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Abstract— The precise knowledge of a robot manipulator’s
kinematic state including position, velocity, and acceleration is
one of the base requirements for the application of advanced
control algorithms. To obtain this information, encoder data
could be differentiated numerically. However, the resulting
velocity and acceleration estimates are either noisy or delayed
as a result of low-pass filtering. Numerical differentiation can
be circumvented by the utilization of gyroscopes and accelerom-
eters, but these suffer from a variety of measurement errors
and nonlinearity regarding the desired quantities. Therefore,
we present a novel, real-time capable kinematic state estimator
based on the Extended Kalman filter with states for the
effective sensor biases. This way, the handling of arbitrary
inertial sensor setups is made possible without calibration
on manipulators composed of revolute and prismatic joints.
Simulation experiments show that the proposed estimator is
robust towards various error sources and that it outperforms
competing approaches. Moreover, the practical relevance is
demonstrated using a real manipulator with two joints.

I. INTRODUCTION

In theory, estimating a manipulator’s kinematic state
consisting of joint position, velocity, and acceleration is
a straightforward task when joint position measurements
are available. In practice, however, noise and discretization
of the joint encoders will result in poor signal quality and
delayed signals after the numerical differentiation required
for velocity and acceleration estimates. To compensate for
the noise introduced, the signals can be filtered. However,
this introduces phase delays for higher frequencies resulting
in further delayed estimates. While this is not a serious
issue in classical industrial robot applications, it represents
a challenge in the context of collaborative robots, where
an accurate and non-delayed kinematic state estimation is
among the necessary information for fast collision detection
[1]. Beyond that, kinematic state data is required in a variety
of robotic disciplines, ranging from model identification [2]
over trajectory tracking [3] to force control [4].

A promising option to overcome the limitations of pure
encoder sensor setups regarding the estimation of velocities
and accelerations is the addition of inertial measurement
units (IMUs), consisting of gyroscopes and accelerometers,
to the manipulator. Driven by reduced costs and the increased
availability, the integration and utilization of such sensors has
become an actively researched topic in the last two decades:
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In [5], Zhu et al. presented two fusion approaches that utilize
frequency weighting to combine acceleration measurements
with encoder signals to estimate the end effector velocity
of a manipulator in 3D space. In a similar paper, Hedberg
et al. [6] presented an algorithm to fuse angular rate and
linear acceleration measurements from end effector mounted
sensors with the pose estimate from forward kinematics
to improve information about the end effector trajectory.
Although both authors utilize acceleration measurements,
they do not provide smoothed acceleration estimates beyond
the raw, noisy acceleration measurements. Furthermore, all
estimates are provided in Cartesian space instead of joint
space, even though the latter is more universal due to
the unambiguity of forward kinematics. This limitation is
compensated in the work of Chen et al. [7], where an end
effector accelerometer is used to estimate the joint states
of a robot with elastic actuators that do not possess load
side encoders. For this, a dynamic model of the robot is
paired with an optimization problem that has an acceleration
constraint and a set of decoupled Kalman filters. It is obvious
to deploy multiple IMUs if an estimation in the joint space
instead of the Cartesian space is desired. For this reason,
Vihonen et al. [8] proposed a sensor configuration where one
triaxial gyroscope is attached to each link. The authors also
show how the joint acceleration can be determined by adding
one additional triaxial and three single-axis accelerometers.
Similar to this, Rotella et al. introduced a setup in [9] with one
triaxial gyroscope and two triaxial accelerometers attached to
each link to calculate joint velocities and accelerations directly
from raw measurements in a first step. In a second step, two
Kalman filters are used to smooth the data and to ensure
consistency between the position data and its derivatives.

Although a large number of sensors can result in improved
accuracy, it can be beneficial to reduce the number of sensors
for economical and constructive reasons. For this reason,
Birjandi et al. presented an estimator in [10], [11] that utilizes
one accelerometer and optionally one gyroscope per link in
combination with an extended Kalman filter (EKF) to estimate
all joint velocities and accelerations.

All solutions up to this point share the disadvantage of
requiring an accurate sensor calibration regarding placement,
bias, and scale factor, which is hard to achieve, especially in
industrial environments. In contrast, the method in [12] uses
one uncalibrated accelerometer per link to estimate a bias-
polluted joint acceleration vector. Thereafter, the smoothened
(and therefore delayed), but bias-free accelerations calculated
from encoder data are used to compensate for the current
acceleration bias. Although this method works well in



the given acceleration control application, it can neither
incorporate gyroscope data nor provide velocity estimates
beyond filtered position derivatives. This becomes a practical
limitation if the last accelerometer is situated close to the
revolute axis of the last joint.

