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Abstract— The Fisher information number (FIN) has previ-
ously been proposed as a regularizer to fit a probability density
function to a set of constraints. Especially for mixture densities,
this is not straightforward and often a reformulation based on
square root densities is used. As it is generally much harder to
derive the square root of a mixture than squaring it, this only
allows for constraints that can be expressed through the root
density’s parameters. An important case not covered by this are
constraints on individual components of a mixture. This paper
proposes three methods to approximate the FIN of mixture
models: Gauss-Hermite quadrature, polynomial approximation
of the square root function, and direct approximation of the
square root density of a pdf. This allows using the FIN for
smooth density estimation in situations existing methods cannot
handle. The three methods are applied to the problem of kernel
density estimation with Gaussian kernels and the results are
compared.

Index Terms— Fisher information, density estimation, square
root, Gaussian mixture, Gauss-Hermite quadrature

I. INTRODUCTION

There are many scenarios in information fusion, where
only partial information about a probability density is known
[1] [2]. This includes density values at some positions,
moments of the distribution or the amount of probability
mass in certain regions. Reconstructing a continuous proba-
bility density function from this information is an ill-posed
problem, as more than one feasible solution generally exists.
This necessitates using an additional criterion to select one
of the solutions. The Fisher information number (FIN) has
previously been proposed as a roughness measure to select
the smoothest feasible solution [3], [4]. The papers use
a Gaussian mixture and a sum of polynomials as density
representations and employ a reformulation of the FIN
based on the square root of the density to be estimated.
This reformulation enables analytic calculation of the FIN
for mixture densities, which is an otherwise challenging
problem. This approach is suitable for reconstructing smooth
densities from “global” information about the density, for
example, some of its moments. When working with mixture
densities, especially with Gaussian mixtures, some informa-
tion about the mixture’s components might be known like
their mean or variance. This case cannot be handled by the
methods currently available. The reformulation in terms of
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Fig. 1: Densities estimated with the three proposed approx-
imations for the FIN based on eight deterministic samples
(black dots) drawn from a Gumbel density (GT). The ap-
proximation methods are Gauss-Hermite-Quadrature (GHQ),
Polynomial square root (PSR), and Optimization (OPT).

the square root density that they use does not allow “local”
specifications on components, but only “global” ones on the
complete density.

This paper gives a short overview of calculating the FIN of
probability distributions and its application to smooth density
estimation. Three new approaches to approximate the FIN
for mixture densities are proposed. These enable the use of
“local” specifications on individual components of a mix-
ture. Their suitability to density estimation is demonstrated
through an example application of kernel density estimation,
which cannot be solved with the existing methods.

II. STATE OF THE ART

The FIN of a probability density function (pdf) f(x) in D
dimensions with support Ω is according to [3] defined as

I(f(x)) =

∫
Ω

∇f(x)⊤∇f(x)

f(x)
dx . (1)

This paper assumes that Ω is the Euclidean space RD. The
FIN has been proposed as a measure of roughness for density
estimation based on Hermite polynomials in [4] and was
used similarly with Gaussian mixtures in [3] and for wavelet-
based density estimation in [5]. In [6] it was used to fit a
smooth spline through several given values of the cumulative
distribution function.



The integral in (1) can only be solved analytically for some
types of distributions, such as Gaussians. The division by
f(x) makes its calculation difficult for mixture densities and
polynomials. There is no closed-form solution for Gaussian
mixtures available, necessitating numerical integration. The
authors of [4] and [3] got around this limitation by rewriting
(1) in terms of the square root r(x) =

√
f(x) of the

nonnegative pdf. Making use of

∇r(x) = ∇
(√

f(x)
)
=

∇f(x)

2
√
f(x)

, (2)

the FIN can be written as

I
(
f(x)

)
= I

(
r2(x)

)
= 4

∫
RD

∇r(x)⊤∇r(x) dx . (3)

This eliminates the division by f(x) in (1), which is the prob-
lematic term for mixture densities. The integral in (3) can
be solved in closed form for many density representations,
most importantly for polynomials and mixture densities, as
their derivatives are easy to calculate and square. With this
form of the FIN, density estimation can be parameterized
in terms of the density’s square root r(x). The actual pdf
can then easily be recovered by squaring r(x). The opposite
direction, i.e., calculating the square root r(x) of a given
density f(x), is more difficult and can generally only be
performed approximately.

