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Abstract— With the high resolution of modern sensors such
as multilayer LiDARs, estimating the 3D shape in an extended
object tracking procedure is possible. In recent years, 3D
shapes have been estimated in spherical coordinates using
Gaussian processes, spherical double Fourier series or spherical
harmonics. However, observations have shown that in many
scenarios only a few measurements are obtained from top or
bottom surfaces, leading to error-prone estimates in spherical
coordinates. Therefore, in this paper we propose to estimate
the shape in cylindrical coordinates instead, applying harmonic
functions. Specifically, we derive an expansion for 3D shapes in
cylindrical coordinates by solving a boundary value problem
for the Laplace equation. This shape representation is then
integrated in a plain greedy association model and compared
to shape estimation procedures in spherical coordinates. Since
the shape representation is only integrated in a basic estimator,
the results are preliminary and a detailed discussion for future
work is presented at the end of the paper.

I. INTRODUCTION

In recent years, point cloud sensors such as LiDARs and
RADARs have evolved rapidly in such a way that the reso-
lution and accuracy have steadily increased. With nowadays
devices, the extent of a target is typically larger than a single
sensor cell leading to a vast amount of measurements per
time step. Thus, the assumption of point targets is not valid
anymore, and objects to be tracked have to be modeled as
extended targets leading to the realm of extended object
tracking (EOT). An overview of EOT methods can be found
in [1], [2].

At the beginning of EOT, numerous papers were published
processing 2D data in various applications using different
sensor devices. Explicit shapes can be used if prior knowl-
edge is available or computation time is to be kept low.
Elliptical shapes [3], [4], [5], [6], [7] can be applied in
various applications for different sensors such as LiDAR
or RADAR. An overview of elliptic EOT can be found
in [8]. Furthermore, rectangular shapes [9], [10], [11], [12]
are fundamental in automotive applications as they are very
similar to the shape of a car. If no prior knowledge of
the target is available and detailed shape information is
desired, the shape itself can be estimated during the tracking
procedure using Fourier series [13] or Gaussian processes
[14]. Finally, learned spatial distribution models [15], [16],
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Fig. 1. Basis functions for shape estimation in cylindrical coordinates.

[17] can be applied if measurements of a specific sensor
and targets to be tracked are available so the model can be
adapted to these measurements.

Since modern devices such as multilayer LiDAR sensors
or depth cameras produce high-quality 3D point clouds,
performing EOT in 3D space is also recommended in many
applications. Thus, explicit shapes such as cylinders [18],
[19] or ellipsoids [3], [4] can be applied. Besides, many
different shapes can be defined using non-uniform rational
B-spline (NURBS) surfaces [20], comparable to the B-spline
model of [12]. Like in 2D space, estimating the shape itself is
finally also possible in 3D space. Here, a 2D radial function
can be learned for star-convex shapes. This function can be
expanded using Gaussian processes [21], spherical double
Fourier series [22], or spherical harmonics [23]. In a filtering
procedure, the coefficients of these expansions can then be
estimated.

The idea of this paper is based on the observation that in
many applications only a few or absolutely no measurements
of the target’s top or bottom part can be expected. If the shape
is estimated using a star-convex spherical radial function,
information of these parts is missing, leading to inaccurate
estimates. Therefore, the contribution of this paper is to pro-
pose a star-convex radial function in cylindrical coordinates
describing the surface of the target where a sufficient amount
of measurements can be expected. Analogously to spherical
harmonics, this radial function can be obtained by solving
a boundary value problem (BVP) for Laplace’s equation in
cylindrical coordinates. The solutions of Laplace’s equation
are called harmonic functions. In the case of cylindrical coor-



dinates and adequate boundary conditions, a double Fourier
series expansion for the radial function arises, which can be
applied to approximate any continuous star-convex shape.
In particular, the solution of the Laplace equation leads to
cylindrical basis functions, depicted in Fig. 1, which can be
superposed in a series expansion for the approximation pro-
cedure. Furthermore, this series expansion is then integrated
into a measurement function for 3D extended targets. By
adding the Fourier coefficients to the system state, the shape
can be estimated by fusing recorded measurements. Since
the objective of this paper is to propose the series expansion
for cylindrical shape estimation and to present further details
on the connection of Laplace’s equation, harmonic functions,
and shape representations, only a basic measurement model
is used to demonstrate the viability of the shape representa-
tion. Further improvements in the estimation procedure are
left to future work, which is discussed in detail in the last
section.

