidistant samples were weighted with the ground truth
probability density function, and the GM parameters (component weights, means, and variances) were estimated with our
proposed method (red lines) and the method from [1] (blue lines). Ideally, the estimations should converge to the ground
truth (black dashed lines) after some iterations.

the GM component weight, mean, and variance estimates
converge to solutions that are significantly off the ground truth
when using the method from [1]. Our proposed method needs
more iterations to converge but finds the accurate solution in
the end.

Matlab source code with an implementation of the pre-
sented GM estimation from weighted samples is provided
alongside this paper in the IEEE Xplore Code Ocean system.
The code for the existing method has been taken from [28].



VIII. CONCLUSIONS

Considering weighted samples opens new applications for
GM estimation, e.g., in the field of Bayesian estimation,
see [10]. The correct treatment of weighted samples in GM
estimation was derived. It was shown that current approaches
have a serious flaw that leads to wrong estimates. The proper
modifications can simply be added to existing GM estimation
code to extend its applicability to weighted samples. The
proposed method is also a plugin replacement for standard
GM estimators as it is backwards compatible for unweighted
samples.

Often the optimal number of Gaussian components de-
scribing a set of weighted samples is not known beforehand.
Therefore, in future work, the algorithm should be extended
to automatically detect an optimal number of Gaussian
components.

REFERENCES

[1] I. D. Gebru, X. Alameda-Pineda, F. Forbes, and R. Horaud, “EM
Algorithms for Weighted-Data Clustering with Application to Audio-
Visual Scene Analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 38, no. 12, pp. 2402–2415, 2016.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,”
ACM Comput. Surv., vol. 31, no. 3, p. 264–323, Sep. 1999. [Online].
Available: https://doi.org/10.1145/331499.331504

[3] J. Larsen, A. Szymkowiak, and L. K. Hansen, “Probabilistic Hierar-
chical Clustering With Labeled and Unlabeled Data,” International
Journal of Knowledge Based Intelligent Engineering Systems, vol. 6,
no. 1, pp. 56–63, 2002.

[4] C. Premebida and U. Nunes, “A Multi-Target Tracking and GMM-
Classifier for Intelligent Vehicles,” in 2006 IEEE Intelligent Trans-
portation Systems Conference, 2006, pp. 313–318.

[5] D. E. Clark and J. Bell, “Multi-Target State Estimation and Track Con-
tinuity for the Particle PHD Filter,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 43, no. 4, pp. 1441–1453, 2007.

[6] S. K. Pang, J. Li, and S. J. Godsill, “Detection and Tracking of
Coordinated Groups,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 47, no. 1, pp. 472–502, 2011.

[7] E. Tzoreff and A. J. Weiss, “Expectation-Maximization Algorithm
for Direct Position Determination,” Signal Processing, vol. 133,
pp. 32–39, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0165168416302821

[8] H. Li, J. K. Ng, V. C. Cheng, and W. K. Cheung, “Fast Indoor
Localization for Exhibition Venues With Calibrating Heterogeneous
Mobile Devices,” Internet of Things, vol. 3-4, pp. 175–186, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2542660518300611

[9] L. Dovera and E. Della Rossa, “Multimodal Ensemble Kalman
Filtering Using Gaussian Mixture Models,” Computational Geosciences,
vol. 15, no. 2, pp. 307–323, Mar 2011. [Online]. Available:
https://doi.org/10.1007/s10596-010-9205-3

[10] D. Frisch and U. D. Hanebeck, “Progressive Bayesian Update Using
Interleaved Gaussian Mixture and Dirac Mixture,” in Proceedings of the
23rd International Conference on Information Fusion (Fusion 2020),
Virtual, Jul. 2020.

[14] S. Kim, “Weighted K-Means Support Vector Machine for Cancer
Prediction,” SpringerPlus, vol. 5, no. 1, p. 1162, Jul 2016. [Online].
Available: https://doi.org/10.1186/s40064-016-2677-4

[11] C. Drummond, R. C. Holte et al., “C4. 5, Class Imbalance, and Cost
Sensitivity: Why Under-Sampling Beats Over-Sampling,” in Workshop
on learning from imbalanced datasets II, vol. 11. Citeseer, 2003, pp.
1–8.

[12] C. R. Palmer and C. Faloutsos, “Density Biased Sampling: An
Improved Method for Data Mining and Clustering,” SIGMOD
Rec., vol. 29, no. 2, p. 82–92, May 2000. [Online]. Available:
https://doi.org/10.1145/335191.335384

[13] K. Kerdprasop, N. Kerdprasop, and P. Sattayatham, “Weighted K-Means
for Density-Biased Clustering,” in Data Warehousing and Knowledge
Discovery, A. M. Tjoa and J. Trujillo, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 488–497.

[15] G. C. Tseng, “Penalized and Weighted K-Means for Clustering With
Scattered Objects and Prior Information in High-Throughput Biological
Data,” Bioinformatics, vol. 23, no. 17, pp. 2247–2255, 06 2007.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btm320

[16] G. N. Abras and V. L. Ballarín, “A Weighted K-Means Algorithm
Applied to Brain Tissue Classification,” Journal of Computer Science
& Technology, vol. 5, 2005.

[17] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An Efficient K-Means Clustering Algorithm: Analysis
and Implementation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[18] G. Hamerly and C. Elkan, “Alternatives to the K-Means
Algorithm That Find Better Clusterings,” in Proceedings of the
Eleventh International Conference on Information and Knowledge
Management, ser. CIKM ’02. New York, NY, USA: Association
for Computing Machinery, 2002, p. 600–607. [Online]. Available:
https://doi.org/10.1145/584792.584890

[19] A. Likas, N. Vlassis, and J. J. Verbeek, “The Global K-Means
Clustering Algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451–461,
2003, biometrics. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320302000602

[20] R. A. Redner and H. F. Walker, “Mixture Densities, Maximum
Likelihood and the EM Algorithm,” SIAM Review, vol. 26, no. 2,
pp. 195–239, 1984.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from Incomplete Data Via the EM Algorithm,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22,
1977.

[22] C. F. J. Wu, “On the Convergence Properties of the EM Algorithm,”
The Annals of Statistics, vol. 11, no. 1, pp. 95–103, 1983.

[23] M. A. T. Figueiredo and A. K. Jain, “Unsupervised Learning of Finite
Mixture Models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 3, pp. 381–396, 2002.

[24] B. Zhang, C. Zhang, and X. Yi, “Competitive EM Algorithm for
Finite Mixture Models,” Pattern Recognition, vol. 37, no. 1, pp.
131–144, 2004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0031320303001407

[25] P. Paalanen, J.-K. Kamarainen, J. Ilonen, and H. Kälviäinen, “Feature
representation and discrimination based on Gaussian mixture model
probability densities—Practices and algorithms,” Pattern Recognition,
vol. 39, no. 7, pp. 1346 – 1358, 2006.

[26] V. Melnykov and I. Melnykov, “Initializing the EM Algorithm in
Gaussian Mixture Models with an Unknown Number of Components,”
Computational Statistics & Data Analysis, vol. 56, no. 6, pp.
1381–1395, 2012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167947311003963

[27] I. D. Gebru, X. Alameda-Pineda, R. Horaud, and F. Forbes, “Audio-
Visual Speaker Localization Via Weighted Clustering,” in 2014 IEEE
International Workshop on Machine Learning for Signal Processing
(MLSP), 2014, pp. 1–6.

[28] I. D. Gebru, “EM_WD,” https://github.com/isrish/EM_WD, 2016.