Because of this limitation, this approach can only be used
in cases where all the specifications on f(x) can be translated
into equivalent specifications on r(x).

An important case not covered by this are constraints on
individual mixture components of f(x) such as fixing their
means or covariances or even having certain numbers of
components. The components of the mixture density f(x)
are completely defined by squaring r(x). This confines the
possible numbers of components of f(x) and their location
and covariances to certain values so that it is impossible
to meet some specifications on f(x). Another consequence
here is, that even though f(x) has more components than
r(x), both densities have the same number of degrees of
freedom. This also makes processing the squared density
slightly inefficient, as f(x) contains redundant information.

III. PROBLEM FORMULATION

This paper considers the reconstruction of an unknown
multivariate probability density f̃(x) from a set of M
specifications S̃ = S̃1(f̃), . . . , S̃M (f̃), which does not com-
pletely define f̃(x). These specifications can take various
forms, such as moments, density values, or the amount of
probability mass in certain regions. The estimated density
f(x) should be the least informative pdf fulfilling these
specifications. The information content of f(x) is measured
as FIN I(f(x)) (1). To find the optimal solution f∗(x), the
following general optimization problem is solved

f∗(x) = argmin
f(x)

I
(
f(x)

)
s.t. S̃j(f) = 0 j = 1, . . . ,M , (4)

where the specifications S̃j are to be satisfied by the es-
timated density f(x). To apply (4) to concrete problems, a
suitable parametrization of f(x) has to be selected. It should
be able to approximate arbitrary densities and be suitable
for further processing like filtering or sampling in multiple
dimensions. A common choice fulfilling these requirements
is using Gaussian mixture (GM) densities

f(x; θf ) =

L∑
i=1

wi N (x;µ
i
,Σi) (5)

with positive weights wi summing to one, and Gaussian
densities with means µ

i
and covariance matrices Σi. For

convenience, these parameters are concatenated into one
parameter vector θf that specifies the mixture f(x; θf ).

A useful feature of GMs is that the result of addition
and multiplication of two GMs is another GM albeit with
an increased number of components and not necessarily
normalized to integrate to one. The addition operation merges
the components of the involved mixtures into one mixture.
Multiplication of two GMs can be broken down into a sum
of pairwise products between the components of both GMs.
There is a well-known formula for the multiplication of two
weighted Gaussians f1(x) = w1 N (x;µ

1
;Σ1) and f2(x) =

w2 N (x;µ
2
;Σ2) yielding another Gaussian f3(x) = f1(x) ·

f2(x) = w3 N (x;µ
3
;Σ3) with new parameters

w3 = w1 w2 N (0;µ
1
− µ

2
,Σ1 +Σ2) ,

µ
3
= (Σ1 +Σ2)

−1(Σ2µ1
+Σ1µ2

) , (6)

Σ3 = Σ1(Σ1 +Σ2)
−1Σ2 .

Substituting GMs into the optimization problem (4) gives
the minimization problem

θ∗f = argmin
θf

I
(
f(x; θf )

)
s.t. Sk(θf ) = 0 k = 1, . . . , 2L+ 1 (7)

S̃j(f) = 0 j = 1, . . . ,M

to find the optimal parameter vector θ∗f . Sk(θf ) encode
the necessary constraints on the parameters of the Gaussian
mixture

L∑
i=1

wi = 1

wi > 0 i = 1, . . . , L (8)
Σi is s.p.d. i = 1, . . . , L .

As the calculation of the FIN for mixture densities is not
straightforward, the paper introduces three approaches to find
approximate solutions to (7).

