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Abstract— In this paper, we combine the Kalman filter
and compressive sensing using pseudo-measurements in order
to reduce the number of measurements usually required
by the Kalman filter. To overcome the non-sparsity of the
measurement vectors, we make use of the change of their
coefficients when represented in a certain basis, reduce
the dimensionality of the coefficients, and learn a sparse
basis for the measurement vectors. We further improve our
proposed method by introducing dynamic weighting of the
pseudo-measurements, by aiding compressive measurement
reconstruction with Kalman filter estimates and by employing
iterative versions of this process. Simulations show that our
approach achieves a 37% improvement with respect to the
mean-square error compared to the traditional Kalman filter
with the same number of measurements. Our approach yields
better results when the measurement noise is relatively large
compared to the system noise, and it significantly improves the
accuracy of state estimation in sensor networks with low sensor
precision.

Index Terms— Kalman Filter, Compressive Sensing, Kalman
Filtered Compressive Sensing, Pseudo Measurements

I. INTRODUCTION

State estimation for dynamic systems, i.e., the inference
of the system state from a series of incomplete and noisy
measurements, is one of the most persistent research topics
in the field of signal processing. The Kalman filter (KF) [1]
is an efficient recursive algorithm to solve this problem.
Based on the KF, there are many extensions such as the
extended Kalman filter [2], the unscented Kalman filter [3],
and the distributed Kalman filter [4]. In some cases, the
number of measurements required by the Kalman filter is
large, e.g., when the system models are derived from partial
differential equations using the finite difference method
(FDM) [5], [6], [7].

Compressive Sensing (CS) [8] has emerged as a new
framework for signal acquisition, with which the signal of
interest can be recovered from fewer measurements than
required by the Nyquist-Shannon theorem [9]. There are
many applications of CS, e.g., a single-pixel camera [10],
a conventional camera with a coded aperture [11], a new
method for Magnetic Resonance Imaging [12] , and a new
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Fig. 1. Structure of this paper. Red frames describe the problems; blue
frames express the solutions to the problems, while green frames represent
relevant theories.

DNA microarray [13]. However, the prerequisite for using
CS is that the signal must be sparse or compressible [14]
when resolved in a certain basis, and the sensing matrix must
satisfy the restricted isometry property (RIP) [15].

Guided by an example, this paper proposes a method
to fuse the KF and CS to alleviate these disadvantages.
We solve three problems that arise when applying CS to
non-compressible signals by focusing on the changes of the
signals, reducing the dimension of the coefficients, and using
sparse coding to represent the signal sparsely. The KF and CS
are then combined to Kalman filtered compressive sensing
(KFCS) using pseudo-measurements (PMs). We handle the
uncertainty of the PMs (i.e., the error of CS reconstruction)
and the error-accumulation resulting from working with the
coefficient changes by introducing dynamic weighting, a
coefficient update, and an iterated update.

Fig. 1 shows the organization of this paper: Section I-A
discusses previous works and their relationship to our own;
Section II introduces the notation, the KF, CS, and the main
problems faced; Section III proposes solutions to the main
problems, and Section IV introduces our proposal, the KFCS
using PMs. Section V gives a simulation and discusses the
effectiveness of our approach. In Section VI, we summarize
our work and discuss future issues.

A. Related Work

There are some existing works on the combination of
CS with other methods [16]. In [17] the concept of a
homotopy continuation was introduced into CS to find a
more accurate solution faster and the resulting method
was applied to streaming signals such as videos [18].
In [19], Bayesian compressive sensing was proposed, where
measurements are adaptively selected, and the variance
of the errors is estimated simultaneously, which leads to
significantly lower errors. Distributed compressive sensing
was introduced in [20], which aims to estimate states based
on multiple signals from distributed coding algorithms in