This paper aims to overcome the presented limitations of
the current state of the art by contributing a novel, unified,
EKF-based framework for estimating the kinematic state of
robot manipulators, which

• is hard real-time capable (i.e., execution frequency
≥ 1 kHz),

• does not depend on accurate sensor calibration informa-
tion, such as exact pose, scale factor error, bias, and
cross-axis-sensitivity,

• can be used with arbitrary inertial sensor setups, and
• provides good estimation quality regarding all kinematic

quantities over a high bandwidth.

The remainder of this paper is structured as follows: Based
on the notation from Section II, the problem is formalized
in Section III. In Section IV, the state estimation including
system and measurement models is introduced. Finally, a
detailed evaluation based on simulations and experiments
on real hardware is presented in Section V and Section VI,
respectively, before the paper is concluded in Section VII.

II. NOTATION

Throughout this paper, vectors are printed underlined and
matrices are printed in bold. Positions, linear velocities and
linear accelerations are denoted with

¯
x,

¯
v, and

¯
a, respectively.

For rotations, rotation matrices C are used in combination
with angular velocities

¯
ω and angular accelerations

¯
α. Fur-

thermore,
¯
q is the generalized joint configuration vector.

The unit or zero vectors
¯
r and

¯
t define the rotational and

translational axes of joints, respectively. This means that

¯
r =

¯
03 holds for prismatic joints and

¯
t =

¯
03 for revolute

joints. Superscripts denote the resolving coordinate frame
in which a quantity is expressed. The subscripts denote the
reference frame (if applicable) and the object frame. For
example,

¯
xABC represents the position of point C relative to

frame B, given in coordinates of frame A. Similarly, RA
B

describes the orientation of frame B relative to frame A,
resulting in a set of mathematical rules that are explained in
depth in [13]. For brevity, the cross product

¯
ω ×

¯
x can be

written as Ω
¯
x, where the uppercase Ω = [

¯
ω×] is the skew-

symmetric matrix of the lowercase
¯
ω. This definition is also

valid for other vectors, e.g.,
¯
r. To reference the i-th element

of a vector, [i] is appended to the subscript. Likewise, the
notation [: i] can be used to address the first to i-th element of
a vector. All quantities are given in SI units unless otherwise
specified.

In the remainder, the coordinate frames as illustrated in
Fig. 1 are used. The world frame W is considered an inertial
frame and marks the stationary base of the robot. Each joint i
of the robot is located between the end frame of the previous
link εi−1 and the begin frame of the next link βi.

¯
q[1]

¯
rε0β1

β1

ε0

W

¯
rε1β2

¯
q[2]

β2

ε1

¯
tε2β3

¯
q[3]

β3 = p(S)ε2
¯
rεn−1βn

¯
q[n]

βn
εn−1

S

Fig. 1: Definition of the frames on the considered kinematic chain with the
link begin frames, the link end frames, and the joint axes. An inertial sensor
S is attached to the link after joint 3 in this example.

III. PROBLEM FORMULATION

In this paper, a serial kinematic chain with n joints, which
are either prismatic or revolute joints, is considered. It is
assumed that the forward kinematics is known precisely and
that each joint provides noisy (load-side) position measure-
ments from an encoder. Along the kinematic chain, na ≥ 0
triaxial accelerometers A = {A1, . . . , Ana} and ng ≥ 0
triaxial gyroscopes G = {G1, . . . , Gng} are distributed in an
arbitrary fashion.1 For each sensor S ∈ G∪A, the mounting
pose of the sensing frame relative to the parent link begin
frame p(S), i.e.,

¯
x
p(S)
p(S)S and C

p(S)
S , is known within typical

manufacturing tolerances. However, the exact calibration of
the sensors, including bias, scale-factor error, cross-axis-
sensitivity, nonlinearity, and pose offset (e.g., originating
from soldering), is not known.

The goal in this setup is to find accurate and undelayed
estimates of the real joint positions

¯
q ∈ Rn, velocities

¯
9q ∈ Rn,

and accelerations
¯
:q ∈ Rn based on the raw measurements

from encoders
¯
q̃ ∈ Rn, gyroscopes

¯
ω̃G1

WG1
, . . . ,

¯
ω̃
Gng
WGng

∈ R3,

and accelerometers
¯
ãA1

WA1
, . . . ,

¯
ã
Ana
WAna

∈ R3. Here, the term
undelayed encompasses not only phase delays but also the
calculation under real-time constraints.

