
Multi-Scale Uncertainty Calibration Testing
for Bayesian Neural Networks Using Ball Trees

Markus Walker and Uwe D. Hanebeck

Abstract— Bayesian neural networks (BNNs) offer an elegant
and promising approach to quantifying the uncertainty of
neural network predictions by providing predictive distributions.
Although the potential of BNNs is considerable, established
BNN training methods often result in inaccurate uncertainty
estimation and local differences in quality depending on the
considered input space region. To assess the efficacy of Bayesian
models such as BNNs and gain insights into their predictive
capabilities in distinct input space regions, we introduce a novel
methodology that utilizes ball trees as a space partitioning data
structure. Our approach enables the assessment of the predictive
quality within specific regions of the input space across multiple
scales in the input space, utilizing all nodes provided by the ball
tree structure. Furthermore, our method allows the combination
of results across different scales.

Index Terms— Bayesian neural networks, uncertainty quan-
tification, space-partitioning, ball trees, calibration testing.

I. INTRODUCTION

Bayesian neural networks (BNNs) have gained widespread
use in various fields, such as reinforcement learning [1] and
model predictive control [2], due to their ability to quantify
uncertainty. This characteristic extends the capabilities of
classical neural networks by providing predictive distributions,
which have shown significant promise. In real-world applica-
tions where uncertainties are inherent, predictive distributions
offer a valuable solution. They permit the estimation of the
confidence of a network’s predictions and the implementation
of corrective measures if necessary.

Nevertheless, despite the sophisticated approach BNNs
adopt to address uncertainty quantification, their train-
ing process can only be approximated. In practice, ap-
proximation methods such as Markov Chain Monte
Carlo (MCMC) [3], Variational Inference (VI) [4], Expecta-
tion Propagation (EP) [5], or Kalman filtering techniques [6]
are typically employed for the training of BNNs. However,
the use of approximation methods makes BNNs sensitive to
inaccuracies, which necessitates the testing of predictions.

Moreover, the testing process is challenging due to the
limited number of available test samples and the unknown
nature of the data-generating process. Consequently, there are
test measures such as the mean squared error, negative log-
likelihood, or the uncertainty calibration error (UCE) [7]
which utilize the sampled test data to provide insights

This work is part of the German Research Foundation (DFG) AI Research
Unit 5339 regarding the combination of physics-based simulation with
AI-based methodologies for the fast maturation of manufacturing processes.

Markus Walker and Uwe D. Hanebeck are with the Intelligent
Sensor-Actuator-Systems Laboratory (ISAS), Institute for Anthropomat-
ics and Robotics, Karlsruhe Institute of Technology, Germany (e-mail:
markus.walker@kit.edu; uwe.hanebeck@kit.edu).

into the predictive capabilities. Nevertheless, due to the
presence of sources of error such as model assumptions,
approximate inference, and a finite number of training data
points, the quality of predictions varies depending on the input
values [8]. E.g., regions of the input space that are densely
covered by training data are more likely to approximate the
data-generating process accurately than sparsely covered or
uncovered regions.

To address this issue, [8] proposed a two-step testing
strategy that first identifies candidate regions in the input space
where test data is available, and then assesses their quality per
candidate region using statistical tests or calibration measures.
This strategy was initially designed for single-input systems
and later extended to multi-input systems [9]. However, the
prediction quality is only evaluated on a single scale, that is,
the size of the identified regions, without consideration of
how the quality may vary over different scales.

This is where our paper introduces a paradigm shift, namely
the interest in how quality evolves over multiple scales. We
propose a multi-scale approach for evaluating BNNs, similar
to viewing a landscape from multiple altitudes, each offering a
unique perspective. By using ball trees [10], an efficient space
partitioning data structure, we can explore the input space
at various scales, providing a more holistic understanding of
the prediction quality.

Contribution: In this paper, we introduce a novel
approach that employs ball trees for spatial partitioning of the
input space of BNNs. This method enables the identification
of candidate regions where the quality of predictions is
evaluated within specific regions of the input space using any
chosen test metrics. Furthermore, the structure of ball trees
enables multi-scale evaluation. Our approach is demonstrated
through regression and binary classification examples.

Notation: In this paper, underlined letters, e.g., x, denote
vectors and boldface letters, such as x, represent random
variables.