sensor networks. Vaswani [21] combined CS with least
squares (LS) by replacing CS on the observation with CS
on the LS-residual. The LS-residual is computed using a
previous estimate of the support set. In [22] a new technique
for efficiently acquiring and reconstructing signals based
on convolution with a fixed FIR filter having random taps
was proposed. In [23], Vaswani proposed Kalman filtered
compressive sensing (KFCS), which combines the KF and
CS for the first time. After the KF innovation, the filter error
norm (FEN) is calculated to detect if there is an addition to
the support set. If there is, the new addition is estimated using
CS. In [24], the same author proposed the modified KFCS.
The author utilized a so-called temporary Kalman prediction
and an update to reduce the computational cost. The method
works particularly well for slowly changing signals.

Building on their works, we focus on combining the
advantages of the KF and CS, making CS more applicable
to non-compressible signals and reducing the number of
measurements required for state estimation.

II. BACKGROUND
A. Notation

Lower case letters x ∈ R denote scalar variables, and
additional underlining x ∈ RN indicates N -dimensional
vectors. An additional superscript x̂ indicates the estimated
values of x. Bold upper case letters X ∈ RM×N denote
M×N -dimensional matrices. Moreover, we utilize the letter
n ∈ N as subscript to denote the n-th time step, i.e., n
denotes the time step t = tn = n · ∆t, where ∆t is the
length of a time step. Matrix Cx denotes the covariance
matrix of vector x, i.e., Cx = E

{
(x̂− x)(x̂− x)T

}
, where

E{x} indicates the expected value of x. To distinguish the
signal, measurements, and compressed measurements, we let
f ∈ RN denote the value of the signal at each discrete
spatial point, where N indicates the total number of discrete
spatial points. The letters y ∈ RS and ỹ ∈ RM denote the
measurements and compressed measurements respectively,
where S refers to the number of sensors, and M is the
number of compressed measurements.

B. Temperature Distribution
Throughout this paper, we use the monitoring of the

one-dimensional temperature distribution of a beam as an
example. The mathematical model of heat conduction is
given by the diffusion equation [25],

∂f

∂t
(x, t) = k

∂2f

∂x2
(x, t)︸ ︷︷ ︸

diffusion equation

+ u(x, t)︸ ︷︷ ︸
stimulus

, (1)

where x denotes the spatial coordinate, t denotes time,
and f(x, t) indicates the temperature. We solve this partial
differential equation by utilizing the finite difference method
(FDM) [5]. FDM is a numerical method for calculating
approximate solutions of (partial) differential equations by
approximating the derivative terms using finite differences,
such as

∂f

∂t
(x, t+ ∆t) ≈ f(x, t+ ∆t)− f(x, t)

∆t
.
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Fig. 2. Synthetic temperature distribution.

In the following, we choose the time resolution ∆t = 0.1 s
and spatial resolution ∆x = 10

210 cm. The total length is
L = 10 cm, which means N = L/∆x = 1024, and the
diffusivity is k = 0.1 cm2/s. As shown in Fig. 2, the initial
temperature distribution is set to be a sine-shaped function
and the stimulus is

u(x, t) =0.1 sin
(
t− π

4

)
· δ(x− 3)

− 0.2 sin (t) · δ(x− 5) + 0.01t · δ(x− 7) .

In addition, we add zero-mean Gaussian system noise with
variance σ2

w = 0.005, and measurement noise with variance
σ2
v = 0.025 to each node. The time span of the simulation is
t ∈ [0, 20] seconds, i.e., n ∈ [0, 1, ...,T], where T represents
the maximal n, corresponding to t = 20s. After the finite
difference approximation, we can transform (1) into the form

f
n+1

= A · f
n

+ B · un + wn , (2)

where

A =


1 + P 0 −P
−P Q −P

. . . . . . . . .
−P Q −P
−P 0 1 + P


−1

, B = ∆t·A·un ,

with P = k∆t/∆x2 and Q = 1 + 2P . Finally, we obtain
the temperature distribution as shown in Fig. 2.