IV. ESTIMATOR DESIGN

In this section, the estimator that combines all available
measurements into a single kinematic state is explained. We
chose an EKF architecture for its ability to handle nonlinear
measurement functions, avoiding the introduction of sensor
placement constraints as seen in [8] and [9]. Furthermore,
the Kalman filter facilitates intuitive parameter tuning.

A. System Model

For the filter, a linear constant jerk motion model including
all joints at once is combined with a constant bias model

1Although the distribution can be arbitrary, it is preferred to have a
configuration that effectively permits the observation of joint velocities and
accelerations from the inertial sensor measurements.



resulting in the time-discrete system model
¯
q

¯
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¯
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¯
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¯
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¯
ba
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¯
q

¯
9q

¯
:q

¯
;q

¯
bg

¯
ba


k

+
¯
wk (1)

with the sampling time ∆t. Here, the stacked biases

¯
bg = (

¯
bTG1
· · ·

¯
bTGng

)T ∈ R3ng and (2)

¯
ba = (

¯
bTA1
· · ·

¯
bTAna

)T ∈ R3na (3)

describe the current bias values of each triaxial gyroscope
and accelerometer, respectively, which are equal to the actual
inertial sensor biases under ideal conditions. Under real
conditions,

¯
bg and

¯
ba shall approximate the current total of

all measurement errors originating from the inertial sensors,
allowing the estimator to be calibration-free. The zero-mean,
Gaussian process noise

¯
wk is assumed to exclusively affect

the joint jerk and the bias states, i.e.,

Cov(
¯
wk)=diag

(
¯
0Tn ¯

0Tn ¯
0Tn σ2

;q¯
1Tn σ2

bg¯
1T3ng

σ2
ba¯

1T3na

)
, (4)

where σ� is the respective standard deviation.
Note that other formulations of the system model, which

have inputs based on controller setpoints or forward dynamics,
might be more accurate due to the incorporation of additional
information. However, this would impose non-trivial con-
straints on the robot architecture, violating the promise of a
unified kinematic state estimation.

B. Measurement Model

The measurement vector

¯
ỹ =



¯
q̃

¯
ω̃G1

WG1

...

¯
ω̃
Gng
WGng

¯
ãA1

WA1

...

¯
ã
Ana
WAna


=



¯
q

¯
ωG1

WG1

(̄
q,

¯
9q
)

+
¯
bG1

...

¯
ω
Gng
WGng

(̄
q,

¯
9q
)

+
¯
bGng

¯
aA1

WA1

(̄
q,

¯
9q,

¯
:q
)

+
¯
bA1

...

¯
a
Ana
WAna

(̄
q,

¯
9q,

¯
:q
)

+
¯
bAna


+

¯
v (5)

stacks the measurements from all available sensors. The
measured angular rates

¯
ω̃GiWGi

are assumed to be the sum of
the actual angular rates

¯
ωGiWGi

, the current total bias
¯
bGi ,

and the corresponding entries of the measurement noise

¯
v ∈ Rn+3ng+3na . The composition of the measured linear
accelerations

¯
ãAiWAi

follows the same scheme. With the
assumption of uncorrelated sensor noise, the covariance matrix
of

¯
v is diagonal and its values correspond to the actual noise

intensity of the sensors.
In contrast to [10], this approach does neither rely on a

minimum number of gyros and accelerometers per link nor
are the joints considered in a decoupled fashion. As a result,
the initially stated requirement for flexibility can be met.
Furthermore, inertial sensors can be disabled at runtime, e.g.,
when a sensor is faulty or reaches its range limits.

C. Measurement Jacobian

The measurement model (5) is nonlinear. To apply the
EKF in this case, the Jacobian of the measurement function

¯
ỹ with respect to the state variables from (1) is required. A
simple solution for this involves numerical derivatives, but
the sought Jacobian is ∈ R(n+3ng+3na)×(4n+3ng+3na), which
requires many computationally expensive calculations of the
forward kinematics. Therefore, it is better to calculate the
Jacobian analytically in form of a recursive expression. In
[14], the required kinematic derivatives were introduced as a
by-product. However, given that the underlying spatial alge-
bra impedes mathematical accessibility and interpretability,
the following recursive algorithm with complexity O(n2)
utilizing standard algebra was created.

