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Abstract— In this paper, we propose a novel Gaussian As-
sumed Density Filter (GADF) for high-quality state estimation
of nonlinear dynamic systems. Our approach focuses on the
measurement update, utilizing a non-Gaussian local approx-
imation of the true joint measurement/prior state density.
This is achieved through the sequential use of two Inverse
Gaussian Processes (IGPs): the first IGP interpolates the means,
and based on these results, the second IGP is trained to
interpolate the covariances. Together, they fully characterize the
conditional Gaussian densities of the hidden state on concrete
measurements. Consequently, our method does not require the
second Gaussian assumption for the joint density anymore,
thereby enhancing filter performance. Moreover, our approach
eliminates the need for an explicit likelihood function within the
filter step, making it a higher-quality plug-in replacement for
the commonly used Linear Regression Kalman Filter (LRKF).

I. INTRODUCTION
Context: We consider general state estimation for discrete-

time stochastic nonlinear dynamic systems on the basis of
noise-corrupted measurements. This problem arises in the
field of engineering such as robotics, target tracking, and
satellite navigation.

Exact Bayesian solutions in closed form are, however,
only available for a limited number of special cases, e.g.,
linear systems corrupted by additive Gaussian noise. In
that case, the classic Kalman Filter [1] emerges as the
optimal estimator in the sense of a Minimum Mean Square
Error (MMSE). For most nonlinear systems suffering from
non-additive noise, closed-form analytic solutions are not
available. Consequently, approximate approaches are needed
to develop efficient and powerful nonlinear Bayesian filters.

A common approach is the use of Gaussian Assumed
Density Filters (GADFs) as maintaining the true, in gen-
eral multi-modal or non-Gaussian, state Probability Density
Function (PDF) is impractical. Instead, a reasonable simplifi-
cation is to represent them as Gaussians recursively over time
[2]. During each update, only mean and covariance are prop-
agated to fully characterize the Gaussian distribution, which
does not lead to an increasing computational complexity over
time as compared to filters operating on the more complex
state densities. However, it is still challenging to derive
closed-form solutions for the time update, and especially the
measurement update. Within a Bayesian measurement up-
date, an explicit likelihood function is required, but deriving
it for non-additive measurement noise is difficult. Even if one
is available, performing an analytic filter step remains nearly
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Fig. 1: Example of the proposed non-Gaussian local ap-
proximation (green) of the true joint measurement and state
density through two IGPs based on the samples (blue)
drawn from the true joint. The ground truth (purple) for
comparison is the family of conditional Gaussian densities
for any concrete measurement (horizontal axis), with mean
and variance identical to the true posterior density.

impossible except for linear measurement models suffering
from additive Gaussian noise.

State-of-the-art: The Gaussian Particle Filter (GPF) [3]
is a special sequential importance sampling Particle Filter
(PF) [4], [5] that approximates posterior distributions by
single Gaussians. Monte Carlo integration is employed to
approximate the desired moments for moment matching. The
GPF converges towards the MMSE state estimator with an
infinite number of random samples, making it asymptotically
optimal in terms of sample size. However, it becomes com-
putationally intractable in larger state spaces due to the curse
of dimensionality. Moreover, an explicit likelihood function
is still needed for sample re-weighting.

To further ease the measurement update, likelihood-free
approaches have been adopted. They involve a linear approx-
imation of the nonlinear mapping between the prior state
and noisy measurements, followed by the direct usage of
the Kalman Filter formulas, resulting in Nonlinear Kalman
Filters (NKFs). Although the need for an explicit likelihood
function is avoided, the problem is that it might be an
oversimplification depending on the “strength” of the nonlin-
earity, leading to reduced estimation performance compared
to the general GADFs without such linearization.

One way to perform such linearization is explicit lineariza-
tion based on Taylor series approximation, commonly used
by Extended Kalman Filters (EKFs) and its variants [6], [7].
In contrast, NKFs based on statistical linearization implicitly
linearize the measurement model by approximating the joint



density of measurement and state with a Gaussian. When the
required first-order and second-order moments are calculated
by sample-based density representations, all corresponding
NKFs fall into the class of Linear Regression Kalman Filters
(LRKFs) [8], [9]. Examples are the Unscented Kalman Filter
(UKF) [10], the Gaussian Filter (GF) [11] and the Smart
Sampling Kalman Filter (S2KF) [12], [13].