C. Estimation Methods

1) Kalman Filtering: In the following, we will introduce
the KF briefly and apply it to the example from Section II-B.
We use An ∈ RN×N to denote the state transition matrix
and Xn ∈ RN to represent the state variables. Un ∈ RN
describes the input to the system. Moreover, Ψn ∈ RS×N
indicates the observation matrix. The system noise is denoted
by wn ∈ RN and the uncertainty of measurements by
vn ∈ RS . Both follow zero-mean Gaussian distributions with
covariance matrices Cw

n and Cv
n, respectively. Using this

notation, the mathematical description of a general linear
system is

Xn = An ·Xn−1 + Un−1 + wn−1 ,

y
n

= Ψn ·Xn + vn .
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Fig. 3. a: the temperature distribution f
T

; b: the signal recovered using CS with Z = 1024 and DCT basis; c: the best k-term approximation for the
signal with Z = 1024 and DCT basis; d: the best k-term approximation for the changes of the signal with Z = 1024 and DCT basis; e: the signal
recovered by using CS to estimate the changes of the coefficients with Z = 1024 and DCT basis; f: the signal recovered by using CS to estimate the
changes of the coefficients with Z = 64 and DCT basis; g: the signal recovered by using CS to estimate the changes of the coefficients with Z = 64 and
SCR basis; h: the signal recovered by Kalman Filter with 12 measurements; i: the signal recovered by Kalman Filter with 64 measurements. The box on
the left side in the Figure is a partial enlargement of the rectangular box.

In the KF, the state Xn is the variable to be estimated. At
each time step the KF performs two steps: The prediction
step

Xp
n+1 = An · X̂n + Un ,

CXp

n+1 = An ·CX̂
n ·AT

n + Cw
n ,

and the update step

X̂n+1 = (I −Kn+1 ·Ψn+1) ·Xp
n+1 + Kn+1 · yn+1

,

CX̂
n+1 = (I −Kn+1 ·Ψn+1) ·CXp

n+1 ,

with the Kalman gain Kn+1 given by

Kn+1 = CXp

n+1 ·ΨT
n+1 ·

(
Ψn+1 ·CXp

n+1 ·ΨT
n+1 + Cv

n+1

)−1

.

To apply the KF to the specific case of the example from
Section II-B, we assume to have S equidistant sensors with
10 Hz sampling rate, i.e., the time-step length ∆t = 0.1s.
Then, we have An = An, Xn = f

n
, and Un = ∆t ·An ·un.

As the state variables X are exactly the temperature f at each
node, and as the purpose of the observation matrix Ψn is to
select some coefficients of f that correspond to positions
where there are sensors, the matrix Ψn has the following
form:

Ψi,j
n =

{
1, i−th sensor is at j−th node of the beam ,

0, otherwise .

For the KF, the estimated temperature distributions from the
considered example are shown in Fig. 3 for varying numbers
of sensors as violet (S = 12) and yellow (S = 64) curves
(curve h and i).

2) Compressive Sensing: In compressive sensing, instead
of using a system model, we utilize a basis Θ ∈ RZ×Z
and associated coefficients zn ∈ RZ to represent the signals
sn = Θ · zn ∈ RZ , where Z is the dimension of the
coefficient vectors zn as well as the number of discrete
points of each signal. We recover the signal sn by estimating
the coefficients zn from the compressed measurements
ỹ
n

= Θ̃n · zn, where Θ̃n ∈ RM×Z denotes the sensing
matrix. However, in CS, M is in generally much smaller
than Z, which means that solving ỹ

n
= Θ̃n · zn is an

underdetermined problem. Therefore, to obtain a unique
solution, additional constraints must be imposed. In the case
of CS, the signal must be sparse or compressible, and the
sensing matrix must satisfy the restricted isometry property
(RIP). To clarify the definition of RIP, we must explain
sparsity first: A signal is sparse, if ‖z‖0 � dim(z). A
weaker condition than sparsity is compressibility. A signal
is compressible if |zs| ≤ C1 · s−q holds for s = 1 . . . Z
and certain constants C1, q > 0 [26], where zs denotes the
s-th-largest coefficient of z in terms of absolute value. The
sensing matrix Θ̃ is said to satisfy the RIP(δK ,K) if