The partial derivatives for
¯
bg and

¯
ba as well as

¯
;q are trivial,

because they appear linearly or not at all in the components
of (5). As a first step for

¯
ωGiWGi

, the angular velocity of the
link begin frame βj is described using the angular velocity
of the previous link begin frame βj−1 and the movement of
joint j using

¯
ωWWβj =

¯
ωWWβj−1

+ CW
βj−1

Cβj−1
εj−1 ¯

r
εj−1

εj−1βj¯
9q[j] . (6)

Changing the resolving frame to βj yields

¯
ω
βj
Wβj

= Cβj
εj−1︸ ︷︷ ︸

¯
q
[j]

C
εj−1

βj−1

(
¯
ω
βj−1

Wβj−1︸ ︷︷ ︸
¯
q
[:j−1]

,
¯
9q
[:j−1]

+Cβj−1
εj−1 ¯

r
εj−1

εj−1βj ¯
9q[j]︸︷︷︸
¯
9q
[j]

)
. (7)

Here, all dependencies on the state variables are listed under
the curly brackets. This way, it is easy to see that

∂
¯
ω
βj
Wβj

∂
¯
q[i]

= C
βj
βj−1

∂
¯
ω
βj−1

Wβj−1

∂
¯
q[i]

(8)

for i < j and

∂
¯
ω
βj
Wβj

∂
¯
q[j]

= −R
εj−1

εj−1βj¯
ω
βj
Wβj

(9)

by applying
∂C

βj
εj−1

∂
¯
q
[j]

= −R
εj−1

εj−1βj
C
βj
εj−1 . Consequently, the

partial derivative of
¯
ω
βj
Wβj

with respect to
¯
q[i] is defined

recursively as

∂
¯
ω
βj
Wβj

∂
¯
q[i]

=


C
βj
βj−1

∂
¯
ω
βj−1
Wβj−1

∂
¯
q
[i]

i < j

−R
εj−1

εj−1βj¯
ω
βj
Wβj

i = j

¯
0 i > j

. (10)

With the same argumentation, the partial derivative with
respect to

¯
9q[i]

∂
¯
ω
βj
Wβj

∂
¯
9q[i]

=


C
βj
βj−1

∂
¯
ω
βj−1
Wβj−1

∂
¯
9q
[i]

i < j

C
βj
εj−1¯

r
εj−1

εj−1βj
i = j

¯
0 i > j

(11)

is calculated recursively. The angular velocity of the gyro-
scope Gi is determined from the angular velocity of the



parent link begin frame k = p(Gi) via

¯
ωGiWGi

= CGi
βk ¯
ωβkWβk

. (12)

Finally, the desired partial derivatives of the gyroscope
measurement with respect to the state variables are

∂
¯
ωGiWGi

∂
¯
q

= CGi
βk

∂
¯
ωβkWβk

∂
¯
q

and (13)

∂
¯
ωGiWGi

∂
¯
9q

= CGi
βk

∂
¯
ωβkWβk

∂
¯
9q

. (14)

This scheme can be applied to linear accelerations as well.
Unfortunately, the resulting formulas are lengthy and we
refer the reader to the supplemental material2 for a detailed
derivation. For this reason, we just outline the key formulas
at this point. The recursive formula for the position of the
link begin frame βj in the world frame is

¯
xWWβj =

¯
xWWβj−1

+CW
βj−1

(
¯
x
βj−1

βj−1εj−1
+Cβj−1

εj−1¯
t
εj−1

εj−1βj¯
q[j]

)
. (15)

If this is differentiated twice with respect to time and then
resolved in the link begin frame βi,

¯
a
βj
Wβj

= Cβj
εj−1︸ ︷︷ ︸

¯
q
[j]

C
εj−1

βj−1

[
2 Ω

βj−1

Wβj−1︸ ︷︷ ︸
¯
q
[:j−1]

,
¯
9q
[:j−1]

Cβj−1
εj−1¯

t
εj−1

εj−1βj ¯
9q[j]︸︷︷︸
¯
9q
[j]

+ Cβj−1
εj−1¯

t
εj−1

εj−1βj ¯
:q[j]︸︷︷︸
¯
:q
[j]

+
([

¯
α
βj−1

Wβj−1︸ ︷︷ ︸
¯
q
[:j−1]

,
¯
9q
[:j−1]

,
¯
:q
[:j−1]

×
]

+ Ω
βj−1

Wβj−1
Ω
βj−1

Wβj−1︸ ︷︷ ︸
¯
q
[:j−1]

,
¯
9q
[:j−1]

)
(

¯
x
βj−1

βj−1εj−1
+ Cβj−1

εj−1¯
t
εj−1

εj−1βj ¯
q[j]︸︷︷︸
¯
q
[j]