II. RELATED WORK

A. Approximate Inference

In contrast to classical neural networks with deterministic
weights, the weights of BNNs cannot be trained using standard
backpropagation. Instead, the methods for learning weight
distributions are based on the fundamental approaches of
approximate probabilistic inference, which are explained in
this subsection.

The MCMC approach, initially proposed in [3], has
emerged as a highly effective and widely utilized approach for
probabilistic inference, particularly in the context of training

BNNs. MCMC operates by approximating the posterior
distribution through sampling from a Markov process. Despite
its effectiveness, a notable drawback of MCMC is its high
computational cost. This is due to the generation of numerous
samples, as seen in the Metropolis–Hastings algorithm [11].
To improve its efficacy, a number of enhancements have
been made, including Gibbs sampling [12], hybrid Monte
Carlo [13], Hamiltonian Monte Carlo [14], and its extension,
the No-U-Turn Sampler [15], which reduces hyperparameters.

In the realm of BNNs, Variational Inference (VI) [16]
reformulates the complex learning problem into a tractable
optimization task by approximating the weight posterior
with a simpler distribution, typically a normal distribution,
i.e., the variational distribution. During training, the varia-
tional distribution is updated by minimizing the empirical
lower bound to the reverse Kullback–Leibler divergence
using gradient descent. A number of improvements have
been proposed, including the enhancement of scalability
for larger architectures through the utilization of scaled
gradients derived from random subsets of the training data to
update the variational distribution, as performed in Stochastic
Variational Inference [17] or the usage of deterministic
moment propagation instead of sampling in the forward
pass [18].

Expectation Propagation (EP) [5] represents a powerful
approach for learning weight posteriors, comparable to VI. EP
also approximates the true posterior distribution with a simpler
one. However, in contrast to VI, EP minimizes the forward
Kullback–Leibler divergence, whereas VI minimizes the
reverse Kullback–Leibler divergence. The implementation of
EP in the context of BNNs has been the subject of significant
attention, with notable examples including probabilistic
backpropagation [19] and its extension as proposed in [20].

Other recent approaches, such as the Kalman Bayesian
Neural Networks (KBNN) [21] and Tractable Approximate
Gaussian Inference [22], are primarily based on sequential
Bayesian filtering in each layer, as originally proposed in [6].
This avoids explicit gradient computation during training,
allowing them to be used for fast sequential learning. In
order to achieve this, the Bayesian perceptron was proposed
in [23], which forms the core building block of the KBNN
and provides a closed-form solution for the forward pass
and weight update. Furthermore, in [9], it was proven that
this method is equivalent to the statistical linearization of
perceptrons.

The stated training methods are based on fundamental
principles of probabilistic inference, yet they are often
computationally intensive and more complex to implement
than conventional training of neural networks. Therefore,
some methods intend to provide simpler implementations
and computationally cheaper approximations of the weight
posterior, such as the dropout technique proposed by [24],
which is as an approximation of VI [25], or bootstrap posterior
ensemble methods of different models [26], [27], [28].

B. Calibration Measures

The assessment of prediction quality through the use of
calibration measures is based on the evaluation of how well
the predictive distributions reflect the actual data-generating
process. However, given that only a limited number of
samples of the data-generating process are available in the
test data set and that there is no available ground truth for
the uncertainty estimates, the evaluation of calibration is
a challenging task. There exists a multitude of approaches
for the assessment of the predictions of machine learning
models. E.g., calibration plots can be employed for both
classification [29] and regression [30], enabling a visual
comparison of the predicted and observed confidence levels
across all test data.

For classification models, the expected calibration error
(ECE) [31] is frequently employed for assessing calibration,
whereby the discrepancy between the predicted confidence
of the model and its accuracy is quantified utilizing binned
test data. The ECE is given by

ECE =

L∑
l=1

|Bl|
NTest

|acc(Bl)− conf(Bl)| , (1)

where |Bl| is the number of test data points within the l-th
bin, NTest is the number of all test data points, and |Bl|

NTest

is the empirical probability of test data falling into the l-
th bin. The absolute difference between the rate of correct
classifications acc(Bl), which is the accuracy, and the average
predicted probability score per bin conf(Bl) is calculated
and then summed over all L bins, weighted by the empirical
probability per bin |Bl|

NTest
.

