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Abstract— Recently, trigonometric polynomials have been used
to approximate densities or their square roots in the context
of Bayesian estimation. Trigonometric polynomials were also
used to interpolate function values on grids on hypertori. In
this paper, we derive formulae for conditional densities and
likelihoods for multivariate densities parameterized by grid
values or Fourier coefficients. Efficient formulae are proposed
for both representations that involve no more than O(n logn)
operations. The conditional densities can be described using a
single parameter vector. For the likelihoods, formulae are given
that allow for a precise evaluation using two parameter vectors.
Furthermore, formulae involving only a single parameter vector
are provided for approximations of the likelihoods.

I. INTRODUCTION

Statistical modeling of periodic quantities is important
in many fields, such as geology [1], biology [2], and
particularly protein bioinformatics [3], where it led to a
major breakthrough in the protein folding problem [4].
The Cartesian product of two circles is a torus, and the
Cartesian product of even more circles is a hypertorus. Several
distributions exist for toroidal and hypertoroidal domains. One
is the bivariate von Mises distribution [5]. Furthermore, a
multivariate version of the generalized von Mises distribution
has been proposed [6]. Another parametric distribution is
the wrapped normal distribution for arbitrary dimensions [7].
There are also multivariate projected Gaussian distributions
for hypertoroidal domains [8]. Additional distributions were
specifically tailored to problems in the field of protein
bioinformatics [9], [10].

Very versatile classes of distributions, which are the focus
of this paper, are those used by the Fourier filters [11] and the
grid filter [12]. In the Fourier identity filter (IFF), the density
is represented using a trigonometric polynomial, which is a
Fourier series with a finite number of nonzero coefficients.
Densities in this representation may have negative function
values. In the Fourier square root filter (SqFF), a trigonometric
polynomial describes the square root of the density instead.
By squaring the values of the trigonometric polynomial, the
nonnegativity of the function values can be ensured. In the
grid filter, one approximates function values of the density
on a grid. In our grid filter, function values at other points
are provided by interpolating the square roots of the function
values using a trigonometric polynomial and squaring the
result. Similar to the SqFF, the nonnegativity of the function
values is ensured.
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In this paper, we explain representation-specific approaches
to obtain conditional densities and likelihoods from multivari-
ate densities in the representations based on trigonometric
polynomials and grids. Before going into the technical
details, we illustrate the differences between likelihoods
and conditional densities and explain why likelihoods and
conditional densities are of interest in filtering contexts.

We now consider the difference between likelihood func-
tions and conditional densities for two random variables x
and y with the joint density fx,y(x, y). Denoting (scalar)
variables as x and y and a fixed value as ŷ, we distinguish

fx|y(x|ŷ) = fx,y(x, ŷ)

fy(ŷ)
, fy|x(ŷ|x) = fx,y(x, ŷ)

fx(x)
.

The former is a likelihood, and the latter is a conditional
density. Both fx|y(x|ŷ) and fy|x(ŷ|x) are related to a slice
of the joint density fx,y(x, y) that is obtained by using the
fixed value ŷ as the second input argument. For scalar x,
fx,y(x, ŷ) is a function of a single scalar variable. To obtain
fx|y(x|ŷ), fx,y(x, ŷ) is divided by the constant fy(ŷ) that
ensures the normalization of fx|y(x|ŷ) (unless fy(ŷ) is 0,
but this is not practically relevant since one normally only
conditions on values that have nonzero density). For the
likelihood, the function fx,y(x, ŷ) is divided by the function
fx(x), which is a marginal of fx,y(x, y) and also a function
of x. The result of the division is not necessarily a function
that integrates to one.

In summary, for fx|y(x|ŷ), one takes a slice of the joint
density and normalizes it by dividing it by a scalar. For
fy|x(ŷ|x), one takes the same slice of the joint density and
then divides it by the function fx(x) that is obtained by
marginalizing y out of fx,y(x, y).