The remainder of this paper is structured as follows. In
Sec. II, further information on harmonic functions as solu-
tions to Laplace’s equation and the connection to shape repre-
sentations are given. Then, in Sec. III the BVP for Laplace’s
equation in cylindrical coordinates and the harmonic series
expansion for a star-convex radial shape representation are
presented. In Sec. IV, this shape representation is then
integrated into a basic measurement model, namely a greedy
association model (GAM) for 3D shapes [19], to be able to
perform a fusion procedure of noisy point measurements.
Afterward, in Sec. V the shape estimation in cylindrical
coordinates is compared to shape estimation in spherical
coordinates in a static simulated scenario in order to clarify
the advantages of the new proposed algorithm. The paper
ends with the conclusion and a detailed discussion for future
work in Sec. VI.

II. HARMONIC FUNCTIONS

Harmonic functions [24, Ch. 1] are special functions
solving Laplace’s equation given as

∇
2
ϕ =

∂ 2ϕ

∂x2 +
∂ 2ϕ

∂y2 +
∂ 2ϕ

∂ z2 = 0 (1)

in Cartesian coordinates [25, pp. 49–52]. Here, ϕ is a scalar
function ϕ : Φ→ R with ϕ = ϕ(x) and Φ ⊂ Rn. Since we
aim to use the solution of a BVP of Laplace’s equation for
shape representation, we are only interested in non-trivial
functions ϕ . In this section, we want to give some details on
why harmonic functions can be used for our shape estimation
procedure. In physics, Laplace’s equation is used to describe
potential fields such as the electrical or gravitational field
[26, pp. 68–79]. Besides describing potential laws in physics,
harmonic functions have some important properties [24, Ch.
1]:
• Time invariant: Harmonic functions are time invariant,

meaning that ∂ϕ

∂ t = 0 and the function is not changing
over time.

• Translation invariant: Harmonic functions are trans-
lation invariant, meaning that any harmonic function

provided with a translation transformation is again a
harmonic function.

• Rotation invariant: Harmonic functions are rotation
invariant, meaning that any harmonic function provided
with a rotation transformation is again a harmonic
function.

• Continuity: Harmonic functions are continuous. More-
over, sums and scalar multiples of harmonic functions
are harmonic again due to the linearity of Laplace’s
equation.

• Real analytic: Harmonic functions are real analytic,
meaning that any harmonic function is infinitely dif-
ferentiable and can locally be given as a Taylor series.

All these properties make harmonic functions a good choice
for shape representation. Furthermore, as will be seen in
the next section, Laplace’s equation can be given in any
other coordinate system, such as cylindrical coordinates. A
BVP can be defined, which describes the given problem, and
solutions can be used for the shape estimation procedure.
Finally, we want to mention that spherical harmonics can
be derived from Laplace’s equation in spherical coordinates
[26, pp. 786–793] [25, pp. 188–196] and have shown to be
applicable to spherical shape estimation [23].

III. SHAPE REPRESENTATION IN CYLINDRICAL
COORDINATES

This section presents the BVP for Laplace’s equation in
cylindrical coordinates and the solution applied for our shape
estimation procedure. First of all, for a vector x = [r,θ ,z]T

in cylindrical coordinates, Laplace’s equation is given as

∇
2
ϕ =

∂ 2ϕ

∂ r2 +
1
r

∂ϕ

∂ r
+

1
r2

∂ 2ϕ

∂θ 2 +
∂ 2ϕ

∂ z2 = 0. (2)

The BVP is defined through the boundary conditions:

1: 0 < r < R1, 0 < z < h
2: ϕ(r,θ ,0) = ϕ(r,θ ,h) = 0
3: ϕ(R1,θ ,z) = f (θ ,z)
4: ϕ(r,0,z) = ϕ(r,2π,z), ∂ϕ

∂θ
|θ=0 =

∂ϕ

∂θ
|θ=2π .