For regression models, the assessment of uncertainty esti-
mate quality typically employs scoring rules. For univariate
normal distribution predictions, calibration measures, such as
the uncertainty calibration error (UCE) [7] and the expected
normalized calibration error [32], are used to assess the
discrepancy between predicted variances and observed mean
squared error by leveraging the relationship between the two.
This is also done by using bins similar to those used in the
ECE. The UCE is given by

UCE =

L∑
l=1

|Bl|
NTest

|MSE(Bl)−MV(Bl)| (2)

where MSE(Bl) is the mean squared error between the
predictions and the output data in the l-th bin, and MV(Bl)
is the mean variance of the predictions in the l-th bin.
To measure calibration for arbitrary dimensional normally
distributed predictions proposed the quantile calibration error,
which compares the observed frequencies and the desired
quantile values of the chi-squared distributed errors. In
the case of normally distributed predictions with arbitrary
dimensionality, [33] proposed the quantile calibration error
to assess calibration by comparing the observed frequencies
per quantile and the chi-squared distributed error quantiles.

C. Trust Region Identification

To extend single calibration scores, typically provided by
calibration measures overall test data, to trust regions for
Bayesian models, [8] proposed a two-step testing procedure.
This procedure involves identifying input space regions that
lead to calibrated and trustworthy predictions and comprises
two principal steps:

1) The identification of candidate regions where informa-
tion is present, i.e., input space regions where test data
are available.

2) The measurement of calibration within these candidate
regions using output test data.

In addition, for the special case of single-input, single-
output systems, a variant of the two-step testing strategy was
presented and demonstrated. The initial step of candidate
region identification involves using a second model as
a reference model, assuming that the predictions of the
approximate model and the reference model will differ for
the same test input if not enough information is available
during training or approximate inference methods have led
to errors. To assess the differences between predictions of
both models for each input, the 1-Wasserstein distance is
used, and if the distance exceeds a certain threshold, the
one-dimensional input space is split, resulting in candidate
regions represented by intervals.

As general models are not constrained to one-dimensional
input spaces, [9] extends the candidate region identification
from [8] to multiple-input systems. This is achieved by
utilizing k-d trees [34] as a candidate region identification
method, whereby hyperplanes split the input space along
orthogonal axes to partition the input space into hyperrect-
angular candidate regions. In contrast to [8], no reference
model is employed, thus avoiding the necessity to train a
second model at an additional computational cost.

The second step of the testing strategy proposed by [8],
namely the testing of identified candidate regions, is imple-
mented using statistical tests for regression tasks, such as
the binomial test and the averaged normalized estimation
error squared test [35]. In cases where there are significant
discrepancies between the data and the predictions, the
candidate region is rejected by statistical tests and therefore
deemed untrustworthy. The binomial test enables the testing
of specific confidence intervals and makes no assumptions
about the distribution of predictions and data. Consequently, it
is categorized as a nonparametric test. E.g., the binomial test
can be utilized to verify whether the 95% confidence interval
of the predictions encompasses 95% of the output test data.
In the case of normally distributed predictions, the parametric
averaged normalized estimation error squared test [35], which
is based on the average of the squared Mahalanobis distances
between the test data and the predictions, is employed to
verify whether the data are consistent with the predicted
distribution. However, arbitrary calibration measures can test
candidate regions, as demonstrated in [9], which employed
the ECE for classification tasks.

−1

−0.5

0

0.5

1

−4

−2

0

2

4
0

0.2

0.4

xy

p
(y

|x
n
,D

)

prediction
test data point

comparison of a distribution
with a single test data point
→ not statistically meaningful

using candidate regions
→ more powerful test statements

Fig. 1: Illustration of local calibration testing for a single-input, single-output
system. In the purple-colored input space region , only a test point is
utilized, which is not statistically meaningful. To enhance the test statement’s
efficacy, adjacent predictions can be combined to form candidate regions, as
illustrated in the teal-colored input space region .