There are several situations in which one needs to derive a
likelihood from a joint density. For example, one may want to
employ Bayes’ formula for an update step of a Bayesian filter
based on the joint density fx,y(x, y) and the measurement
ŷ. In filtering contexts, it may be necessary to derive the
likelihood fy|x(ŷ|x) in a compatible parametric form to
perform the update step. Therefore, we present formulae for
directly determining the parameters of the likelihoods from
the parameters of the joint density in this paper. If one is
only given fx,y(x, y) as a function, we can determine the
required parameters once before running the filter.

Conditional densities are particularly relevant when x and
y are the two components of the state of a system. When
obtaining uncertainty-free information on one component of
the state, one may be interested in the distribution of the
other component of the state. Further, it can be of interest



to describe the distribution of a specific component when
considering different values for the other components of the
state.

The paper is structured as follows. In Sec. II, we detail the
representations used in the Fourier and grid filters. In Sec. III,
we present the approaches to obtain conditional densities and
likelihoods. A conclusion and an outlook are provided in the
last section.

II. DENSITY REPRESENTATIONS

In this section, we focus on the density representations used
in the Fourier and grid filters. We also include some basic
information on the filters, but refer the reader to [11], [13] for
details on the operations for the hypertoroidal Fourier filter
and to [14] for the hypertoroidal grid filter. The formulae given
in this section are suitable for arbitrary-dimensional vectors
x. In the next section, we focus on the two-dimensional case,
in which the vector (denoted as an underlined small letter) x
is assumed to be [x, y]⊤.

A. Representations Used in the Fourier Filters

To represent densities in the IFF, we consider a Fourier
coefficient tensor Cid of size m along each dimension, which
leads to a total of n = md coefficients for a d-dimensional
density. The assumption of equal sizes along all dimensions is
not a requirement and is only used to simplify the explanations.
The density is then given by

f id(x) =
∑
k∈K

cid
k e

i(k·x) (1)

with k ∈ K = {−m−1
2 , . . . , m−1

2 }
d. Closed-form formulae

exist for calculating the coefficients for certain classes of den-
sities, e.g., the multivariate wrapped normal distribution [11,
Appendix A]. If no such formula exists, the coefficients can
be approximated based on function values on a regular grid
(as used in the grid filters) using a multidimensional fast
Fourier transform [15] (FFT). As mentioned in the introduc-
tion, directly representing a density using a trigonometric
polynomial can lead to negative function values.

In the representation used for the SqFF, a trigonometric
polynomial with coefficient tensor Csqrt is squared. This leads
to the formula

f sqrt(x) =

∑
k∈K

csqrt
k ei(k·x)

2

.

In this case, the function is always guaranteed to be nonneg-
ative.

The update step of the IFF and SqFF can both be performed
in O(n log n). The prediction step for the identity system
model with additive noise is in O(n) for the IFF and in
O(n log n) for the SqFF. A general prediction step was
presented in [13]. While the computational complexity in the
most general case is in O(n2 log n), a complexity in O(n2)
can be achieved under certain circumstances.

B. Representation Used in the Grid Filter

Grid filters have previously been used as filters for bounded
regions of real domains [16, Sec. 4.1]. In our grid filter
for the hypertorus [17], a potentially multivariate density is
represented using function values on a grid.

An equidistant grid on the circle is given by 2π k
m with

k ∈ Z/mZ = {0, . . . ,m − 1}. We only consider grids for
the hypertorus that can be generated by taking the d-fold
Cartesian product of such a grid for the circle. Such grids
have an equal resolution along all dimensions. Similar as for
the Fourier filters, this is not a requirement of the filter but
simplifies the explanations. The set of grid points B for the
hypertorus is thus

B =

{[
2π

k1
m

, 2π
k2
m

, · · · , 2πkd
m

] ∣∣∣∣k ∈ (Z/mZ)d
}

.