IV. APPROXIMATING THE FISHER INFORMATION

A. Gauss-Hermite Quadrature

Quadrature methods in one dimension and cubature meth-
ods in multiple dimensions are common ways to perform
numerical integration. They work by evaluating the integrand
at a specific set of points and calculating a weighted average



of these values. The points and weights are chosen in a way
that makes the method exact for certain types of functions.
One relatively advanced cubature algorithm is called h-
adaptive cubature [7]. It integrates a function over a fixed
hypercube domain adaptively refining the discretization to
reduce the integration error. This algorithm is well-suited to
solve the integral in (1). Its main drawbacks when solving
an optimization problem like (7), are its computational cost
and differentiability depending on the implementation used.

For these reasons, it is proposed to resort to Gauss-
Hermite quadrature instead [8][9]. This method can solve
one-dimensional integrals of the form

G =

∫ ∞

−∞
g(x) e−x2

dx (9)

by approximating it as

G ≈
K∑

k=1

ωkg(ξk) . (10)

The weights ωk and evaluation points ξk are typically chosen
to be accurate for polynomials of degree 2K − 1 where
K points are used for the approximations. Gauss-Hermite
quadrature can also be used for integrals involving a Gaus-
sian by transforming the original points to ξ̃k = µ+

√
2σξk

and rescaling the weights ω̃k = ωk/
√
π. This enables

approximating the integral G̃ over a function weighted with
a Gaussian as

G̃ =

∫ ∞

−∞
g(x)N (x;µ, σ2) dx ≈

K∑
k=1

ω̃k g(ξ̃k) . (11)

Different methods exist to extend this to multivariate inte-
grals like using the Cartesian product of the samples to yield
a grid or transformation to polar coordinates [10]. In this
paper, it is chosen to use a scheme similar to the unscented
Kalman filter [11] and the filter in [12], where samples are
put only on the main axes of the Gaussian. Weights are then
appropriately scaled to the increased number of quadrature
points. This has the advantage that the number of samples
grows linearly with increasing number of dimensions instead
of exponentially as with a cartesian grid.

Using (11) and setting

g(x) =
∇f(x)⊤∇f(x)

f(x)2
, (12)

the integral from (1) can then be approximated as

I(f(x)) =

∫
RD

∇f(x)⊤∇f(x)

f(x)2

L∑
i=1

wi N (x;µ
i
,Σi) dx

(13)

≈
L∑

i=1

K∑
k=1

wi ω̃k

∇f(ξ
k
)⊤∇f(ξ

k
)

f(ξ
k
)2

. (14)

B. Approximating the Square Root Function

A different approach to numerically approximating the
integral (1) is to find an approximation to the square root r(x)
that allows using the closed-form solution (3). It is proposed

to find a polynomial p(x) of degree d that closely matches
the square root function

√
x ≈ p(x) =

d∑
j=0

cj x
j . (15)

This polynomial can be found with out-of-the-box function
fitting tools. The square root of a probability density f(x) is
then approximately

r(x) ≈ p
(
f(x)

)
. (16)

A similar polynomial approximation to log(x) was pro-
posed in [13] for calculating the entropy of GMs. Polynomi-
als of GMs can be calculated in closed form by repeatedly
applying (6), which results in another GM. Depending on
the degree of the polynomial and the number of components
in f(x) the number of components in r(x) can be very
high. This makes this method only practical to use with
polynomials of relatively low degree. On the other hand, the
square root is a notoriously difficult function to approximate
with a polynomial, necessitating a tradeoff between accuracy
and polynomial degree.

Given the polynomial, the FIN (3) is approximated as

I
(
f(x)

)
= I

(
p
(
f(x)

)2)
(17)

= 4

∫
RD

∇p
(
f(x)

)⊤∇p
(
f(x)

)
dx

which can be solved analytically as p
(
f(x)

)
is a GM.