The advantages of the LRKFs include efficiency and ease
of implementation. Compared to PFs and GPFs, the sample
degeneration problem is avoided because of their likelihood-
free nature. Additionally, their generic design is applicable
to any system and measurement equation. However, the main
drawback is further decrease of state estimation quality due
to the approximation of continuous state and noise densities
using only a limited number of samples.

A more advanced GADF, called Progressive Gaussian
Filter (PGF), avoids the second Gaussian assumption, thereby
improving estimation quality without such linearization er-
rors [14], [15]. It decomposes the measurement update into
several sub-updates, gradually incorporating measurement
information into state estimates. In [15], an explicit likeli-
hood function is needed within the progression mechanism.
Both PGF approaches, however, may introduce cumulative
errors due to multiple intermediate Gaussian approximations
within each recursion step. Moreover, the proper determina-
tion of step sizes may increase computational complexity.

Contribution: In this work, we propose a GADF with a
novel likelihood-free measurement update. Our method does
not rely on the second Gaussian assumption for the true joint
measurement/state density, leading to better performance
than the LRKFs, which heavily depend on this simplification.
Instead, we perform a non-Gaussian local approximation
of the true joint density through a sequential use of two
Inverse Gaussian Processs (IGPs). The first IGP interpolates
the means, and the second IGP, trained based on these results,
interpolates the covariances. Together, they fully characterize
conditional Gaussian densities of the hidden state on concrete
measurements. This approach uses a limited number of high-
quality equally weighted deterministic samples from the true
joint density. A suitable sampling strategy is employed to
ensure reproducible results and improve sample efficiency.

We exploit the interpolation capabilities of Gaussian Pro-
cesss (GPs) to infer hidden system states from concrete
measurements. This method suggests an inverse application
of standard GPs, which typically predict outputs. Conse-
quently, we refer to this method as the IGPs. Employing
IGP models enables us to derive an approximate Gaussian
posterior state densities. It requires, however, utilizing mea-
surement realizations as model inputs, and realizations of the
prior state as outputs. To improve visualization, we adopt a
rotated Cartesian coordinate system throughout this paper,
positioning measurements on the horizontal axis, and prior
states or their computations on the vertical axis.

We train two IGPs sequentially and utilize only the pre-
dictive mean results of each posterior IGP model as the
interpolated mean and covariance values, respectively. These

interpolation results are then used to directly parameterize
Gaussian posterior distributions through moment matching.

Our proposed filter can be integrated as a higher-quality
plug-in replacement for the commonly used LRKF during an
online filter step. It can also operate independently of actual
received measurements, enabling offline pre-interpolations
for a set of different prior state and measurement noise
densities. These results can be stored in a cache for online
application, which is outside the scope of this paper.

As demonstrated through evaluations by means of a canon-
ical benchmark example, the performance of the proposed
filter closely approaches that of the optimal MMSE estimator.
Moreover, its sample-based nature significantly enhances
filter versatility. In other words, the assumption of additive
Gaussian noise can be relaxed and can be non-Gaussian and
non-additive. This capability is further validated by an addi-
tional evaluation involving multiplicative measurement noise.
Additionally, state-correlated Gaussian measurement noise
can be effectively handled with an appropriate Gaussian
sampling strategy, provided that the joint Gaussian density of
the prior state and measurement noise is known in advance.

II. PROBLEM FORMULATION

We consider estimating the hidden state xk of a discrete-
time stochastic dynamic system based on noisy measure-
ments, consisting of a time update (or prediction step) and
a measurement update (or filter step). This work specifically
addresses the measurement update. The relationship between
the measurement random vector y

k
, the hidden system state

xk, and the measurement noise vk is described by the given
generative nonlinear measurement equation

y
k
= hk(xk,vk) , (1)

where hk(·, ·) denotes the vector-valued measurement non-
linearity and maps the state and noise to the concrete
measurement ỹ

k
, a realization of the random vector y

k
.