This results in a total number of n = md grid points.
In this paper, we say the function values on the grid are

stored in a tensor Λ as in the fast prediction step in [17].
To obtain the function values of the density for inputs that
are not grid points, the function values at the nearest grid
point could be used. However, this does not lead to a smooth
density. Furthermore, experiments in which we reconstructed
a given density based on the function values on the grid
showed bad reconstruction performance.

Therefore, we consider interpolations based on trigono-
metric polynomials. One way would be to interpolate the
function values on the grid. To this end, we can perform a
multidimensional FFT to obtain the Fourier coefficient tensor
Cid. This leads to the density function

f id(x) =
∑

k∈(Z/mZ)d
cid
k e

i(k·x), Cid = FFT(Λ) .

A downside to this interpolation is that it may have negative
function values.

To ensure all function values are nonnegative, we can first
take the square root of the function values before performing
the FFT to obtain the Fourier coefficient tensor Csqrt. As in
the SqFF, the trigonometric polynomial is squared to obtain
the function

f sqrt(x) =

 ∑
k∈(Z/mZ)d

csqrt
k ei(k·x)

2

, Csqrt = FFT(
√
Λ) .

To prevent negative function values, we use the latter as our
default interpolation.

III. DETERMINING CONDITIONAL
DENSITIES AND LIKELIHOODS

The derivations in this section are not strictly limited to
the two-dimensional case, which we focus on in this paper
for clarity. The approaches provided in this paper are also
valid when dealing with dx-dimensional vectors x and dy-
dimensional vectors y. We will point out the key differences
for the higher dimensional case throughout this section. We
always assume ŷ is given. Thus, the likelihood to be derived
is fy|x(ŷ|x), and the conditional density is fx|y(x|ŷ).



In the previous section, we used that the Fourier coefficients
of a density (or its square root) can be obtained from grid
values via an FFT. The FFT and IFFT allow deriving the
parameters for one representation from the parameters of
a different representation, as shown in Fig. 1. The grid
values Λ can be converted into the Fourier coefficient matrix
Cid describing a function via an FFT, while the opposite
conversion is possible via an IFFT. By applying an FFT to
the square roots of the grid values, which we denote by

√
Λ,

we obtain the Fourier coefficient matrix Csqrt for the square
root of the function. The grid values for the density and the
density’s square root can be converted into one another by
taking the square roots of the values or squaring them.

The convolution of two Fourier coefficient matrices cor-
responds to the multiplication of the original functions
(see [18, Ch. 4.4] for the 1-D case). Hence, by convolving
Csqrt with itself, we can obtain a Fourier coefficient matrix
representing the same function as Csqrt without the need to
square the trigonometric polynomial. For true equivalence
of the functions, the full convolution result has to be used,
which is larger than the original matrix.

Generally, there is no simple way to derive a coefficient
matrix describing the square root of the density from the
coefficient matrix describing the density. However, it is
possible to convert Cid to grid values Λ via an FFT, take
the square roots of these grid values, and then perform
an IFFT to obtain the Fourier coefficients. In general, this
approach involves approximation errors. These are generally
inevitable when keeping the number of coefficients constant.
For example, while a sine function can be described with
m = 3 coefficients, this does not hold for the square root of
a sine function.

The 2-D FFT can be computed using a 1-D FFT over one
of the dimensions followed by an FFT over the other dimen-
sion [19]. In this paper, we also consider a representation for
which only a 1-D FFT is applied along the dimension of y
(or the dimensions of y for higher dimensions). As illustrated
in Fig. 1, we denote the result of applying this 1-D FFT to
Λ by Ξid, and we use Ξsqrt to refer to the result of applying
this 1-D FFT to

√
Λ.

For both representations, we consider shifting fx,y(x, y)
along the y-axis by ŷ. This leads to the function

f
←−

x,y
ŷ (x, y) = fx,y(x, y − ŷ) .