(1− δK) ‖z‖22 ≤
∥∥∥Θ̃ · z∥∥∥2

2
≤ (1 + δK) ‖z‖22 , (3)

holds for all z with sparsity K, i.e., ‖z‖0 = K. The
estimation process is then described by the optimization
problem

ẑn = arg min
zn

‖zn‖0 ,

s.t.
∥∥∥ỹ

n
− Θ̃n · ẑn

∥∥∥
2
≤ ε ,

(4)

where ε describes the recovery error. It’s worth noting
that the `0-norm means the number of non-zero elements
in the vector. The `0-norm optimization problem is
non-convex [27], but it can be replaced by an `1-norm
optimization problem [28].

In the context of the example considered in this
paper, the dimensionality Z equals N, as the signal sn
is the temperature distribution f

n
and the compressed

measurements are generated by randomly selecting elements
from y

n
∈ RS , where y

n
indicates the S measurements from

S sensors. This can be implemented by randomly activating
the sensors. We utilize the matrix Φn ∈ RM×S to realize
this approach, where

Φi,j
n =

{
1, j = Λin ,

0, otherwise .

In the above equation, Λn ∈ NM represents the set of indices
of the elements selected from y

n
. With this definition we
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Fig. 4. Structure of KFCS using Pseudo-Measurements.

have the following relationship:

ỹ
n

= Φn · yn ,
Θ̃n = Φn ·Θ .

The estimated temperature distribution in the example from
Section II-B – using CS with M = 12, Z = N = 1024, and
the discrete cosine transform (DCT) basis – is presented in
Fig. 3 as grey curve. This result is unacceptable, i.e., we
cannot use the CS directly to estimate this signal. For a
quantitative evaluation of the errors, we also calculate the
MSE of the recovered signal (see Tab. I), the definition of
which can be found in (7). In the following subsection, we
will discuss the main problems of combining KF with CS
and the problems of CS being used for non-compressible
signals.

TABLE I
MSE FOR CURVES IN FIG. 3

Curve b c d e
MSE 272 0.067 1.196 1.918
Curve f g h i
MSE 0.843 0.141 4.311 0.150

D. Main Problems

It can be seen from the violet and yellow curves in
Fig. 3 that the number of measurements required by the KF
to obtain an accurate estimate is large. To overcome this
drawback, we will combine the KF with CS. However, due
to the limitations of CS, it cannot be directly used to estimate
arbitrary signals. An example of this has been presented in
Section II-C.2 where the temperature distribution estimated
by CS, which is shown as a grey curve in Fig. 3, bears
no resemblance to the ground truth temperature distribution
(the black curve). Thus, to fuse the KF and the CS, we must
solve the following problems: The signal is not sparse or
compressible with respect to the DCT basis, and the sensing
matrix Θ̃ may not satisfy the RIP with sufficient probability.

In the next section, we will consider three approaches
to solve the problems mentioned above. After that, we
will propose pseudo-measurements (PM) in Section IV to
combine the KF and the CS. Subsequently, we will face two
further problems: the uncertainty of the PMs (i.e., the error
of the CS reconstruction) and the error accumulation caused

by considering coefficient changes. To solve these problems,
we will suggest three techniques.

III. SOLUTIONS TO MAIN PROBLEMS

We solve the aforementioned problems of CS in three
steps. First, we focus on the changes of the signal rather
than the signal itself, since the presence of the system model
implies that the signal changes not arbitrarily but regularly,
thus, a basis might exist with which the changes of the
signal can be sparsely described. Secondly, we reduce the
dimension of the coefficient vector to increase the probability
that the sensing matrix meets the RIP. Thirdly, we find a
basis that is better suited to the considered signals than the
DCT basis by applying sparse coding. In the new basis the
considered signals become sparser.