A predicted state density is received by performing a time
update and then approximating it as a Gaussian through
moment matching, i.e., the Gaussian PDF of the state at time
step k conditioned on the measurements ỹ

1
, . . . , ỹ

k−2
, ỹ

k−1

fp
k (xk) = f(xk | ỹ1:k−1

) ≈ N (xk; x̂
p
k,Σ

p
k) . (2)

The goal is to correct this Gaussian prior state estimate
by incorporating a newly received measurement ỹ

k
at time

step k. In general, it is done by using the Bayes’ rule. The
generative measurement model (1) is first converted into a
probabilistic model as the conditional density f(y

k
| xk) over

y
k

on xk, which turns into a likelihood function fh
k (ỹk | xk)

for a given specific measurement ỹ
k
. However, as mentioned

before, an explicit description of the likelihood function
is hard to derive in the case of non-additive measurement
noise. To address this, we adopt a likelihood-free point of
view, which instead operates directly on the joint density of
prior state and measurement fx,y

k (xk,yk
| ỹ

1:k−1
), so the

corrected state estimate can be written as

f e
k(xk) = f(xk | ỹ1:k) =

fx,y
k (xk, ỹk | ỹ1:k−1

)

fy
k (ỹk | ỹ1:k−1

)
, (3)



in which a newly received concrete measurement ỹ
k

deter-
mines where to condition the joint distribution in order to
get the posterior state density as the corrected state estimate.

Considered problem: Directly deriving the true joint den-
sity is still burdensome. Nevertheless, samples drawn from
it are easily available, regardless of whether deterministic or
random sampling methods are used. As a result, the problem
at hand is to locally approximate this true joint density using
high-quality limited-quantity samples drawn from it. The key
idea to solve this problem is given in the next section. By
conditioning this approximate joint density representation on
the actual received measurement subsequently, we aim to
derive an approximate posterior state density. In addition,
this posterior state density can take an arbitrary form and is
not necessarily Gaussian, even when starting with a Gaussian
prior. Therefore, it is re-approximated as a single Gaus-
sian distribution through moment matching. This approach
ensures computational consistency in recursive processing.

III. KEY IDEA AND GROUNDWORK

In this paper, we address the approximation for the un-
derlying true joint density of prior state and measurement in
the context of nonlinear Bayesian recursive state estimation.
The core idea is to fully characterize a conditional Gaussian
distribution over xk on the given specific measurement ỹ

k
using the interpolated mean vector and covariance matrix.
To do that, interpolation techniques are essential. They work
with samples drawn from the true joint measurement/state
density to construct a continuous and smooth representation
of the mean vector and covariance matrix, both as functions
of the measurement random variable.

To achieve effective interpolation, a rotated Cartesian
coordinate system of the joint measurement/prior state space
is first employed, placing measurements on the horizontal
axis, and states or their computations on the vertical axis.
Following this characterization procedure, the resulting ap-
proximate joint measurement/state density is then obtained
by introducing additional prefactors.

GPs are selected as the interpolation technique for the
purpose of backward inference. We provide a concise intro-
duction to their notation and prediction1 models. As a non-
parametric model, GPs do not assume a specific functional
form with a fixed number of parameters, but instead, they
define a distribution over possible functions, which allows
them to dynamically and flexibly scale their complexity
based on the data. Generally, one aims to infer a scalar
latent function h from noisy observations yi = h(xi) + εi,
i = 1, . . . , N , where inputs are xi ∈ Rn, n ∈ Z+ and
noise εi ∼ N (0, σ2

ε). A GP is completely specified by its
mean function m(·) and positive semi-definite covariance
function k(·, ·), also called kernel. Throughout this paper,
we consider a zero prior mean function and the widely

1The term “prediction” here refers to the process of estimating the values
of a latent function at new, unseen inputs based on training data. In contrast,
the expression “prediction step” in the sense of Bayesian state estimation
involves propagating the last known state estimate to the present through
the use of state-transition density and Chapman-Kolomogorov equation.

used Squared Exponential (SE) kernel, parameterized by a
diagonal matrix of characteristic length scales for each input
dimension Λ, and a scalar variance α2 of the latent function,
as its hyperparameters θ,

k(x, x′) = α2 · exp
(
−1

2
(x− x′)⊤Λ−1(x− x′)

)
. (4)

It yields smooth inference results and its structure is math-
ematically straightforward, making more intuitive hyperpa-
rameter tuning. The posterior GP model’s predictive distribu-
tion for the random variable, specifically the function value
h(x∗) at an arbitrary input x∗, is a Gaussian distribution
characterized by exact mean and variance representations

E[h(x∗)] = mh(x∗) = k⊤∗ (K+ σ2
ε · I)−1Y , (5)

var[h(x∗)] = σ2
h(x∗) = k∗∗ − k⊤∗ (K+ σ2

ε · I)−1k∗ , (6)

with k∗ := k(X,x∗), k∗∗ := k(x∗, x∗). K ∈ RN×N is
the quadratic kernel matrix with elements Kij := k(xi, xj).
Moreover, X = [x⊤

1 , . . . , x
⊤
N ]⊤ are the N inputs for training,

and Y = [y1, . . . , yN ]⊤ are the corresponding outputs.
Various standard libraries available in many programming

languages, such as GPyTorch [16], GPy [17] in Python
and GaussianProcesses [18] in Julia, not only facil-
itate the standard implementation of GPs, but also allow for
extensive modifications to meet our specific purposes.