As we will see in this section, deriving the parameters of
f
←−

x,y
ŷ (x, 0) is easier than directly deriving the parameters

of fx,y(x, ŷ) for the considered representations. For the
conditional density, we merely need to normalize f

←−
x,y
ŷ (x, 0).

For the likelihood, we also need to derive the marginal density
fx(x). Thus, we also need an approach to marginalize y out
of fx,y(x, y) or, equivalently, f

←−
x,y
ŷ (x, y). In the subsections

of this section, we first consider the grid-based representation
and afterward regard densities in the representations used by
the Fourier filters.
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Fig. 1: Overview of the considered representations.

A. Approach for Grid-Based Densities

For both the conditional density and the likelihood, we
will use the slice of the joint density at ŷ. For this, we
regard how to get the function values of fx,y(x, ŷ) on the
one-dimensional grid along the x-axis with ŷ as the second
argument. If ŷ ∈ I = {2π k

m |k ∈ Z/mZ}, this is trivial
because the grid points are already part of the grid B and we
can simply take the function values associated with them.

In the following paragraphs, we first explain a naı̈ve
approach for the general case. Second, a faster approach
is presented, which is further optimized afterward. After this,
we will address deriving the likelihood and conditional density
based on this intermediate result.

The naı̈ve approach to obtaining the function values on
the 1-D grid in the 2-D space is to evaluate the interpolation
at I × {ŷ}. For this, we first take the square root of all
values, leading to the matrix

√
Λ. Afterward, we apply the

FFT to the values to obtain the Fourier coefficient matrix
Csqrt for the square root of the interpolation. We can then
obtain the desired grid values by evaluating the trigonometric
polynomial at I × {ŷ}.

The considered lower-dimensional grid comprises
√
n

points in the 2-D case and nd/dx points for higher dimen-
sions. For each function evaluation, we add up a weighted
combination of all O(n) Fourier coefficients, leading to a
total complexity in O(n1.5) for the 2-D case and O(n1+dx/d)
for the arbitrary-dimensional case.

To arrive at a faster approach, we shift the trigonometric
polynomial to obtain f

←−
x,y
ŷ (x, 0) and then calculate the slice

at 0, which is easier since 0 ∈ I . An overview of the approach
is given in Fig. 2. Black arrows show the steps to derive
the parameter of the density at the slice at ŷ. Blue and
red arrows are used for the steps to derive the conditional
density or likelihood, respectively. The dashed arrows show
an optimization that we address after the basic approach.

In the grid filter, we start out with the function values Λ
on the grid, as visualized for an example in Fig. 3a. The
first step is to determine the function values of the square
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Fig. 2: Illustration of how to get the grid values of the
conditional density and likelihood based on the grid values
of the joint density.

root of the density on the grid (i.e.,
√
Λ). The square roots

of the grid values are illustrated for the example in Fig. 3b.
Then, we perform a 2-D FFT (in general d-D) to obtain the
Fourier coefficient matrix Csqrt. The resulting trigonometric
polynomial (describing the square roof of the density) is
visualized for our example in Fig. 3c. In this figure, we show
the function values of

√
fx,y(x, ŷ) in red to visualize the

relevant slice of the square root of the joint density.
Then, we shift the function by −ŷ along the y-axis to

obtain the Fourier coefficients of
√

f
←−

x,y
ŷ (x, y). The shifting

operation can be performed directly based on the Fourier
coefficients by applying the formula (see [20, Volume I,
Ch. 2] for the 1-D case)

cshifted
k1,k2

= ck1,k2
e−ik2ŷ (2)

to all Fourier coefficients, leading to the Fourier coefficient
matrix C←−

sqrt
ŷ . This operation is in O(n). The formula can

also be used for the d-dimensional case by adapting the term
in the exponent. The resulting trigonometric polynomial for
our example is shown in Fig. 3d along with the slice of the
density, which is now at a different location.