III. LEARNING SETUP

A supervised learning setup with a feedforward BNN with
L layers is considered. The feedforward BNN is represented
by y = f (x,w), where x is the dx-dimensional input, w is
the weight vector containing all network weights as random
variables, and y is the dy-dimensional output represented as
random vector. The prior distribution of the weight vector
is given by p(w). The training dataset, denoted by D =
{(xn, yn)}

N
n=1, comprises N independent and identically

distributed pairs. Each pair is represented by an input vector
xn ∈ Rdx and its respective output y

n
∈ Rdy . In order to

train the BNN, the weight posterior is obtained by

p(w | D) =
p(Y | X , w) p(w)

p(Y | X)
,

where p(Y | X) is the normalization constant and p(Y | X , w)
is the likelihood. The inputs and outputs of the training set D,
are denoted by X = {x1, . . . , xN} and Y = {y

1
, . . . , y

N
}

respectively. Given a deterministic input x, the prediction
p(y | x,D) is obtained by

p(y | x,D) =

∫
Ωw

p(y | x,w) p(w | D) dw , (3)

with the learned posterior distribution p(w | D). However,
there is no analytical solution for either training or prediction.
Consequently, approximation methods must be employed in
practice, as outlined in Sec. II-A.

IV. TEST PROBLEM AND KEY IDEA

In addition to training and predicting with BNNs, assessing
the quality of the predictions is a challenging task. Typically,
the only information available is the test data set DTest =
{(xn, yn)}

NTest
n=1 . Each test input xn results in a predictive

distribution p(y | xn,D) according to (3), as shown in Fig. 1.
The true distribution p(y | x) is typically unknown and
only one output sample y

n
is available for each input xn.

Consequently, the distance between the true distribution

p(y | x), and the predicted distribution p(y | x,D), cannot
be calculated.

Ideally, for each prediction there would be a method
for assessing whether the prediction aligns with the data-
generating process, that is, whether it is well calibrated.
However, evaluating a prediction p(y

n
| xn,D) from a

specific input xn using a single output sample y
n

is not
statistically meaningful. E.g., even if a one-dimensional output
sample yn is greater than six standard deviations from the
mean value, the probability is not zero and the sample could
be from this distribution, although the probability is very low.

Accordingly, the concept proposed in [8] is to not solely
consider individual input-output pairs (xn, yn) for comparison
with the prediction p(y | xn,D). Instead, the approach
involves forming candidate regions with adjacent predictions,
in which multiple test points can be used to generate
statements regarding specific regions in the input space. This
approach addresses the limitation of calibration measures
such as the UCE [7], which were unable to make statements
about specific regions in the input space.

However, defining the size of a region results in a trade-off
between the spatial resolution of the candidate regions and
the power of the statistical test results. E.g., if a candidate
region is large, the test result will be less precise with regard
to the input space position. Conversely, if the region is too
small, there may be an insufficient number of test data points
to make a meaningful statement regarding the region. This
trade-off can be compared to the uncertainty principle in
the short-time Fourier transform, where there is a trade-off
between time and frequency resolution [36].

To circumvent the necessity for a fixed region size, our
key idea is to consider multiple scales in the input space.
This entails utilizing regions of different sizes and evaluating
the calibration per region size. This can be regarded as an
analogy to the wavelet transform, which enables analysis
across multiple time and frequency resolutions [37].

V. CANDIDATE REGION IDENTIFICATION

In order to efficiently manage multiple input dimensions
and provide compact region representations across various
scales, we propose the use of ball trees [10]. This proposed
scheme is depicted in Fig. 2.

A ball tree is a space partitioning data structure where parti-
tions are represented as hyperspheres [10]. Each hypersphere
has a center point xc and a radius r, and these hyperspheres
are organized in a binary tree structure. The mean of all
input test data defines the root node in the ball tree, and
the maximum distance from the mean defines the radius. To
create the tree structure, each node is split into two child
nodes if the number of data points per node exceeds the user-
defined maximum leaf node size M ∈ N>0. In the context of
testing, the maximum leaf node size M can be used to ensure
that the minimum number of data points per resulting leaf
node partition, which are regarded as candidate regions, is
met. For balanced trees, the actual leaf node size falls within
the range of M/2 ≤ m ≤ M . Thus, the value M should be

xc = [0.930.93]

r = 0.73

TN = 0.17

xc = [0.740.75]

r = 0.46

TN = 0.13

xc = [0.630.61]

r = 0.29

TN = 0.09

T = 0.12

xc = [0.850.88]