A. Sparse Changes

It can be seen from the example, that we can choose the
initial temperature and stimulus arbitrarily, but once they
are fixed, the temperature cannot evolve arbitrarily, as the
temperature must vary following the rule of the system
model. I.e., the presence of a system model suggests that
the signal changes in a regular way, which indicates that
the changes of the signal are more likely to be sparse
with respect to a specific basis than the signal itself. With
the best k-term-approximation [29], we can determine the
compressibility of signals. The best k-term-approximation
is a method to compress a signal, by which the k largest
terms of a signal’s basis expansion remain unchanged and
the rest of its terms are set to zero. The less k could be, the
more compressible the signal is, and then, we can recover the
signal with less measurements. We find k = 10 is a suitable
value, and we can see from the Fig. 3 that the compressibility
of the changes of the signal (red dashed line) is better than
that of the signal itself (dark blue dashed line). Thus, we
perform CS at each time step, not to estimate the coefficients,
but to estimate the changes of the coefficients:

∆ẑn−1 = argmin
∆zn−1

∥∥∆zn−1

∥∥
1
,

s.t.‖ỹ
n
− Θ̃n ·

(
ẑn−1 + ∆ẑn−1

)︸ ︷︷ ︸
=ẑn

‖2 ≤ ε . (5)

The use of the coefficient changes is shown in grey in Fig. 4.
To find the changes of the coefficients, the initial coefficients
must be known. Therefore, all sensors are utilized to measure
y

0
to obtain more accurate initial coefficients at the first

time step t0. Interestingly, we find in the simulation that
our algorithm converges even with a zero-initialization, i.e.,
z0 = 0.

If the sensing matrix Θ̃ satisfies the RIP, CS will yield a
similar result as the best k-term approximation, as the two
previously mentioned prerequisites (see Section II-C.2) of
CS are met. However, CS yields the cyan curve in Fig. 3,
which significantly differs from the red dashed line. This
difference suggests that the sensing matrix does not satisfy
the RIP since the number of columns is much larger than
the number of rows.



B. Dimension Reduction

In [26] Baraniuk et al. proved the following relationship
between the number of rows M and columns Z of a sensing
matrix satisfying the RIP:

M ≥ κ ·K · log

(
Z

K

)
,

where κ is a variable related to the probability of Θ̃
satisfying the RIP. The higher the probability we require,
the greater M should be.

From above, it is clear that reducing the dimension Z of
the coefficients can increase the probability of the sensing
matrix satisfying the RIP. Thus, we do not calculate the value
at each node by CS, but only the values at some key points.
These points can be selected manually or randomly. In this
paper, we choose the sensor positions, i.e., the points where
the y

n
are measured, as key points. The computed values will

later be utilized as the measurements of the KF. Therefore,
we call them pseudo-measurements.

In our example, we choose the key points at the fixed
sensors’ positions, which means that the number of estimated
values reduces from Z = N = 1024 to Z = S = 64.
As we can see from Fig. 3, the result from CS after the
dimension reduction (the green points) fits the actual signal
(black curve) better than the results before (the cyan curve).
By comparing the grey curve with the green points in Fig. 3,
we have significantly improved the efficacy of CS applied to
non-compressible signals.

By scrutinizing formula (4), we find that we can improve
the reconstruction result of CS not only by reducing the
number of coefficients Z, but also by modifying the sensing
matrix Ψ. Thus, we will no longer use the DCT-basis and
employ sparse coding [30] instead to find a sparsifying basis
for the signal to further improve CS estimation.