The first boundary condition specifies the variables r and z
as being bounded with R1 ∈ R>0 and h ∈ R>0. The second
implies that the cylinder is finite, with the function being 0 at
the top and bottom. The third one defines the outer contour
of the cylinder as only being dependent on the variables θ

and z. This condition is crucial, as we actually want our
shape-defining radial function to depend only on those two
variables. The last condition specifies the function being 2π

periodic in the angular variable.
The partial differential equation (2) can be solved using

separation of variables by assuming that the function ϕ(x)
can be represented as the product

ϕ(x) = R(r) ·Θ(θ) ·Z(z). (3)

Thus, every function is only dependent on a single cylindrical
coordinate. A detailed solution of this BVP can be found
in [25, pp. 149–151]. We therefore only present the main



results here in this paper. First of all, the solution of the
height variable z is given as

Zn(z) = sin
(nπz

h

)
(4)

with an infinite number of solutions and n∈N0. Furthermore,
the solution of the angular variable θ is given as

Θ
(1)
m (θ) = sin(mθ) , Θ

(2)
m (θ) = cos(mθ) (5)

also with an infinite number of solutions and m∈N0. Finally,
the solution of the radial variable r is given as

Rmn(r) =
Im(nr)

Im(nR1)
(6)

with Im(nr) being the Bessel functions [26, Ch. 11] of
the first kind. In (6), it can be seen that Rmn(r) = 1 at
the boundary if r = R1. Due to the linearity of Laplace’s
equation, the general solution of the BVP in cylindrical
coordinates can be given as

f (θ ,z) =
1
2

nz

∑
n=1

an0 sin
(nπz

h

)
(7)

+
nz

∑
n=1

nθ

∑
m=1

sin
(nπz

h

)
(anm cos(mθ)+bnm sin(mθ)).

with an amount of 2nθ nz+nz coefficients an0, anm, bnm ∈R.
As can be seen from (7), the basis functions on the outer
contour of a finite cylinder, depicted in Fig. 1, are given as

Ψnm(θ ,z) = sin
(nπz

h

)
(cos(mθ)+ sin(mθ)). (8)

If nθ = nz = ∞, (7) gives an exact representation of any
continuous function on the outer surface of a finite cylinder.
However, because of computational reasons, we restrict the
sums in (7) to be finite.

If the shape should involve a vertical plane of symmetry
in parallel to the local xz-plane of the object, it is possible
to modify (7) to be even in the radial variable θ . Similar to
[22], this can be achieved by discarding the sine components
of θ . This modification results in the radial function

f (θ ,z) =
1
2

nz

∑
n=1

an0 sin
(nπz

h

)
(9)

+
nz

∑
n=1

nθ

∑
m=1

anm cos(mθ)sin
(nπz

h

)
with an amount of nθ nz+nz coefficients an0, anm ∈R. Using
either (7) or (9), the radial function for our shape can be
expanded and learned during the tracking procedure, as will
be seen in the following. Especially, (9) is of particular
interest for real-world applications as many targets such
as cars involve a vertical plane of symmetry, and only
measurements of half the target can be expected for single
sensor applications. In these settings, the unseen backside
of the target can be modeled using symmetry assumptions.
Please note that shape representation using (9) in comparison
to (7) even requires less coefficients. Throughout this paper,
we will refer to (7) and (9) as cylindrical double Fourier
series (CDFS) without and with a vertical plane of symmetry,
respectively.