r = 0.30

TN = 0.16

T = 0.15

xc = [1.121.11]

r = 0.29

TN = 0.21

xc = [1.061.04]

r = 0.20

TN = 0.19

T = 0.19

xc = [1.181.19]

r = 0.19

TN = 0.23

T = 0.21

Test per
tree node

Testing

xc = [0.930.93]

r = 0.73

xc = [0.740.75]

r = 0.46

xc = [0.630.61]

r = 0.29

xc = [0.850.88]

r = 0.30

xc = [1.121.11]

r = 0.29

xc = [1.061.04]

r = 0.20

xc = [1.181.19]

r = 0.19

Candidate region identification
using ball trees

f(x,w)

Bayesian
model

(xn,DTest = { y
n
)}NTest

n=1

Test data set

input data {xn}
NTest
n=1

tree structure

ou
tp

ut
da

ta
{y

n
}N

T
e
s
t

n
=
1

pr
ed

ic
tio

ns
{p

(y
|x

n
,D

)}
N

T
e
s
t

n
=
1

Fig. 2: Illustration of our proposed twofold scheme for testing the quality
of predictions from Bayesian models. The first step consists of partitioning
the input space using ball trees, and the second step assesses the quality of
the predictions per node using a test metric. The combined test statistic T
is calculated according to (4) using all statistical values on a root-to-leaf
path, which is highlighted in gray as an example of a path.

set to be twice as much as the minimum required number of
data points in order to obtain meaningful test results.

The process of splitting into child nodes is accomplished
by a hyperplane that serves to separate the data belonging to
the parent node into two subsets. After splitting, each child
node is represented as the mean of a subset as a center point
xc, and the maximal distance of all points in a subset from
the center point defines the radius r. E.g., when using the
k-d tree construction algorithm [10], the splitting hyperplanes
are selected to orthogonally intersect the main axis with the
widest spread in data.

(a) input data (b) true mean (c) predicted mean

(d) predicted variance (e) 1-Wasserstein distance (f) combined test statistics

Fig. 3: Results of the Nonlinear Regression Example. The test and training data used in this example are displayed in (a), while the true mean of the
data-generating process is shown in (b). It should be noted that the true variance remains constant at 0.1 and is not displayed. The distributions predicted by
the BNN are shown in (c) and (d). The 1-Wasserstein distances between the true data-generating process are presented in (e), while the results of our
proposed testing method are shown in (f) using the UCE as a calibration measure.

Regardless of the specific construction algorithm employed,
the fundamental concept remains consistent: a tree structure
is generated, and all hyperspheres on a path from the root to
the leaf represent multiple scales per candidate region that
can be evaluated.

VI. MULTI-SCALE TESTING

Given the partitioned input space represented by the tree
nodes, which are hyperspheres, the predictions and test data
points within those regions are compared e.g., by calibration
measures such as those described in Sec. II-B. The combined
test statistics over multiple scales are obtained by

T =

K∑
k=1

wN(rk) · TN(xc,k, rk) , (4)

where wN(rk) > 0,∀k represents the scale-dependent weight
and is normalized such that

∑K
k=1 wN(rk) = 1. The test

statistic TN(xc,k, rk) is that of a single node on the root-to-
leaf-node path. In this context, the weights determine the
scales that should be prioritized for evaluating the quality of
predictions. E.g., if the objective is to concentrate on local
test statistics, one could select the unnormalized weights as
w̃N(rk) = 1/rk, which is similar to the weighting function em-
ployed in localized cumulative distribution applications [38].

As a matter of fact, evaluating the root node only leads
back to classical calibration measures that use the entire
testing data set, as described in Sec. II-B. Therefore, our
proposed method can be considered a generalized version of
classical calibration testing.

VII. EXPERIMENTS

We now demonstrate our proposed testing method on
a nonlinear regression example and a binary classification
example.

A. Nonlinear Regression

In the first experiment, we generate 1500 training points
and 3000 test points from

y = sin
(
x2
1 + x2

2

)
+ ϵ ,

with ϵ ∼ N (0, 0.1), and x ∈ R2. The training inputs
xn ∈ XTrain and the test inputs xn ∈ XTest are drawn uni-
formly from the two-dimensional input space [−1.75, 1.75]×
[−1.75, 1.75] and [−2.5, 2.5] × [−2.5, 2.5], respectively. To
simulate a gap in the training data, 30% of the data around
x⊤ = [0, 0] is removed, as illustrated in Fig. 3a.