C. Sparse Coding

Sparse Coding was first proposed by Olshausen [31] to
explain visual processing in the brain and has been an
essential topic in machine learning in recent years [32].
The goal of sparse coding is to represent most or all of
the original signal as a linear combination of few basic
signals. We can utilize sparse coding to find a basis with
respect to which the signal can be sparsely represented.
One approach to sparse coding is to solve the following
optimization problem:

min
αn,Θ

K∑
n=1

{∥∥∥y
n
−Θ · αn

∥∥∥2

2
+ λn ‖αn‖0

}
,

s.t. ΘTΘ = I .

The first term is the approximation error that arises from
reconstructing the signal y

n
using the basis Θ and the

coefficients αn at each time step. In the second term, λn
is a large constant, which performs as a penalty to ensure
the sparsity of the coefficients αn at each time step, and
the constraint guarantees the orthogonality of the basis Θ
[33]. When the matrix Θ is orthogonal, the sensing matrix

Θ̃n = Φn · Θ has a high probability of satisfying the
RIP [34].

Using the basis obtained from sparse coding, which in
the following we will call the sparse coding representation
(SCR), we can see that the estimated signal in our
example (Fig. 3, yellow points) shows a further improvement
compared to that obtained using the DCT basis (green
points).

IV. KALMAN FILTERED COMPRESSIVE SENSING USING
PSEUDO-MEASUREMENTS

In the previous section, we made CS more applicable to
non-compressible signals in three steps. This section will
focus on the fusion of the KF and CS, new problems that
arise due to the fusion, and their corresponding solutions.

A. Pseudo-Measurements

As stated in Section III-B, after the dimensionality
reduction, we obtain values of the signal (i.e., the temperature
distribution) at key points (i.e., the sensors’ positions)

yPM
n

= Θ · ẑn .

As mentioned in Section II-C.2, the dimensionality of yPM
n

is
usually much larger than the dimension of the compressed
measurements M , so the number of the values recovered
by CS (i.e., yPM

n
) is often sufficient for the KF to estimate

the state variables with satisfactory accuracy. Therefore,
we use these values as measurements for the KF (i.e., as
pseudo-measurements).

By now, we have successfully combined the KF with CS
through PMs. We coin the resulting method Kalman filtered
compressive sensing (KFCS). In this method, CS plays the
role to enlarge the number of measurements available to the
KF.

After establishing the KFCS, two problems arise:
the estimation error of the CS reconstruction and the
accumulation of said error over time. In our proposal, the
values estimated by CS are used as measurements in the KF.
However, due to the reconstruction error, the uncertainty of
the pseudo-measurements is greater than that of the sensor
measurements. Moreover, as can be seen from the black
part in the block diagram in Fig. 6, there is no feedback
in the system yet, which means that the accumulation of
the reconstruction error cannot be suppressed. To address
these issues, we will quantify the uncertainty of the PMs
and introduce feedback into the system in the following
subsections.

B. Dynamic Weighting

The PMs consist of two parts: the actual measurements
from sensors and the estimated measurements from CS.
Although we can get acceptable results using solely
CS, following Section III (see Fig. 3), the estimated
measurements still have a higher level of uncertainty. Despite
there being some works that explore the distribution of
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estimation error of CS [35], [36], [37], it is still an open
question. What has been shown is the error bound

‖e‖2 := ‖ẑ − z‖2 ≤ C
min

vK∈ΣK

‖z − vK‖1
√
K

=: B , (6)

where ΣK is the set of all K-sparse vectors [26]. Formula (6)
shows that the estimation error lies inside a hyper-sphere
around the true value z. As an approximation, we assume that
CS is an unbiased estimator, i.e., E{ẑ} = E{z}, moreover,
we regard the radius of the hyper-sphere B as the 3σ
bound of the estimation error. According to the principle
of maximum entropy [38], the error can then be regarded to
follow Gaussian distribution with E{ePM

n } = 0 and

σPM =
B

3
≈ C ‖ẑ

(K)‖1
3
√
K

,

where σPM denotes the standard deviation of the PMs
and ẑ(K) indicates the best K-term-approximation of
ẑ. The covariance matrix Cv

n used in the KF is then
dynamically adjusted to the types of measurements, i.e.,
pseudo measurements and actual measurements, at each time
step.