C. Simultaneous Optimization

Instead of approximating the square root function
√
x

and applying it to f(x), the square root r(x) can also be
approximated by directly minimizing the difference between
r2(x) and f(x). This results in minimizing the distance
measure

D
(
f(x), r(x)

)
=

∫
RD

(
f(x)− r(x)2

)2

dx . (18)

Generally, it is possible to use different types of parametriza-
tions for r(x) and f(x). By choosing a Gaussian mixture
(GM) representation for both, the distance measure can be
calculated in closed form. The expression under the integral
in (18) is multiplied out and the resulting sums and products
of GMs give again a GM with T components

d(x) =
(
f(x)− r(x)2

)2

=

T∑
t

vtN (x;µ
t
,Σt) (19)

that can be integrated by summing up the weights vt

D
(
f(x), r(x)

)
=

T∑
t=1

vt . (20)

This means that only the weights vt of d(x) need to be calcu-
lated, which saves some operations compared to computing
the complete GM.

The square root density is parametrized as GM r(x; θr) in
the following. For a given pdf f(x), the parameter vector θ∗r



of the best approximation r(x; θ∗r) to the true function r(x)
can be found by minimizing

θ∗r = argmin
θr

D
(
f(x), r(x; θr)

)
. (21)

The FIN of f(x) can now be approximately calculated in
closed-form with (3) by using r(x, θ∗r) as a plugin replace-
ment for the true square root density

√
f(x).

Incorporating this approximation into the optimization
problem (7) is not straightforward. Just substituting it into the
objective function would result in a nested optimization prob-
lem where the parameters θf of f(x; θf ) depend on the FIN
based on r(x; θr) but the parameters θr depend on θf to find
the square root mixture in the first place. To solve this cyclic
dependency the two optimization problems are combined
into one with both θf and θr as optimization variables. This
can be done by adding the distance D

(
f(x; θf ), r(x; θr)

)
to

the objective function yielding

θ∗f , θ
∗
r = argmin

θf ,θr

I(r2(x; θf )) + ηD
(
f(x; θf ), r(x; θr)

)
s.t. Sk(θf ) = 0 k = 1, . . . , 2L+ 1 (22)

S̃j(f) = 0 j = 1, . . . ,M

with a fixed weighting factor η > 0. η has to be chosen
large enough to ensure that f(x; θf ) and r2(x; θr) do not
drift apart.

Alternatively, (21) can be incorporated into the constraints
of (7). A necessary condition at the extreme points of a
function is that the gradient is zero at these points

∇D
(
f(x; θ∗f ), r(x; θ

∗
r)
)
= 0 . (23)

This exact condition can be added as a constraint to the
optimization problem, ensuring the distance function stays
at an optimal value. As this is only a necessary, but not
a sufficient condition for a minimum, this can also lead to
convergence to a maximum or saddle point of the distance
measure. The chances of this happening can be reduced by
setting the initial values for θf and θr to a minimum of the
distance or adding a sufficient condition to the constraints.

As the distance measure (18) is symmetric, it is also
enough to take the gradient with respect to one of the
parameter vectors θf and θr. If one of these gradients is
zero, the other one has to be zero as well, as it could not
be a minimum otherwise. In practice, it was noticed that the
optimizer converges faster when choosing the gradient with
respect to θf . This is also adopted in the final optimization
problem

θ∗f , θ
∗
r = argmin

θf ,θr

I
(
r2(x; θf )

)
s.t.

∂D
(
f(x; θf ), r(x; θr)

)
∂θf

= 0

Sk(θf ) = 0 k = 1, . . . , 2L+ 1 (24)

S̃j(f) = 0 j = 1, . . . ,M

While both methods (22) and (24) of rewriting the nested
optimization problem work, adding the distance measure into
the objective was preferred for the practical experiments, as
the resulting problem was much faster to compute.