IV. A BASIC ESTIMATOR

In this section, a greedy association model (GAM) [19] for
shape estimation using either (7) or (9) is presented. First of
all, the system state comprises the position mk, the orientation
φk, the height hk, and the shape vector pk and reads as

xk =
[
mT

k ,φ
T
k ,h

T
k , pT

k

]T
. (10)

In this paper, the shape vector is given as
pk = [a01,a02, . . . ,a11,a12, . . . ,b11,b12, . . .]

T for a
CDFS without vertical plane of symmetry and as
pk = [a01,a02, . . . ,a11,a12, . . .]

T for a CDFS with vertical
plane of symmetry. Please note that we restrict ourselves to
orientations φ in the xy-plane in this paper. However, all
three rotation angles can also be integrated into the system
state and the following measurement model. Furthermore,
we change the height variable z of the cylindrical coordinates
as z = uh with u ∈ [0,1] to involve the estimated height.
The solution of the height variable (4) in Laplace’s equation
then changes to Zn(z) = sin(nπu) and is only dependent of
the parameter u. Please note that the basis functions (8) and
both the CDFS (7) with vertical plane of symmetry and the
CDFS without (9) are only dependent on the parameter u
now, as well.

In order to estimate the hidden system state xk, we require
a measurement model that relates received measurements
to the system state. First of all, we assume to receive a
measurement set Yk =

{
yk,l

}nk

l=1
with a varying amount

of measurements nk every time step k. We further assume
these measurements to be mutually independent. Thus, it is
sufficient only to give the measurement equation for a single
measurement. In the filter, this measurement equation can
then be applied to all received measurements [18]. In this
paper, measurements are assumed to be gathered based on a
measurement source model

yk,l = zk,l + vk,l (11)

with measurement source zk,l and white Gaussian zero-mean
noise term vk,l = N (0,Cv). The measurement equation can
then directly be given as

yk,l = mk +Rφk ·

 f (θk,l ,uk,l) · cos(θk,l)
f (θk,l ,uk,l) · sin(θk,l)

uk,l ·hk

+ vk,l (12)

in Cartesian coordinates with the rotation matrix Rφk in
the xy-plane and the CDFS (7) or (9). Since we do not
know the exact measurement source, we are faced with
the measurement source association problem for 3D shape
estimation [19]. In our case of 3D EOT, the measurement
source is defined through the parameters u and θ . Therefore,
the likelihood for this estimation problem can be given as
the marginal distribution

p
(
y|x
)
=

1∫
u=0

2π∫
θ=0

p
(
y|x,θ ,u

)
· p(θ ,u|x) dθ du (13)



Fig. 2. Illustration of the radial function f (θ ,u) and the measurement
source association. Measurements are red balls, measurement sources are
black balls.

with the first part p
(
y|x,θ ,u

)
being the sensor model and the

second part p(θ ,u|x) being the source model. More details
on modeling 3D extended targets can be found in [27, Ch.
3]. Please note that we omitted indices k, l in the likelihood
description since it is equal for every measurement in every
time step. In [18], [19] several solutions to 3D EOT are
presented. In our study, we restrict ourselves to the most
basic model, a GAM. For this model, the mass of the source
model is reduced to a single point and can be given as the
Dirac δ -distribution p(θ ,u|x) = δ (θ− θ̂ ,u− û) with θ̂ and û
being the parameters of the most likely measurement source.
The likelihood (13) then reduces to the Gaussian distribution

p
(
y|x
)
= N

(
y; ẑ,Cv

)
(14)

with the most likely measurement source ẑ.
We use two basic assignment assumptions for the most

likely measurement source to show the distinct advantages
of shape estimation in cylindrical compared to spherical
coordinates in specific scenarios. The first step is to calculate
the measurement in local coordinates as

ỹk,l = R−1
φk
· (yk,l−mk). (15)

The angular parameter of the cylindrical contour is then
assumed to be given through the angle

θ̂k,l = atan2(ỹy
k,l , ỹ

x
k,l) (16)

with ỹx
k,l and ỹy

k,l being the x and y components of the mea-
surement ỹk,l in local coordinates, respectively. Furthermore,
the height parameter is calculated as