IV. INVERSE GAUSSIAN PROCESS INTERPOLATION

So far, we established the foundational basis for this
work. We will now introduce the proposed novel likelihood-
free measurement update. The first step is to justify the
sequential use of two IGPs needed to interpolate the mean
and covariance values, respectively, for moment matching.

A. Sequential Use of Two Inverse Gaussian Processes

Our goal is to derive conditional Gaussians of the hidden
state by conditioning the approximate non-Gaussian joint
density on received measurements. However, a single poste-
rior IGP model, trained on samples drawn from the true joint
density, provides a suboptimal joint density approximation
by directly using its inference results, i.e., both mean and
covariance, for moment matching conditional Gaussians. In
regions where samples are densely scattered, a single IGP
can interpolate confidently, leading to lower uncertainty in
its predictive mean results, as represented by the standard
deviations of the individual conditional Gaussians. Con-
versely, in areas where samples are sparse, the model has less
informative data for training, leading to higher uncertainty in
its predictions. Therefore, more samples should have been
drawn from the resulting approximate joint density, despite
the sparsity of the actual data in these areas. Based on
these observations, one can infer that the covariances of
the individual conditional Gaussians must be independently
estimated with additional care.

Hence, two successive IGPs are required to accurately cap-
ture the true joint density: one dedicated to interpolating the
means, followed by the other exclusively for the covariances.



B. Deterministic Gaussian Samples

Training two IGPs necessitates samples derived from the
true joint measurement/state density fx,y

k (xk,yk
| ỹ

1:k−1
),

while directly drawing samples from it is troublesome. For
that reason, we choose to draw samples from the joint density
of the prior state and measurement noise first, because this
approach is more tractable by assuming a commonly-used
density for the noise. Similar to LRKFs, the drawn samples
are then propagated through the measurement equation to
yield corresponding measurement realizations, which enables
an indirect sampling from the true joint density.

The measurement noise is assumed to be Gaussian dis-
tributed. Various methods exist for computing determinis-
tic Gaussian Dirac mixture approximations, such as those
employed by the UKF, the GF and the Cubature Kalman
Filter (CKF) [19]. We use the sampling method with the
generalized Fibonacci grids [20] for sample efficiency with
fewer equally weighted samples to homogeneously cover the
joint measurement/state space with low cost. This approach
was inspired by the unique spiral packing found in sunflower
heads, known as the 2D Fibonacci grid, and its generalization
to higher dimensions [21]. A Fibonacci grid in higher dimen-
sions is first generated by a uniformly distributed sample
set, and then transformed in order to approximate arbitrary
multivariate Gaussian distributions deterministically.

C. Online Implementation Strategy

The employed implementation strategy involves a special-
ized approach for the online phase, termed measurement-
targeted sampling. Upon receiving an actual measurement,
a window of defined width is centered on it. Deterministic
samples are deliberately drawn within this window to ensure
homogeneous and dense placement around this concrete
measurement. It allows the IGP models to more effectively
leverage local information through the kernel function.

For simplicity, within the scope of this paper, we temporar-
ily assume a scalar bijective nonlinear measurement equation
of a scalar hidden state, corrupted by additive Gaussian noise

yk = hk(xk) + vk . (7)

For multidimensional scenarios, IGPs are also applicable and
can be constructed using multi-output GPs. This aspect will
be explored in detail in an upcoming paper.

Upon receiving a concrete measurement ỹk, the inverse
measurement equation is used to find the corresponding state
value x̃k = h−1(ỹk). An interval of width 2l along the x-
axis centered at x̃k is then defined, spanning [x̃k − l, x̃k +
l], l ∈ R+, to represent the range of values for the Gaussian
prior state. This interval is then linearly transformed into[
x̃k−l−x̂p

k

σk
,
x̃k+l−x̂p

k

σk

]
by converting an arbitrary 1D Gaussian

into a standard Gaussian. Subsequent transformation of this
interval into a range of the [0, 1]-uniform distribution is
achieved by using the Cumulative Distribution Function
(CDF) of the standard Gaussian Φ(·). It results in the domain
of

[
Φ(

x̃k−l−x̂p
k

σk
),Φ(

x̃k+l−x̂p
k

σk
)
]
, where the Fibonacci grids is

placed. This strategy is summarized in Algorithm 1.