V. EXAMPLE APPLICATION

An important application of the methods proposed in
this paper is kernel density estimation, where kernels with
variable bandwidths are placed at fixed sample positions
p
1
, . . . , p

T
for T samples. The kernel bandwidths are typ-

ically chosen by hand or through heuristics like Silverman’s
rule of thumb [14]. This can yield undesired results, if
the assumptions these methods work with are not fulfilled.
Instead, the FIN can be employed to find the kernel band-
widths that yield the overall smoothest density estimate. The
optimization problem in (7) can be modified to solve this
problem by setting the number of components equal to the
number of samples L = T , fixing the component weights
to wi = 1/T , and the component means to µ

i
= p

i
for

i = 1, . . . , T . This leaves only the covariance matrices of
the components as parameters to be optimized. To simplify
computation, especially in high dimensions, the covariance
matrices of all components are confined to diagonal matrices.

Without further restrictions, minimizing the FIN would
result in infinite component covariances. To avoid this unde-
sired effect, the average covariance matrix over all compo-
nents is limited to a maximum value in each dimension. As
the components covariance matrices are diagonal matrices
these constraints can easily be expressed as a vector Cmax.
This specializes the original optimization problem (7) to

θ∗f = argmin
θf

I
(
f(x; θf )

)
s.t. θf,i > 0 i = 1, . . . , T (25)

1

T

T∑
i=1

θf,i ≤ Cmax .

with θf,i containing the diagonal entries of the covariance
matrix of the i-th component of f(x; θf ). The specifications
and knowledge about the underlying density are encoded
in the fixed component weights and means, and the limited
overall covariance.

This problem cannot be solved with existing methods
employing the FIN as a smoothness measure like [3] or
[15]. The reason is that the estimated GM is completely
defined through its square root mixture density, which has
to have less than T components [3]. It therefore does not
have enough degrees of freedom to satisfy all 2T constraints
on the fixed component weights and means of the GM to
be estimated. In this case, the approximations for the FIN
presented above can be used.

The three proposed methods to approximate the FIN
Gauss-Hermite quadrature (GHQ), polynomial approxima-
tion of the square root function (PSR), and the extended
optimization problem (OPT) (22) were applied to different
one- and two-dimensional examples solving (25). The actual
underlying density, that samples were drawn from is shown
as ground truth (GT) in the plots, but was not available to
the algorithm during estimation. The FIN of the resulting
estimates was calculated numerically for comparison using
h-adaptive cubature [7].
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Fig. 2: Densities estimated with the three proposed approximations for the FIN based on three/six/ten deterministic samples
(black dots) drawn from a Gaussian density.
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Fig. 3: The underlying density (GT) and densities estimated by kernel density estimation using Silverman’s rule of
thumb (KDE) and based on two of the proposed approximations for the FIN. The input to the algorithm was 30 deterministic
samples (black dots) and constraints on the maximum variance along the coordinate axes.

A. One-dimensional examples

To get an impression of the methods’ results, they were
applied to a simple one-dimensional problem with three,
six, and ten deterministic samples from a standard normal
distribution, drawn as described in [16]. The results are
shown in Fig. 2. The maximum average component variance
was set such that the maximum overall variance was 1.0 for
all three experiments. All three methods produce a roughly
Gaussian estimate with variance 1.0. The estimate of PSR has

a flatter and lower peak than the other two estimates. Most
likely this is caused by a bad approximation of the square
root function for large values. The FINs of the estimated
densities for three samples are 1.12 for GHQ, 1.12 for PSR,
and 1.06 for OPT. This is more than the 1.0 expected for a
standard normal distribution, which three kernels at the given
sample positions cannot exactly represent. This hypothesis is
also reinforced by the estimates for six and ten samples that
are closer to a normal distribution.



Fig. 1 shows the results for ten deterministic one-
dimensional samples from a Gumbel distribution with loca-
tion parameter −2.0 and scale 1.0. The samples were again
generated as in [16]. The estimated densities are reasonably
close to the underlying distribution and the peak of PSR is
again flatter and lower than with the other methods. The
densities have a FIN of 0.76 for GHQ, 0.86 for PSR and 0.7
for OPT. This shows similar results as before, with GHQ and
OPT being close, while PSR performing slightly worse.