)
+

¯
a
βj−1

Wβj−1︸ ︷︷ ︸
¯
q
[:j−1]

,
¯
9q
[:j−1]

,
¯
:q
[:j−1]

] (16)

is obtained. This expression can be differentiated recursively
as demonstrated before. The occurring angular accelerations
and their derivatives are calculated with the help of

¯
α
βj
Wβj

=Cβj
εj−1︸ ︷︷ ︸

¯
q
[j]

C
εj−1

βj−1

(
¯
α
βj−1

Wβj−1︸ ︷︷ ︸
¯
q
[:j−1]

,
¯
9q
[:j−1]

,
¯
:q
[:j−1]

+Cβj−1
εj−1 ¯

r
εj−1

εj−1βj ¯
:q[j]︸︷︷︸
¯
:q
[j]

+ Ω
βj−1

Wβj−1︸ ︷︷ ︸
¯
q
[:j−1]

,
¯
9q
[:j−1]

Cβj−1
εj−1 ¯

r
εj−1

εj−1βj ¯
9q[j]︸︷︷︸
¯
9q
[j]

)
,

(17)

which in turn is obtained by differentiating (6) with respect
to time and changing the resolving frame to βj . Note,
that the effect of gravity is already fully covered if

¯
aβ0

Wβ0

is set appropriately. In the last step, the Jacobian of the
accelerometer Ai mounted on link k = p(Ai) is calculated
using the partial derivatives of

¯
aAiWAi

=CAi
βk

(
¯
aβkWβk

+
([

¯
αβkWβk

×
]
+Ωβk

Wβk
Ωβk
Wβk

)
¯
xβkβkAi

)
, (18)

which is a modified version of (16).

2https://isas.iar.kit.edu/media/pdf/Fennel_MFI22_
SupplementalMaterial.pdf

D. Implementation

The resulting EKF and the presented algorithm for the
efficient calculation of the measurement Jacobian were
implemented in C++. To be robot-agnostic, the robot model
can be configured at runtime by providing a URDF-file and
a list of available sensors. The necessary forward kinematic
calculations as well as the parsing of the URDF-file are
carried out by the pinocchio-library [15].

V. EVALUATION IN SIMULATION

This section covers various simulation experiments to
characterize the behavior of the proposed estimator.

A. Simulation Environment

For the following simulations, performed with a sampling
frequency of 1 kHz, the manipulator as depicted in Fig. 2 with
2 prismatic joints, 6 revolute joints, and 8 IMUs was used.
The corresponding Denavit–Hartenberg (DH) parameters are
listed in Table I. For the test movements, all joints follow a
pre-defined sinusoidal trajectory with a given frequency. To
ensure a steady state at the beginning and the end as in real
scenarios, the sinusoidal signal is modulated with a cosine
window of length 10 s. The position amplitudes are chosen so
that a maximum acceleration of 20 m s−2 or rad s−2 occurs,
as long as the necessary position amplitude of 30° or 0.52 m
is not exceeded. To cover different circumstances, 30 initial
configurations with |

¯
q[i]| < 0.52 were drawn once from an

uniform distribution. Furthermore, each initial configuration
is associated with a set of random phase offsets for the
sinusoidal signals.

For the simulation of the encoder data, the groundtruth
position signals are distorted with zero-mean, white Gaussian
noise with standard deviation 4.0× 10−4 and discretized
with resolution 1.2× 10−5 (19-bit encoders). The simulation
model of the gyroscope is depicted in Fig. 3. It comprises
the scale-factor error and cross-axis sensitivity matrix SGi ,
the additive Gaussian noise

¯
vGi , a constant bias

¯
bGi,const,

a temperature sensitive bias with coefficient
¯
cGi , and a

quantization. If not stated differently, the standard deviation
of the noise is 0.32 ° s−1. All other parameters are drawn once
from uniform random distributions, whose limits are derived
from the typical values in the datasheet of an InvenSense
MPU-9250 [16]. Additionally, a fixed pose calibration error
is introduced for each gyroscope, for which translation errors
are drawn uniformly from [−2, 2] mm and Euler orientation
errors are drawn uniformly from [−2, 2] ° before the first
simulation. The simulation model of the accelerometer follows
the same scheme, whereas the noise standard deviation is
9.5× 10−3 m s−2. For the temperature T , a deterministic
sinusoidal trajectory with a frequency of 0.1 Hz and amplitude
of 5 ◦C is assumed.