We use a fully connected feedforward network comprising
a single hidden layer with 50 neurons and ReLU activation
for the hidden layer and linear activation for the output layer,
which is trained using the No-U-Turn Sampler [15].

The predictions, the test results of our proposed method,
and the 1-Wasserstein distance between the true data-
generating process and the predictive distributions are pre-
sented in Fig. 3. The 1-Wasserstein distance between the
normally distributed outputs of the true data-generating
process p(y | xn) = N

(
µTrue, σ

2
True

)
and the normally

distributed predictions p(y | xn,D) = N
(
µPred, σ

2
Pred

)
is

(a) predicted mean (b) predicted variance (c) combined test statistics

Fig. 4: Binary classification results with predicted mean (a) and variance (b), where dots mark the true classification of input test data and the incorrectly
classified points are highlighted as crosses. The true labels are color-coded, with class label 0 displayed in blue and class label 1 in red. The combined test
statistics per leaf node are displayed in (c).

given by [39], [40]

W1 = |µDist|
(
1− 2ΦN

(
−|µDist|
|σDist|

))
+ |σDist|

√
2

π
exp

(
− µ2

Dist

2σ2
Dist

)
,

with µDist = µTrue − µPred, σ2
Dist = (σTrue − σPred)

2, and
standard normal cumulative distribution function ΦN (.). The
ball tree was constructed using the k-d tree construction
algorithm [10] and a maximum leaf size of M = 40. To
assess the quality of predictions within each hypersphere,
namely the nodes of the ball tree, the UCE (2), without the
binning scheme, is employed as a calibration measure to
compare the predictions with the test data. The combined
test statistic is calculated using the unnormalized weights
w̃N(rk) = 1/rk.

By comparing the 1-Wasserstein distance between the true
data-generating process and the predictions, it can be seen
that the model has effectively learned the data-generating
process, where training data is available, as evidenced by
the near-zero 1-Wasserstein distances. In the outer regions
(|x1|, |x2| > 1.75), where no training data is available, the
predictions deviate significantly from the ground truth, which
is correctly determined by our method. In the center, there
is a slight increase in the variances around the origin where
data is missing. While the predictions are not accurate, they
are less erroneous than in the outer regions, as evidenced by
the 1-Wasserstein distances. This finding is consistent with
the results of our method, which indicate that the central
region has lower combined statistics than the outer regions.

B. Binary Classification

As a second example, we consider a binary classification
problem, where the data is generated over the two-dimensional
input space x ∈ R2 from the moon data set [41]. The data
set is imbalanced, with 2000 data points belonging to class 0
and 1000 data points belonging to class 1. The noise in the
data is set to σ = 0.2. The test data comprises 75% of the
data set.

The KBNN [21] is employed with two fully connected
hidden layers, each comprising five neurons. The hidden
units utilize a ReLU activation function, while the output

layer employs a sigmoid activation function. Fig. 4 illustrates
the input space and the corresponding local calibration,
evaluated using the ECE (1), without dividing the test data into
bins, in the combined test statistics (4). Again, the k-d tree
construction is employed, with the maximum leaf node size
set to M = 40. This results in a tree depth of eight, i.e., eight
node statistic values are used to obtain one weighted statistic
of a leaf node.

The comparison of the mean predictions with the true
labels in Fig. 4a reveals incorrect classifications where
both moons intersect. At the predicted separation between
both classes, variance is increasing as illustrated in Fig. 4b.
However, variance is also almost zero in the upper left and
lower right corners where no data was available during
training and testing. Consequently, in those regions, the
predictions are considerably more certain than anticipated
due to the lack of data. The combined statistical data is
presented Fig. 4c. It can be observed that the combined
statistic values along the separation of both classes are
higher than in the region around x⊤ = [0, 1], for example.
This reflects the incorrect classifications that occur along
the separation of both classes, thereby accurately reflecting
classification errors in the combined statistic.