Then, we apply an IFFT to C←−
sqrt
ŷ to obtain the function

values
√

Λ←−ŷ on the original 2-D grid, as shown in Fig. 3e.
Next, we take only the grid values for y = 0 and square them
to obtain γs. The result for our example is shown along with
the corresponding interpolation in Fig. 3f. In practice, one can
omit to calculate all other function values on the grid when
calculating the IFFT. The overall computational complexity
is in O(n log n) because no more expensive operations than
the FFT and IFFT are involved. This is better than O(n1.5)
or O(n1+dx/d) required for the naı̈ve approach.

There is also a more efficient way to determine the grid
values for the slice of the density. We never need to perform
FFTs and IFFTs over all dimensions. Instead, we can restrict
this operation to the dimension (or dimensions) of ŷ, which
are those we would like to shift. Thus, we apply a 1-D (or dy-
D) FFT to obtain Ξsqrt based on

√
Λ. We can then perform the

shifting operation using (2), as explained above. Afterward,
we perform an IFFT to obtain

√
Λ←−ŷ. The rest of the steps

are identical to those described before. The complexity of
this approach is also in O(n log n).

It should be noted that none of the operations involved
introduces approximation errors. Thus, the function values
on the 1-D grid are precisely the function values we would
have obtained if we had directly evaluated the trigonometric
polynomial, as described in the naı̈ve approach.

To obtain the conditional density, we normalize the new
1-D density. As proven in the appendix of [12], the integral
over the interpolation of the density used in the grid filter
(i.e., the square of the trigonometric polynomial interpolating
the square roots of the grid values) can be determined by
taking the mean over all grid values and multiplying the
result by 2π. By dividing γs by 2πmean(γs), one obtains the
vector γc representing the normalized conditional density.
For higher dimensions, one may obtain a tensor Λs. In
the higher dimensional case, the mean has to be calculated
over all entries of the tensor, and the result needs to be
scaled by (2π)dx . Again, no approximations are involved. The
complexity is in O(n log n) because of the FFT employed to
obtain γs.

To derive the likelihood, we first determine the grid values
of the marginalized density fx(x). For this, we use the
formula for the integral explained earlier. To marginalize
out the second dimension, we take the mean over all grid
values along the second dimension and multiply the result
by 2π. This leads to the coefficient vector γm for the
marginalized result. For vector-valued y, all dy dimensions
have to be marginalized out by taking the average over all
these dimensions and multiplying the result by (2π)dy .

To obtain the function values of the likelihood at arbitrary
points, one can calculate the Fourier coefficient vectors
cs,sqrt = FFT(

√
γs) and cm,sqrt = FFT(

√
γm) and evaluate

both trigonometric polynomial at the input points. By dividing
the squared function values of the trigonometric polynomial
with coefficient vector cs,sqrt by the squared function values
of the trigonometric polynomial with the coefficient vector
cm,sqrt, the function values of the likelihood can be obtained
without introducing approximation errors.

It can also be of interest to have a single vector of grid
values for, e.g., the update step of the grid filter. For this,
we divide the vector γs comprising the function values on
the slice of the density entry-wise by the function values
of the marginalized density γm. The result is the vector γL

comprising the precise function values of the likelihood at
the grid points. However, unlike the approach discussed in
the previous paragraph, applying our standard interpolation
scheme to the grid values does generally not lead to the precise
values of the likelihood. The reason for this is that it may
not be possible to precisely describe the result of the division
using the given number of grid points. The complexity is in
O(n log n) both for determining the parameter vectors cs,sqrt

and cm,sqrt for the precise solution and obtaining γL for the
approximation.

Entries of γm may be zero, which makes it impossible to
perform the division. In this case, it may not be possible to
approximate the likelihood well using a single vector. To be
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Fig. 3: Illustration of the steps to obtain a conditional density for grid-based densities.

able to perform the division and thus obtain a single vector
nonetheless, one may consider shifting the grid by an offset
so that no value is zero anymore. The shifting operation
can be implemented by transforming the vectors γs and γm

to Fourier coefficients via an FFT, performing the shifting
operation via (2), and then transforming the results back via
an IFFT.