ûk,l =


0 ỹz

k,l < 0
ỹz

k,l
h 0≤ ỹz

k,l ≤ h

1 ỹz
k,l > h

(17)

with ỹz
k,l being the z component of the measurement ỹk,l in lo-

cal coordinates. An illustration of the radial function and the
measurement source association scheme is depicted in Fig. 2.
With these assumptions, we can define our measurement
source and include the measurement equation (12) into a

nonlinear state estimation procedure. This paper uses a smart
sampling Kalman filter (S²KF) [28], [29] for state estimation.
Please note that the approach for the measurement source
association problem proposed in this paper is a fundamental
solution. Investigations [27, pp. 74–79] showed that height
estimation could be biased using a GAM. However, as will be
seen in the next section, this measurement model is already
superior to shape estimation in spherical coordinates and
is therefore used to present the advantages of our shape
estimation method. Further details on improvements and
future work will be given in the last section VI.

V. COMPARISON TO SHAPE ESTIMATION IN SPHERICAL
COORDINATES

This section compares our shape estimation procedure to
shape estimation in spherical coordinates. Specifically, we
compare it to spherical radial shape representations using
spherical harmonics (SH) [23], spherical double Fourier se-
ries (SDFS) [22], and Gaussian processes (GP) [21]. Like our
procedure for cylindrical shape estimation, we implemented
all comparison algorithms using an S²KF [28], [29]. Here, the
system state is sampled with 10 samples per dimension for
each shape estimation procedure. This paper investigates the
shape estimation performance in a simulated static scenario.
Therefore, measurements from a cuboid with a length of
6m, a width of 3m, and a height of 4m are generated
uniformly distributed from half the hull and no measurements
from the top or bottom surfaces of the cuboid. We compare
the performance of each algorithm with the well-known
intersection-over-union (IOU) measure given by

IOU(St ,Se) =
volume(St ∩Se)

volume(St ∪Se)
(18)

with the true shape St and the estimated shape Se. Please
note that this measure evaluates the performance of the
shape estimate as well as the position and rotation estimate
and is, therefore, a good overall measure to compare shape
estimation procedures.

In our simulation, we generated 2000 measurements and
performed an update for every filter and every single mea-
surement. Measurements are corrupted by isotropic mea-
surement noise with a standard deviation of σv = 0.2m.
We choose a relatively high standard deviation for the
measurement noise to emphasize the estimation performance.
Since the measurements are drawn from half the hull of the
cuboid, we applied the radial function (9) with a vertical
plane of symmetry for cylindrical shape estimation. Also, for
shape estimation in spherical coordinates, a vertical plane
of symmetry is applied for every algorithm to model the
unseen backside. For a better overall comparison, we used an
equal amount of coefficients for every model where the shape
is expanded with a truncated sum, namely CDFS, SH, and
SDFS. For cylindrical shape estimation we choose nθ = 8
and nu = 9 resulting in 81 coefficients. For spherical shape
estimation using SH, we used 81 coefficients as well and
73 coefficients for SDFS. For the model where the shape
is learned using a GP, we choose to use 210 basis points.



Fig. 3. Estimated shape (blue surface) at the end of a scenario with
generated measurements (red balls). The reference cuboid is shown with
black lines.

Every filter position and orientation was initialized with
the reference as this study was intended to investigate the
overall shape estimation quality. Variances for the position
and orientation were initialized with 1. The shape coefficients
were initialized to be a ball of radius 2 for SH and SDFS,
and p = [3,0, . . . ,0]T for the coefficients of cylindrical shape
estimation. Variances were initialized as 5 for every shape
coefficient. The initialization procedure presented in [21] was
used for GP.

In Fig. 3, the result of cylindrical shape estimation at the
end of a scenario is depicted. Furthermore, the simulation
environment with the reference cuboid and measurements
from one half of the cuboid hull are depicted. The shape
is approximated well at the end of the scenario. As seen,
the height is slightly overestimated, which emanates from
the GAM as this model is known to produce biased height
estimates. Moreover, the Gibbs phenomenon [26, pp. 910–
914] is a problem we face in the series for the height
parameter u. The oscillation of the illustrated shape is more
significant at the top and bottom, what can be tied to the
Gibbs phenomenon as we have discontinuities in these parts
of the shape.