B. Estimator Performance

The proposed estimator was tuned for the presented
simulation scenario. For this, the measurement noise co-
variance was set according to the sensor specifications.
The process noise covariance was adjusted manually to



Fig. 2: An illustration of the manipulator used during simulation. The blue
spheres mark the mounting points of the IMUs with triaxial gyroscopes and
accelerometers at the end of each link. Note that the last sensor location is
very close to the rotation axis of the last revolute joint.

Joint i θi di ai αi

1 0
¯
q[1] 0 90°

2 90°
¯
q[2] 0 90°

3
¯
q[3] 0 0.7 0

4
¯
q[4] + 90° 0 0.6 180°

5
¯
q[5] −0.5 0 90°

6
¯
q[6] 0 −0.25 0

7
¯
q[7] 0 0 90°

8
¯
q[8] 0.25 0 0

TABLE I: DH parameters of the manipulator used during simulations.

Cov(
¯
wk) = diag

(
¯
0T8 ¯

0T8 ¯
0T8 12.52

¯
1T8 0.0012

¯
1T24 0.012

¯
1T24

)
.

Here, the large jerk noise was chosen to facilitate rapid
acceleration changes. As stated in Section IV-A, the bias
states have to compensate for all inertial sensor errors. For
this reason, the bias driving noise was selected much larger
compared to the necessary noise for a pure sensor bias. Due to
gravity, misalignments and scaling errors of the acceleration
sensors are more severe for the measurement than for the
gyroscopes. Therefore, σba = 10σbg was selected. The KF is
initialized during standstill. This means the kinematic part of
the state is accurately known at the beginning. The initially
unknown bias states are zero-initialized with a high variance.

Fig. 4 shows the resulting RMS errors (RMSE) of the
kinematic states for varying frequencies. In general, the
position estimates have very low errors, that are even below
the encoder noise for most of the considered frequencies.
For very high frequencies, the estimation errors become
larger than the RMS value of the excitation. However, this
is only a minor limitation, as typical excitation amplitudes
for high-frequency vibrations are very small. The velocity
estimation is also performing well, especially in the practical

¯
bGi,const

¯
vGi ∼ N

(
¯
0, σ2

Gi
I
)

¯
ω̃
Gi
WGi¯

ω
Gi
WGi

T

SGi+ I

¯
cGi

ADC

Fig. 3: Sensor model of the gyroscopes used during simulations.

Fig. 4: RMSEs of the proposed estimator. The dashed lines represent the
RMS values of the excitation signals.

relevant range between 0.5 Hz and 5 Hz, where the error
is less than 1/20 of the excitation. It should also be noted
that the RMSE is in the range of the raw gyroscope noise
standard deviation for very low frequencies. Similar to the
velocity, the RMSE of the acceleration is mostly 1/10 of
the excitation RMS in the frequency range between 0.5 Hz
and 5 Hz. For higher frequencies, the estimator performs
worse, especially regarding the last joint. The reason for this
is the reduced observability of the last joint’s acceleration
because the responsible acceleration sensor is mounted very
close (50 mm) to the rotation axis and no further acceleration
sensors are observing the last joint. For the same reason, the
combined acceleration RMSE for all joints looks unsatisfying
at the first glance for high frequencies. Nevertheless, this
quantity facilitates a fast comparison of different estimators
and is therefore used hereinafter.

In the simulations, a full iteration of the estimator took
560 µs on average on a standard laptop with an Intel
Core i7-9750H CPU. From this, we can conclude that our
estimator is real-time capable for manipulators with ≤ 8
joints and control frequencies ≤ 1 kHz. Furthermore, the
evaluation of the Jacobian required 6 µs on average, proving
that our proposed recursive algorithm from Section IV-C is
highly efficient.

C. Influence of Environmental Variations

To test the influence of different environmental effects and
increasing errors, the RMSEs over frequency were determined
in the following setups:

1) Normal noise, but ideal sensor calibration and no bias.
2) Like 1, but with sensor bias terms.
3) Like 2, but with a scale factor error.
4) Reference setup from Section V-A with all errors.
5) Like 4, but with 5-fold increased inertial sensor noise.
6) Like 4, but only with sensors at every other link.



Fig. 5: RMSEs of the proposed estimator under different conditions. The
dashed lines represent the RMS values of the excitation signals.