B. Approach for the Density Representations of the
Fourier Filters

In this subsection, we first consider the representation used
in the IFF and then the one used in the SqFF.

1) Representation Used in the IFF: In a naı̈ve approach,
one may consider transforming the Fourier coefficients to
grid values, then performing the steps in Sec. III-A, and
transforming the grid values back at the end. However,
this only works if applying an IFFT to Cid results only
in nonnegative values, which is not guaranteed in this
representation. If the Fourier coefficients were obtained by
applying an FFT to values of the density on the grid, the
IFFT will (when disregarding numerical imprecisions) always
yield nonnegative values. However, for example, when the
coefficient matrix is the result of an update step, negative
values may be obtained. In this case, one cannot take the
square root of the grid values. Also note that even when
this approach is applicable, it may not yield the expected

result. By employing the approach of Sec. III-A, one uses
the interpolation involving the square root, even though
the density is represented directly using a trigonometric
polynomial in the IFF.

A solution specifically tailored to the density representation
of the IFF is shown in Fig. 4. To obtain the Fourier coefficients
of fx,y(x, ŷ), we first use (2) to shift the density and obtain
C←−

id
ŷ (which describes f

←−
x,y
ŷ (x, y)) based on Cid. Obtaining

the parameters of a slice of the joint density is easier in the
representation based on grid values. Therefore, we perform
a 1-D IFFT along the second dimension, leading to Ξ←−

id
ŷ . In

this representation, we can obtain the slice of the density
in a similar way as in the previous subsection. By taking
the first column (i.e., the column describing the function
at y = 0), we obtain the coefficient vector cs,id describing
f
←−

x,y
ŷ (x, 0). No approximation errors were introduced in any

of the operations so far. While the function described by cs,id

can have negative function values, this may only occur if the
function described by Cid also has negative function values.

To obtain the conditional density, we normalize the density
represented by cs,id. As discussed in [11], the integral over a
trigonometric polynomial is equal to 2πcs,id

0 (or (2π)dxcs,id
0

in the multidimensional case, with 0 being the index vector
comprising only zeros). As evident from (1), we can scale the
trigonometric polynomial directly describing the function by
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Fig. 4: Approach to obtain the coefficient vectors of the
conditional density and likelihood for the representation used
in the IFF.

multiplying or dividing all coefficients by a constant. Thus,
we can perform the normalization and obtain the coefficients
for the conditional density via

cc,id =
1

2πcs,id
0

cs,id .

For the likelihood, we first derive the coefficients of the
marginalized density. As discussed in [21], one can marginal-
ize out the second dimension of a trigonometric polynomial by
taking the central column of the Fourier coefficient tensor and
multiplying it by 2π (in the multidimensional case, we need to
take a subtensor and multiply the result by (2π)dy ). This leads
to the coefficient vector cm,id for the marginalized density.
Then, we have the coefficient vectors cs,id for fx,y(x, ŷ) and
cm,id for fx(x). The optimal function value for any point x
can be obtained by evaluating both trigonometric polynomials
at x and then performing the division.

In this representation, obtaining a single coefficient vector,
e.g., for use in the update step of the IFF, is non-trivial since
there is no simple formula for the Fourier coefficients of
the result of the division of two trigonometric polynomials.
However, we can apply an IFFT to both vectors to obtain the
vectors γs and γm comprising the function values on the grid.
Then, we perform a division to obtain a vector of function
values on the grid γL. This vector can be transformed to
the Fourier coefficient vector cL,id via an FFT. As before,
the vector γm may include negative values or zero. While
negative values do not prevent any operation, zero values
make the division impossible. If any value is zero, a similar
strategy could be considered as for the grid filter. Also note
that as in the grid filter, γL may not be sufficient to describe
the precise result of the division, and thus, cL,id does generally
not describe the likelihood precisely.