In Fig. 4, IOU measures of a Monte Carlo simulation with
100 runs are depicted. As seen, even with the basic estimator
we used in this paper, we get the best performance using
cylindrical shape estimation in this scenario. Moreover, every
shape estimation procedure applying spherical coordinates
diverges in this simulation. Since information from the top
and bottom part of the target is missing, where spherical
radial functions are defined as well, this estimate is error-
prone. Shape estimation applying cylindrical coordinates,
however, converges. Furthermore, the CDFS IOU gets worse
at the beginning of the scenario. This can be explained with
few information at the beginning of the scenario leading
to larger outbursts in the shape. However, with more mea-
surements and more information, the estimate gets better
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Fig. 4. IOU measures for every shape estimation procedure.

and converges at the end of the scenario. Finally, we also
measured the estimation time for a single update for every
filter. The simulation was performed using MATLAB R2022a
on an Intel(R) Xeon(R) X5680 CPU with 3.33 GHz. It
turned out that computation time for filters using expansions
for the radial function was nearly the same with roughly
5ms. Merely computation time for GP was much slower
with about 85ms. Overall, shape estimation in cylindrical
coordinates showed clear advantages compared to shape
estimation in spherical coordinates.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new method for 3D shape estimation
in cylindrical coordinates using harmonic functions. The
derivation of the radial function is based on the solution
of a BVP of Laplace’s equation in cylindrical coordinates.
The general solution of this problem on the outer surface of
a finite cylinder can be given as a CDFS. We proposed a
basic measurement model to solve the measurement source
association problem using a GAM. Static simulations with
measurements from half the hull of a cuboid and comparisons
to shape estimation in spherical coordinates showed the
superiority of cylindrical over spherical radial functions if no
measurements of the top and bottom part of the target are
available. Moreover, the results are particularly impressive
since GAMs are known to be biased for height estimation.
In the static simulation, we showed that shape estimation
diverges for every model applying spherical radial functions
in contrast to cylindrical ones that converge.

Since we are just using a basic GAM in this paper, we
want to give detailed thoughts for future work. In [27, pp.
74–79], it was shown that a robust height estimate can only
be achieved if the likelihood is reformulated to combine two
different association approaches in a single model. When
reformulating a random hypersurface model (RHM) [4], [13]
for 3D EOT to an extrusion RHM [18], [19], [30], a GAM
is applied for the angular and a spatial distribution model
for the height association. This combination proved to be



the most suitable compared to a GAM. Future work will
therefore concentrate on implementing an extrusion RHM
for cylindrical shape estimation. These models can either be
integrated into an S²KF [19] or in nonlinear estimators like
the progressive Gaussian filter [31], [32]. When using an
S²KF, only unimodal Gaussian distributions can be utilized
for the height distribution. However, in general, the height
distribution will be multimodal for real-world shapes leading
to the necessity of applying Gaussian mixture distributions
or nonlinear estimators. Calculations have already shown that
the height distribution can be derived from the CDFS. Central
will therefore be to integrate this height distribution into a
suitable estimation procedure.

Further improvement is needed to get a deeper understand-
ing of the Gibbs phenomenon [26, pp. 910–914] in cylin-
drical shape estimation. Real-world targets often comprise
discontinuities in their shapes where the Gibbs phenomenon
causes larger outbursts. Future work will, therefore, also
focus on understanding the Gibbs phenomenon for these
targets and on studies to reduce it.

Finally, we will apply our shape estimation procedure to
real-world measurements from moving and rotating targets
recorded with different sensors in varying scenarios. These
investigations are also necessary since the assumption of no
measurements at the top and bottom part will not pertain for
every scenario. Rather, it will be the case that some measure-
ments can occur in these areas of the target. Handling these
measurements will therefore also be part of future work.
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