B. Two-dimensional example

The methods were also applied to a two-dimensional
problem with 30 samples. These were obtained by optimally
reducing 10000 random samples from the density shown in
Fig. 3a to 30 samples, as described in [17]. The estimation
was only carried out using GHQ and OPT, as PSR proved
too computationally expensive for more than 10 samples
and did not show promising results in the one-dimensional
experiments. A kernel density estimate using Silverman’s
rule of thumb [14] was also carried out. This rule assumes an
underlying Gaussian density to select the kernel bandwidth
and is known to give inaccurate results when this is not
the case. In Fig. 3b it is evident, that the bandwidth was
selected too large, leading to a reconstruction that is too
smooth compared to the original density. Both GHQ and
OPT estimates better match the shape of the underlying
density. Visually, OPT produces a slightly smoother estimate.
The difference of the FINs for these methods is minimal, as
GHQ yields a FIN of 1.46 while OPT gives 1.45.

VI. CONCLUSION

This paper introduced three approaches to approximate the
FIN for Gaussian mixtures and applied them to a density
estimation problem. It shows that some previously infeasible
problems can be solved approximately with these methods.
Out of the introduced methods, Gauss-Hermite quadrature
is identified as giving the best tradeoff between speed and
accuracy. The second method of approximating the square
root function with a polynomial was found to perform the
worst in the investigated scenarios and does not scale well
with the number of components. The approximation of the
square root density by optimization gives the most accurate
results at a high computational cost.

In future research, it would be interesting to identify cases
in which having a representation of the square root density
could be useful. This could justify the computational cost of
the optimization approach, which produces an estimate of the
square root density as a currently unused byproduct. While
this paper only considers GMs as density representations,
the methods proposed can also be applied to other density
representations like polynomials or splines. Polynomials,
for example, have a very similar structure to GMs with
monomials instead of the Gaussians and coefficients in place

of weights. This analogy means that they suffer from similar
problems as GMs regarding the calculation of the FIN and
can very likely profit from the approximations used here.
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[10] P. Jäckel, “A Note on Multivariate Gauss-Hermite Quadra-
ture,” London: ABN-Amro. Re, 2005. [Online]. Avail-
able: https : / / api . semanticscholar . org /
CorpusID:15184197.

[11] S. J. Julier and J. K. Uhlmann, “Unscented Filtering and
Nonlinear Estimation,” Proceedings of the IEEE, vol. 92,
no. 3, pp. 401–422, 2004.

[12] M. F. Huber and U. D. Hanebeck, “Gaussian filter based
on deterministic sampling for high quality nonlinear esti-
mation,” in Proceedings of the 17th IFAC World Congress
(IFAC 2008), vol. 17, Seoul, Republic of Korea, Jul. 2008.

[13] C. Dahlke and J. Pacheco, “On Convergence of Polyno-
mial Approximations to the Gaussian Mixture Entropy,”
Advances in Neural Information Processing Systems, vol. 36,
2024.

[14] B. W. Silverman, Density Estimation for Statistics and Data
Analysis. Routledge, 2018.

[15] D. Prossel and U. D. Hanebeck, “Spline-Based Density
Estimation Minimizing Fisher Information,” in Proceedings
of the 27th International Conference on Information Fusion
(FUSION 2024), Venice, Italy, Jul. 2024.

[16] O. C. Schrempf, D. Brunn, and U. D. Hanebeck, “Density
approximation based on dirac mixtures with regard to non-
linear estimation and filtering,” in Proceedings of the 2006
IEEE Conference on Decision and Control (CDC 2006), San
Diego, California, USA, Dec. 2006.

[17] U. D. Hanebeck, “Optimal reduction of multivariate dirac
mixture densities,” at – Automatisierungstechnik, vol. 63,
no. 4, pp. 265–278, Apr. 2015.

https://api.semanticscholar.org/CorpusID:15184197
https://api.semanticscholar.org/CorpusID:15184197

	Introduction
	State of the Art
	Problem Formulation
	Approximating the Fisher Information
	Gauss-Hermite Quadrature
	Approximating the Square Root Function
	Simultaneous Optimization

	Example Application
	One-dimensional examples
	Two-dimensional example

	Conclusion