Obtaining the parameter vector cs,id is in O(n log n) due to
the IFFT involved. Determining the conditional density and
likelihood does not involve any more expensive operation,
and thus, the total complexity for both is also in O(n log n).

2) Representation Used in the SqFF: In the representation
used by the SqFF, one can obtain nonnegative function values
on the grid by applying an IFFT to the grid values and
squaring them. This way, one can temporarily switch to
the grid-based representation. In this representation, one can
perform the operations according to Fig. 2, take the square
roots of the values, and apply an FFT to obtain a vector of
Fourier coefficients for the square root of the function again.

While this approach is not optimal, we will first discuss it
before explaining an approach similar to that for the IFF.
Note that despite the differences, both approaches are in
O(n log n).

Approach Based on that for the Grid Filter: By applying
a 2-D IFFT to Csqrt and then squaring the resulting function
values, we would obtain the matrix Λ. If we then proceeded
as in Fig. 2, we would calculate the square roots of the values
and perform an FFT again, which would undo the previous
steps. Therefore, we first apply the shifting operation to obtain
C←−

sqrt
ŷ from Csqrt. Then, we can perform an IFFT to obtain

the function values on the grid
√

Λ←−ŷ. From these, we can
obtain the vector comprising the square roots of the grid
values

√
γs by discarding all columns of the matrix except

the first.
To obtain the conditional density, one can determine the

Fourier coefficient vector cs,sqrt from
√
γs via an FFT. As

proven in [13, Sec. 6.2.2], one can normalize a density
represented by a Fourier coefficient vector by dividing it
by
√
2π times its norm. Thus,

cc,sqrt =
1√

2π ∥cs,sqrt∥
cs,sqrt (3)

can be used to obtain the parameters of the conditional density.
For the likelihood, we only consider how to get a single

vector describing an approximate result. For this, we perform
a 2-D IFFT and square the values to obtain Λ. Then, we
perform the marginalization by calculating the mean over
the second dimension of Λ and multiplying the result by 2π.
By taking the square root afterward, we obtain

√
γm. By

dividing
√
γs by

√
γm entry-wise (see above how to handle

the case in which an entry is zero) we can obtain the square
roots of the function values of the likelihood on the grid. By
applying an FFT, we can obtain the Fourier coefficient vector
cL,sqrt for the likelihood.

Approach Similar to That for the IFF: As an alternative,
we shall now consider a more direct approach based on the
approach for the representation used in the IFF. An overview
of the approach is given in Fig. 5.

In the first step, we shift the function via (2) to obtain C←−
sqrt
ŷ .

Then, we apply a 1-D IFFT along the second dimension to
obtain Ξ←−

sqrt
ŷ . As in Sec. III-B.1, we take the first column to

obtain the Fourier coefficient vector cs,sqrt for the function√
fx,y(x, ŷ). As before, we can derive the Fourier coefficient

vector for the conditional density according to (3).
The marginalization cannot be performed directly based

on the Fourier coefficients because the coefficients describe
the square root of the density. Therefore, we calculate the
Fourier coefficients directly representing the function from
the Fourier coefficients for the square root of the function
by convolving the matrix Csqrt with itself to obtain Cid. We
use the full result of the discrete convolution, which has
(2m−1)2 ≤ 4n (for d-D (2m−1)d ≤ 2dn) entries. Because
the factor by which the number of coefficients increases only
depends on the dimension, we shall treat it as a constant.
The discrete convolution is thus in O(n log n). Using the full
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Fig. 5: Approach to obtain the coefficient vectors of the
conditional density and likelihood for the representation used
in the SqFF.

result provides the advantage that the matrix Cid describes
the same function as the one represented by Csqrt. Then, we
can perform the marginalization by taking the central column
and multiplying the result by 2π, leading to cm,id.