C. Discussion

The proposed method utilizing test data points employs
a two-step testing strategy. Initially, the input space is
partitioned to identify regions. Subsequently, these regions are
subjected to testing. The region identification process is capa-
ble of dividing the input space into regions of varying scales,
each characterized by a radius of a hypersphere. Furthermore,
the method is capable of combining results across different
scales, thereby providing insights into the local quality of
predictions. A comparison of the 1-Wasserstein distance
between the predictions and the known ground truth of the
synthetic example in Fig. 3 and the true classification labels
in Fig. 4 demonstrates that the proposed method is capable
of identifying input-space regions that result in miscalibrated
predictions.

Note that local testing in regions of the input space
requires a larger amount of testing data than standard testing
procedures. This can be seen, e.g., in the second experiment,
where 75% of the data is employed as test data. However,

this is an inherent feature of the region-based methodology,
which requires substantial quantities of data to achieve high-
resolution analysis within an input space.

VIII. CONCLUSION

In conclusion, this paper presents a novel testing method
for multi-input systems that assesses prediction quality by
testing in specific regions of the input space. This method
is versatile, allowing for the combination of different scales
of evaluation using an arbitrary calibration measure. A key
contribution of our work is the provision of local calibration
information, which is particularly useful when trustworthy
models are of interest. This local calibration information
provides a detailed understanding of the model’s performance
and trustworthiness in different regions of the input space.

Looking ahead, there are several promising directions for
future research. One such direction is the use of local quality
of predictions in applications such as state estimation and
optimal control. Additionally, refining predictions in active
learning settings presents an exciting area of investigation.

REFERENCES

[1] Y. Gal, R. McAllister, and C. E. Rasmussen, “Improving PILCO with
Bayesian neural network dynamics models,” in Data-efficient machine
learning workshop, ICML, Apr. 2016.

[2] F. Fiedler and S. Lucia, “Model predictive control with neural network
system model and Bayesian last layer trust regions,” in 2022 IEEE 17th
International Conference on Control & Automation (ICCA), Naples,
Italy, Jun. 2022, pp. 141–147.

[3] N. Metropolis et al., “Equation of State Calculations by Fast Computing
Machines,” J. Chem. Phys., vol. 21, no. 6, pp. 1087–1092, 1953.

[4] A. Graves, “Practical variational inference for neural networks,” in
NIPS’11: Proceedings of the 24th International Conference on Neural
Information Processing Systems, 2011, pp. 2348–2356.

[5] T. P. Minka, “A family of algorithms for approximate Bayesian
inference,” Ph.D. dissertation, Massachusetts Institute of Technology,
2001.

[6] K. Watanabe and S. G. Tzafestas, “Learning algorithms for neural
networks with the Kalman filters,” Journal of Intelligent and Robotic
Systems, vol. 3, no. 4, pp. 305–319, 1990.

[7] M.-H. Laves et al., “Well-Calibrated Regression Uncertainty in Medical
Imaging with Deep Learning,” in Proceedings of the Third Conference
on Medical Imaging with Deep Learning, vol. 121, 2020, pp. 393–412.

[8] M. Walker et al., “Identifying Trust Regions of Bayesian Neural
Networks,” in 2023 IEEE Symposium Sensor Data Fusion and
International Conference on Multisensor Fusion and Integration (SDF-
MFI), Bonn, Germany, Nov. 2023, pp. 1–8.

[9] ——, “Trustworthy Bayesian Perceptrons,” in Proceedings of the 27th
International Conference on Information Fusion (Fusion 2024), Venice,
Italy, July 2024.

[10] S. M. Omohundro, “Five balltree construction algorithms,” International
Computer Science Institute, Tech. Rep. 89-063, Dec. 1989.

[11] W. K. Hastings, “Monte Carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, Apr.
1970.

[12] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, no. 6, pp. 721–741, Nov. 1984.

[13] S. Duane et al., “Hybrid Monte Carlo,” Physics Letters B, vol. 195,
no. 2, pp. 216–222, 1987.

[14] R. M. Neal, Bayesian learning for neural networks. Springer Science
& Business Media, 2012, vol. 118.

[15] M. D. Homan and A. Gelman, “The no-U-turn sampler: adaptively
setting path lengths in hamiltonian monte carlo,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1593–1623, Jan. 2014.

[16] A. Graves, “Practical variational inference for neural networks,”
Advances in neural information processing systems, vol. 24, 2011.