Accordingly, the curves of setup 1 in Fig. 5 represent a perfect
sensor model and thus a lower bound for the estimation error
with the given system model. The curves for setup 2 are
coincident with setup 1, indicating that constant and slowly
varying sensor biases are handled as expected. If scale factor
errors are added as in setup 3, the estimation error of velocity
and acceleration increases approximately by a factor of two
in the range between 1 Hz and 10 Hz. A further doubling of
these errors occurs when rotation and translation errors as in
setup 4 are included in the simulation, yielding the previously
discussed data from Fig. 4. Consequently, we deduce that the
calibration of the inertial sensors impacts the overall system
performance. Especially, the knowledge of scale factor errors,
cross-axis sensitivity, and alignment errors has the potential
to improve the estimation quality significantly. Nevertheless,
we want to emphasize that the estimation also works without
calibration as claimed in the introduction.

In real scenarios, the sensor noise might be increased.
The resulting curves from setup 5 in Fig. 5 suggest that the
proposed estimator is robust against such changes, as long
as a proportional increase of velocity and acceleration errors
for frequencies < 1 Hz is tolerated. Higher frequencies are
less affected by the increased sensor noise.

With the last setup, the claimed modularity regarding the
sensor configuration was tested. As one can see from setups
4 and 6 in Fig. 4, the missing sensors do not significantly
diminish the estimation quality. In practice, however, the
number of sensors cannot be reduced arbitrarily without
performance losses because the full observability based on
acceleration sensors will get lost at some point.

D. Comparison with other Estimators

In this section, a comparison of the proposed full Kalman
Filter (KF-F) with four kinematic state estimators from the
literature is carried out in simulation.

Fig. 6: RMSEs of a Butterworth low pass filter for velocity estimation with
different parameters. None of the configurations clearly outperforms the
selected parameters.

1) Competitors: The following competitors were imple-
mented in C++:

• ND: The first competitor calculates the numerical
derivatives of the joint positions. The noisy velocity
is then smoothed with a Butterworth filter of order o 9q

and cutoff frequency fc, 9q . Analogously, the acceleration
is smoothed with the parameters o:q and fc,:q .

• PI: In the second approach following [12], biased
joint accelerations are calculated from accelerometer
measurements based on a pseudoinverse. At the same
time, unbiased but delayed estimates are calculated using
the previous method. In combination with the biased joint
accelerations, which are artificially delayed by tdelay, and
a Butterworth filter with parameters ob and fc,b, a bias is
calculated to correct the current biased joint accelerations.
Lastly, another Butterworth filter with parameters oa and
fc,a smoothes the final acceleration estimate.

• KF-D: The third competitor uses several decoupled
Kalman Filters as presented in [11]. In contrast to our
model, biases are completely neglected and each sensor
is used exclusively for updating one joint.

• KF-T: The last competitor is the trivial Kalman Filter
which only processes encoder data with a constant jerk
model. This means that no inertial data is incorporated
into the estimate.

For KF-D and KF-T, appropriate parameters were directly
derived from the parameters in Section V-B, as both can be
considered as a functional subset of our filter. The parameters
of ND were tuned manually to o 9q = 2, o:q = 4, and fc, 9q =
fc,:q = 20 Hz. Fig. 6 demonstrates that the selected parameters
for the velocity filter are a reasonable choice because neither
a variation of the order nor of the cutoff frequency yield a
global improvement. Unfortunately, no parameters are stated
in the original publication of PI. For this reason, the filter
parameters for the delayed velocity and acceleration estimates
were adopted from ND. The remaining parameters were tuned
manually to tdelay = 22 ms, ob = 2, oa = 1, fc,b = 5 Hz, and
fc,a = 200 Hz, which is a good tradeoff as seen in Fig. 7.

2) Results: With Fig. 7, it is evident that the proposed
estimator, KF-F, outperforms all considered approaches
in a broad frequency range. Especially for the velocity
and accelerations, a significant decrease of the estimation
error can be expected confirming the effectiveness of our
method. The plot also shows that KF-D performs much
worse than KF-T or ND, which is caused by its sensitivity



Fig. 7: RMSEs of PI for acceleration estimation with different parameters.
The filter orders have similar effects as in Fig. 6. The parameter fc,a was
omitted as it had very little effect.

Fig. 8: Estimation error of the compared kinematic state estimators.

towards inaccurate calibration data. The acceleration estimates
of PI are much less precise than those of KF-F in the
medium frequency range, which is mostly owed to the bad
observability of the last joint as the joint-wise RMS errors
RMSET

PI = (0.14, 0.19, 0.42, 0.65, 0.91, 0.92, 0.76, 6.41) and
RMSET

KF-F = (0.10, 0.17, 0.21, 0.30, 0.26, 0.49, 0.44, 0.48)
for 2 Hz suggest. A potential drawback of our method is
the increased computational effort, as shown in Table II.

VI. EVALUATION ON REAL HARDWARE

The practical applicability of the proposed estimator was
demonstrated on real hardware.