Now, we can evaluate both fx,y(x, ŷ) and fx(x) precisely
for any x. For the former, we evaluate the trigonometric
polynomial with the coefficient vector cs,sqrt and square the
result. For the latter, we evaluate the trigonometric polynomial
cm,id (no squaring is involved in this). By dividing the function
values of the fx,y(x, ŷ) by those of fx(x), the precise
function values of the likelihood can be obtained.

To approximate the likelihood using a single coefficient
vector, we can proceed as follows. We first perform an IFFT to
obtain the vector γm comprising the function values of fx(x)
on the grid. Since no approximation errors were introduced
so far, the entries of the vector γm are guaranteed to be
nonnegative. Hence, we can calculate the square roots of the
function values.

Note that the vector γm is of length 2m − 1 due to the
discrete convolution employed to obtain Cid. Therefore, we
first pad cs,sqrt with zeros so that the result of the IFFT is
a vector of the same length as γm. Then, we divide

√
γs

entry-wise by the square roots of the values in the vector
γm to obtain the vector

√
γL. By applying an FFT to

√
γL,

we obtain cL,sqrt. As for the other representations, cL,sqrt does
generally not describe the precise likelihood. Also, the case
in which an entry of γm is zero may require a strategy similar
to the one explained for the grid-based representation.

In some cases, one may be interested in a vector of length
m instead of 2m − 1. Note that simply discarding every
second grid value in γm after the IFFT leads to incorrect
results. Such an approach would only work if one had 2m
grid points, but in this case, one has 2m−1 grid points. As a
different approach, one may attempt to only determine a part
of the full convolution result of Csqrt with itself. However,
the steps that follow may then not always work as the IFFT
can then lead to negative function values.

A working approach is as follows. One applies a 2-D FFT
to Csqrt to obtain

√
Λ on a grid with m2 grid points. One

can then square the values to obtain Λ and then calculate
the mean over the second dimension and multiply the result
by 2π to obtain a vector γm with m entries describing the
marginalized result. Note that calculating the square of the
grid values may introduce an approximation error as it may
not be possible to perfectly describe the result of the squared

function using only the obtained grid values. Since γm has m
entries, it is not necessary to pad cs,sqrt, and one can directly
apply an IFFT to cs,sqrt and divide

√
γs by

√
γm to obtain a

vector for the likelihood with m entries. Finally, by applying
an IFFT to the result, one obtains a coefficient vector of
length m.

IV. CONCLUSION AND OUTLOOK

In this paper, we derived formulae for conditional densities
and likelihoods for the representations employed in the Fourier
and grid filters. Similar results were obtained for all the
considered representations. For both conditional densities and
likelihoods, we first considered how to parameterize the 1-D
slice of the joint density obtained by setting the second input
argument to ŷ. The key idea is that one can first shift the joint
density by −ŷ along the second dimension and then consider
the slice obtained by setting the second input argument of
the shifted density to 0.

Based on the parameters of the function along this slice, one
can obtain the parameters of the conditional density. For this,
one only has to perform an operation on the parameters that
ensures the normalization of the function. No approximations
are required, and the resulting parameter vector for each
considered representation precisely describes the conditional
density.

For the likelihood, the precise function values can only
be obtained by considering two functions in the respective
parametric form and dividing the function values of the first
function by those of the second at all considered points. We
further explored ways to provide a single parameter vector
for the likelihood. While the obtained vectors do not describe
the likelihoods perfectly, they are useful for, e.g., the update
steps of the filters.

The formulae presented in this paper extend our theory
on the Fourier and grid filters by allowing us to obtain
conditional densities and likelihoods from joint densities.
For all representations, Matlab code to obtain the parameters
of the function along the slice, the marginal density, the
conditional density, and the likelihood is available as part of
the latest version of libDirectional [22].

Future work could investigate other operations and prop-
erties concerning the parametric families of densities used
in the Fourier and grid filters. Further, one may consider
densities based on grids or orthogonal basis functions on
other manifolds.
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