C. Coefficients Update

Since we use CS only to estimate the changes of the
coefficients, the errors accumulate over time, leading to
divergence of the estimation. The reason for this problem is
that so far the system is an open-loop system (Fig. 6, black
frames): The CS result is fed into the KF, while the KF
estimate does not affect the CS result. Hence, we introduce
feedback from the KF to the CS block by introducing
a so-called coefficient update. With that modification a
closed-loop system is constituted (red frames in Fig. 6 as
well as the orange and violet parts in Fig. 4).

There are two approaches to update the CS coefficients:
updating using the estimate produced by the KF’s update
step, (Fig. 4, yellow part), and updating using the estimate
produced by the KF’s prediction step (Fig. 4, violet part).
The formulae for the coefficient updates are respectively

ẑen = Θ−1 ·Ψ · X̂n ,

ẑpn = Θ−1 ·Ψ ·Xp
n .
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Fig. 6. System block diagram of KFCS.

After the coefficient update ẑen and ẑpn can be used to estimate
the change of the coefficients ∆ẑen or ∆ẑpn as in (5). For
systems with unknown input U , such as in temperature
monitoring, coefficient updating using the estimate produced
by the KF’s update step works better. In contrast, for systems
with known inputs, such as control systems, it is better to
update the coefficients using the KF’s predictions.

D. Iterated Update

Inspired by the iterated extended Kalman filter
(IEKF) [39], we introduce an iterative approach in
our KFCS. In each time step tn, the coefficients (ẑn)i and
the state variables (T̂n)i are computed iteratively, using
the same measurements ỹ

n
and prediction T pn, until they

converge or the maximum number of iterations is reached.
Fig. 5 depicts this iterative process, with each dashed box
indicating one time step. In each time step, different colors
indicate different iterations.

V. SIMULATION

To evaluate the effectiveness of our approach, we used
different methods to recover the simulated temperature
distribution from the example presented in Section
II-B. After the signal recovery, we calculated their
mean-square-error (MSE) and average MSE over time.
Furthermore, we computed the average squared error over
time under different system noise and measurement noise
levels to explore the relationship between the error and the
variance of the noises.

A. Signal Recovery

To recover the temperature distribution, we assumed that
there are S = 64 equidistant sensors in total. To realize
the random sampling, we activated M = 12 sensors at
each time step randomly and utilized the matrix Φn to
select these measurements. The interval between two time
steps ∆t was set to be 0.1 s. To compare the effectiveness
of our approach to other methods, we also recovered the
temperature distribution using the traditional KF with 12,
40, and 64 equidistant sensors. We performed K = 1000
simulations, for each of which, we generated temperature
distributions f

n
(k) contaminated by system noise. Here

n is the time step and k indicates the particular run of
the simulation. Based on f

n
(k) with added measurement

noise, we then computed an estimate f̂
n
(k). To measure

the effectiveness, we use the mean-square error MSEn at
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Fig. 7. MSE and aMSE of different methods, the curves indicate the MSE,
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each time step and the average MSE over time (aMSE) as
criterion. They are given by

MSEn =
1

K

K∑
k=1

∥∥∥f̂
n
(k)− f

n
(k)
∥∥∥2

2
, (7)

aMSE =

∑T
n=1 MSEn

T
, (8)

where T indicates the total number of time steps, K refers
to the number of simulations.

The results are shown in Fig. 7. It can be seen that the
KFCS with 12 measurements has a 37% advantage over the
traditional KF with 12 sensors and even a 5% improvement
over the traditional KF with 40 sensors w.r.t. the aMSE. Of
course, there is still a 11% disadvantage in our approach
compared to the traditional KF with 64 sensors, which
activates all sensors all the time.