Algorithm 1 Derive a domain for uniform Fibonacci grids.

1: function BUILDWINDOW(ỹk, h, x̂p
k, σp

k ; a=1.5)
2: input: ỹk: actual received measurement value
3: h: bijective measurement equation
4: x̂p

k: Gaussian prior mean at kth time step
5: σp

k : Gaussian prior standard deviation
6: a: positive constant proportional coefficient
7: x̃k ← h−1(ỹk), l← a · σp

k ;
8: [x̃k − l, x̃k + l] of arbitrary Gaussian prior ;
9:

[
x̃k−l−x̂p

k

σk
,
x̃k+l−x̂p

k

σk

]
of std. Gauss.← Linear transform;

10: return
[
Φ(

x̃k−l−x̂p
k

σk
),Φ(

x̃k+l−x̂p
k

σk
)
]
← Φ(·) std. Gauss.;

11: end function

D. 1st Single-Output IGP for Scalar Mean Interpolation

The first single-output IGP model is employed for scalar
mean value interpolation, targeting the optimal MMSE esti-
mator Efe

k(xk)[xk | ỹ1:k]. It involves numerically computing
the expected value of the true posterior state density, thus
minimizing the mean square error between estimates and
true states. However, the training of the 1st IGP focuses on
maximizing the log marginal likelihood of the drawn samples
to determine the optimal hyperparameters of interest [22]

θ∗1st = argmax
θ
1st

log p
(
Xk

∣∣∣ Y k, θ1st

)
, (8)

= argmax
θ
1st

−X⊤
k K−1

x Xk − log |Kx| , (9)

where Kx = Kθ +σ2
ε · I contains the hyperparameters to be

optimized. The N samples are D = {(yik, xi
k)}Ni=1 with in-

puts Y k = [y1k, . . . , y
N
k ]⊤ and outputs Xk = [x1

k, . . . , x
N
k ]⊤.

Unlike standard GP approaches, our method above, how-
ever, fixes the length scale of the SE kernel during train-
ing. The SE kernel is characterized by its stationarity and
isotropy, serving as a similarity measure based on the dis-
tance between any two samples. For us, the similarity among
samples in the local surroundings of the actual received
measurement is of particular interest.

This is achieved by first calculating a heuristic length scale
in a sample-specific manner. The process involves calculating
the average absolute distance between each sample and every
other sample along the input axis. The overall average of
these values indicates the all-inclusive similarity among sam-
ples centered on the concrete measurement. This length scale
is then fixed during training, which controls the smoothness
of the inference results provided by the posterior IGP. It
ensures that a specific level of smoothness or flexibility
is maintained without easily underfitting the given samples
while searching for other optimal hyperparameters.

Through a gradient-ascent based optimization tool for
training in (9), we employ only the predictive mean results of
the posterior IGP in (5) with optimal hyperparameters θ∗1st .
They serve as the interpolated mean values for subsequent
moment matching of conditional Gaussians. The interpolated
mean values, derived from the 1st posterior IGP model, are
depicted in a rotated Cartesian coordinate system in Figure 2.



E. 2nd Single-Output IGP for Scalar Variance Interpolation

Based on the first posterior IGP model p(xk|y∗k, θ
∗
1st)

trained on the drawn samples D = {(yik, xi
k)}Ni=1, we infer

the predictive mean value for each measurement realization
yik in D. Afterwards, squared residuals between these pre-
dictions and the corresponding state realizations xi

k in D are
computed and serve as new “observations” or “outputs”

∆2
k,i =

(
xi
k − E

[
p(xk | yik, θ

∗
1st)

])2
, i = 1, . . . , N. (10)

Together with the measurement realizations in D as “inputs”,
they form a new dataset for training the second IGP model
D′ = {(yik, ∆2

k,i)}Ni=1. The training procedure follows
a similar methodology as previously described, but has a
different optimization goal to determine θ∗

2nd for the 2nd IGP:

θ∗
2nd = argmax

θ
2nd

log p
(
∆k

∣∣∣ Y k, θ2nd

)
, (11)

= argmax
θ
2nd

−∆⊤
k K−1

δ ∆k − log |Kδ| , (12)

where Kδ = Kθ +σ2
ε · I contains the hyperparameters to be

optimized, and the training dataset is D′ = {(yik, ∆2
k,i)}Ni=1

with Y k = [y1k, . . . , y
N
k ]⊤ and ∆k = [∆2

k,1, . . . ,∆
2
k,N ]⊤ .