[17] M. D. Hoffman et al., “Stochastic variational inference,” Journal of
Machine Learning Research, 2013.

[18] A. Wu et al., “Deterministic Variational Inference for Robust Bayesian
Neural Networks,” in International Conference on Learning Represen-
tations, 2019.

[19] J. M. Hernández-Lobato and R. Adams, “Probabilistic backpropagation
for scalable learning of bayesian neural networks,” in International
conference on machine learning. PMLR, 2015, pp. 1861–1869.

[20] S. Ghosh, F. M. D. Fave, and J. Yedidia, “Assumed density filtering
methods for learning Bayesian neural networks,” in Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp.
1589–1595.

[21] P. Wagner, X. Wu, and M. F. Huber, “Kalman Bayesian Neural
Networks for Closed-form Online Learning,” in 37th AAAI Conference
on Artificial Intelligence, 2023.

[22] J.-A. Goulet, L. H. Nguyen, and S. Amiri, “Tractable approximate
Gaussian inference for Bayesian neural networks,” The Journal of
Machine Learning Research, vol. 22, no. 1, pp. 11 374–11 396, Jan.
2021.

[23] M. F. Huber, “Bayesian Perceptron: Towards fully Bayesian Neural
Networks,” in 59th IEEE Conference on Decision and Control (CDC),
2020, pp. 3179–3186.

[24] N. Srivastava et al., “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014.

[25] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in Proceedings
of The 33rd International Conference on Machine Learning, vol. 48,
2016, pp. 1050–1059.

[26] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in NIPS’17:
Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 6405–6416.

[27] I. Harris, “Predictive Fit for Natural Exponential Functions,” Biometrika,
vol. 76, pp. 675–684, 1989.

[28] T. Fushiki, F. Komaki, and K. Aihara, “Nonparametric bootstrap
prediction,” Bernoulli, vol. 11, no. 2, pp. 293–307, 2005.

[29] M. H. DeGroot and S. E. Fienberg, “The Comparison and Evaluation
of Forecasters,” Journal of the Royal Statistical Society. Series D (The
Statistician), vol. 32, no. 1/2, pp. 12–22, 1983.

[30] V. Kuleshov, N. Fenner, and S. Ermon, “Accurate uncertainties for
deep learning using calibrated regression,” in Proceedings of the 35th
international conference on machine learning, vol. 80, 2018, pp. 2796–
2804.

[31] M. Pakdaman Naeini, G. Cooper, and M. Hauskrecht, “Obtaining Well
Calibrated Probabilities Using Bayesian Binning,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 29, no. 1, Feb. 2015.

[32] D. Levi et al., “Evaluating and Calibrating Uncertainty Prediction in
Regression Tasks,” Sensors, vol. 22, no. 15, 2022.

[33] F. Küppers, J. Schneider, and A. Haselhoff, “Parametric and Multi-
variate Uncertainty Calibration for Regression and Object Detection,”
in Computer Vision – ECCV 2022 Workshops, 2023, vol. 13805, pp.
426–442.

[34] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Boston, MA: Springer US, 1992.

[35] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Ap-
plications to Tracking and Navigation. John Wiley & Sons, Inc.,
2001.

[36] D. Gabor, “Theory of communication. Part 1: The analysis of
information,” Journal of the Institution of Electrical Engineers-part III:
radio and communication engineering, vol. 93, no. 26, pp. 429–441,
1946.

[37] A. Cohen, Numerical analysis of wavelet methods, ser. Studies in
mathematics and its applications. Elsevier„ 2003, vol. 32.

[38] U. D. Hanebeck, “Optimal Reduction of Multivariate Dirac Mixture
Densities,” at - Automatisierungstechnik, vol. 63, no. 4, pp. 265–278,
Apr. 2015.

[39] M. Tsagris, C. Beneki, and H. Hassani, “On the Folded Normal
Distribution,” Mathematics, vol. 2, no. 1, pp. 12–28, Mar. 2014.

[40] S. Chhachhi and F. Teng, “On the 1-Wasserstein Distance between
Location-Scale Distributions and the Effect of Differential Privacy,”
Apr. 2023, arXiv preprint arXiv:2304.14869.

[41] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” The
Journal of Machine Learning Research, vol. 12, no. null, pp. 2825–2830,
Nov. 2011.