B. Relationship between Error and Noise

We chose 10 different system noise levels σw and
10 different measurement noise levels σv to explore the
relationship between error and noise. We then combined
them into 100 different combinations and performed K =
300 simulations for each combination using the KF with
12 sensors and KFCS with 12 measurements. For each
combination, we generated and estimated the signal in the
same way as in the previous subsection. From the results, we
calculated the aMSE(c) for each combination c. We denote
the aMSE of the two considered methods by aMSEKF

and aMSEKFCS, respectively. To show the advantages and
disadvantages of the KF and KFCS more clearly, we define
the ratio of aMSE (raMSE) as

raMSE(c) =
aMSEKFCS(c)

aMSEKF(c)
.

From the definition of raMSE we know that, if raMSE is
less than 1, the KFCS performs better than the traditional
KF, vice versa. Fig. 8 shows the aMSE and raMSE. We can
see that the estimation error increases with growing noise.
The more remarkable point is that the KFCS is better suited
when the measurement noise is relatively large compared to
the system noise.
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Fig. 8. [a] The aMSE(c) from KF; [b] The aMSE(c) from KFCS; [c]
and [d] The raMSE(c) for different ranges of σw and σv .

C. Discussion

In this section the temperature distribution from our
example was recovered by KFCS with 12 measurements and
by the KF with 12, 40, and 64 sensors. The results show that
our approach using 12 measurements yields a better result
than the traditional KF using 12 or even 40 sensors.

To determine the relationship between error and noise,
we created 100 different noise combinations and performed
300 simulations using the KF with 12 sensors and KFCS
with 12 measurements to recover the signal for each. The
results demonstrate that our method has better results when
the measurement noise is relatively large as compared to
the system noise. The reason is that when the system noise
is large, the actual signal deviates strongly from the ideal
signal. Due to the strong noise, the changes of the coefficients
are no longer sparse under the SCR basis which can result in
wrong pseudo-measurements being given to the KF. In other
words, our approach is more robust against measurement
uncertainty than against system uncertainty. Our approach
significantly improves the estimation in comparison to the
traditional KF when one can model the system accurately
and the sensors are inaccurate.

Although we assumed a known initial signal at t0 in
Section III-A, we note that our approach can still converge
with a zero-initialization.

VI. CONCLUSION

In this paper, we have proposed three approaches to
make CS more applicable to non-compressible signals and a
method to combine the KF and CS using PMs. In addition,
we have introduced dynamic weighting, a coefficient update,
and an iterated update into KFCS to improve its accuracy.
Finally, we have performed simulations to validate the
effectiveness of the new approach. In the simulations, the
KFCS has demonstrated better results than the traditional KF.
Furthermore, we have found that our method is more suitable
for accurate system model is given and the measurement
accuracy is low.

There are some possibilities for further improvements in
the future. Firstly, the random sampling in this paper is
achieved by randomly selecting sensors at fixed positions.
This could also be achieved by other methods, e.g., installing



sensors on mobile agents. Secondly, the positions of the PMs
in this paper are fixed. In future works, adaptive PMs could
be considered, which means that the PMs are set to be at
the positions where the uncertainties of the estimate are the
largest. Thirdly, we have assumed that the uncertainty of PMs
obeys a Gaussian distribution, but it has not been rigorously
proven. Although the iterative process can overcome this
problem to some extent, one can still design more effective
filters by taking the error distribution of the CS estimate into
account. Forthly, in this paper, we have applied sparse coding
to obtain a sparsifying basis for the considered signals.
However, according to our idea from Section III-A, one
might find a sparsifying basis for the changes of the signal
directly from the system model. Moreover, we only talk
about the application of the KFCS to temperature monitoring,
we will apply the algorithm to other examples later.
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