A. Setup

The test setup is depicted in Fig. 9. A two joint SCARA
manipulator is equipped with a 19-bit load-side encoder in
every joint and an uncalibrated InvenSense MPU-9250 at the
end effector. All calculations are carried out with a frequency
of 1 kHz. The manipulator is programmed to perform a linear
back-and-forth movement in Cartesian space with a maximum
velocity of 0.5 m s−1 and a distance of 0.5 m between the
reversal points. After 11 cycles in 25 s, the motion is stopped
abruptly by triggering the mechanical brakes of the joints. The
encoder noise was identified to be less serious than assumed
in the simulations, while the IMU errors were increased

Estimator Mean runtime in µs

KF-F 560
ND < 1
PI 6

KF-D 113
KF-T 24

TABLE II: Processing times of the compared kinematic state estimators.

Fig. 9: A planar manipulator with 2 joints in SCARA configuration was
used for the evaluation on real hardware.

significantly. Hence, the filter has been retuned with the param-
eters Cov(

¯
wk) = diag

(
¯
0T6 12.52

¯
1T2 0.0052

¯
1T3 0.052

¯
1T3
)

and Cov(
¯
v) = diag

(
(6×10−5)

2

¯
1T2 0.0552

¯
1T3 0.1882

¯
1T3

)
.

B. Results

Fig. 10 shows the velocity and acceleration estimates of
our approach (KF-F) for both joints. The oscillations are not
noise, but true mechanical oscillations originating from finite
stiffness as reported in [12]. Before the estimation quality
can be assessed, the reference signals must be discussed due
to the lack of real groundtruth information in our setup.

It is obvious that numerical differentiation combined with
an acausal smoothing step during post-processing can yield
noise-free and undelayed estimates. However, the resulting
signals are only reliable up to a specific frequency as the
amplification of the encoder noise increases with frequency.
Furthermore, the encoders have additional errors beyond
additive noise and the manipulator’s structural elements are
not infinitely stiff, resulting in high-frequent movements not
captured by the encoders. For this reason, a fair comparison
without dedicated acceleration and velocity groundtruth
sensors is limited to a comparatively low frequency range.

In our case, an analysis of the raw IMU data and the
differentiated, but unfiltered encoder data suggests that
a frequency limitation to 10 Hz is reasonable. This was
implemented using a 4th-order Butterworth filter in a forward-
backward setup to achieve delay-free results. The resulting
low-pass filtered numerical derivatives (reference) and the
low-pass filtered estimates of our approach (KF-F, band-
limited) are included in Fig. 10. Since both are very close,
the deviations, which can be interpreted as an estimation error,
are plotted separately in Fig. 11. For the whole trajectory
with an RMS of 1.253 for velocity and 5.727 for acceleration,
the corresponding RMSEs are 0.005 and 0.430, respectively.



Fig. 10: Excerpt of the velocity and acceleration estimates of the proposed
estimator over time in comparison with the band-limited numerical differen-
tiation. The brake is actuated at t ≈ 25 s.

Fig. 11: Deviations between the proposed estimator and the reference from
numerical differentiation over time, when a band-limit of 10 Hz is applied.
The estimation errors are increased significantly when the brakes are triggered.
Nevertheless, the error magnitude is kept at a fraction of the actual signal
magnitude.

From this, it is evident that the proposed estimator also works
well in real-life scenarios, even in situations where very abrupt
acceleration and velocity changes occur.

VII. CONCLUSIONS

In this paper, a new calibration-free kinematic state
estimator for robot manipulators with revolute and prismatic
joints was presented. To achieve this, an EKF combines a
constant jerk model for the movement with constant bias
models for the inertial sensors. Although the resulting system
model has a comparatively large state dimension, real-time
capable and robot-agnostic execution is made possible by
means of an efficient recursive expression for the Jacobian of
the measurement function. As demonstrated in simulations
and experiments with real hardware, the proposed estimator is
able to incorporate nearly all information from a given sensor
setup, while still being robust towards parameter changes.
We outperformed competing approaches significantly in all
aspects except for runtime.

Future work will involve runtime optimizations exploiting
the sparsity of the system and measurement Jacobians during
the prediction and the update step of the EKF. Thereafter,
the application of the proposed estimator on more complex
real robots is planned. This also raises the question of which
sensor setups are optimal regarding the number of sensors and
the observability. Furthermore, the generalization to setups
where the joint position cannot be measured directly with
sufficient precision, i.e., human motion tracking, is considered
for future research.
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