To ensure the interpolated variance remains positive for
the specific measurement, we check this value after each
optimization iteration. If it is nonpositive, we penalize the
next optimization iteration by assigning a significantly small
scalar, e.g. −1e5, to the objective function in (12), which
opposes the goal of maximizing the marginal likelihood.
This penalty guides the optimization process to find suitable
hyperparameters that ensure positive interpolation results.

Similar to the first IGP, we use only the predictive mean
results of the 2nd posterior IGP model, as shown in Figure 3.
They serve as the interpolated variance values along the
interpolated means provided by the 1st posterior IGP. The
final parameterized conditional Gaussians of the hidden
state on arbitrary measurements, obtained through moment
matching, are illustrated in Figure 4. The detailed steps of our
novel measurement update are summarized in Algorithm 2.

The computational complexity in (9) and (12) is mainly
driven by the need for matrix inversion. Standard methods
for inverting an n×n positive definite symmetric covariance
matrix require O(n3) time and O(n2) space. This compu-
tational burden restricts the number of drawn samples from
the true joint density. Moreover, with insufficient samples,
the posterior IGP tends to revert to its predefined prior mean
function, leading to suboptimal extrapolations. Therefore, it
is essential in real applications to ensure homogeneous place-
ment of limited samples around the concrete measurement.
As a result, the use of IGP models is often constrained to
local joint density approximations only.

V. EVALUATION

We evaluate the performance of the proposed GADF by
means of two simulation examples, which were all imple-
mented in Julia. We compare our filter to several state-
of-the-art GADFs. The GPF draws 106 random samples in
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Fig. 2: Predictive mean values (green) of the 1st IGP, based
on the deterministic samples (blue) from the true joint
density, compared with the MMSE estimator (purple).
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Fig. 4: Conditional Gaussians of the hidden state on arbitrary
measurements (horizontal axis) are parameterized by inter-
polated mean and variance values (green). By introducing
individual prefactors, a non-Gaussian approximation of the
joint measurement/state density is obtained.

each prediction and filtering step to determine the mean and
covariance of the state. Despite its high computational cost
and non-deterministic results, this large sample size ensures
asymptotic convergence to the optimal MMSE estimator,
making the GPF a benchmark for the estimation quality
achievable with a GADF. An LRKF is considered. Unlike
the GPF, it uses the same deterministic Gaussian sampling
strategy [20] and sample size as our filter to draw from the



Algorithm 2 Perform measurement-targeted online filtering.

1: function FILTERING(ỹk, h, x̂p
k,σp

k , µv ,σv;N=200,a=1.5)
2: input: µv: mean of measurement noise
3: σv: standard deviation of measurement noise
4: N : number of samples drawn
5: [u1, u2]← BuildWindow(ỹk, h, x̂

p
k, σ

p
k ; a = 1.5) ;

6: D = {(yik, xi
k)}Ni=1 ←

Fibonacci(N, [u1, u2], [x̂
p
k, σ

p
k ], [µv, σv], h) ;

7: x̂e
k ← pred. mean of 1st posterior IGP p(xk | ỹk, θ∗1st);

8: ∆2
k,i ←

(
xi
k − E

[
p(xk | yik, θ

∗
1st)

])2
,

D′ = {(yik, ∆2
k,i)}Ni=1 ;

9: σe
k ← pred. mean of 2nd post. IGP p(σ2

k | ỹk, θ
∗
2nd) ;

10: return [x̂e
k, σe

k] as Gaussian posterior state density ;
11: end function

joint state/measurement noise density. Moreover, a PGF [15]
is also analyzed, as it, like our approach, avoids linearizing
the measurement model and outperforms other filters.

A. Cubic Sensor Problem

The discrete-time cubic sensor problem is a popular
benchmark to evaluate filter performance effectively and is
described by the measurement equation

yk = 0.1 · x3
k + vk , (13)

where vk is zero-mean state-independent Gaussian measure-
ment noise. This nonlinear measurement equation is a poly-
nomial function of the state variable, which enables analytic
calculations of all required moments. For that reason, a NKF
based on analytic statistical linearization, denoted as Analytic
Linear Regression Kalman Filter (ALRKF), is derived as the
highest-quality variant among all the LRKFs.

The first experiment aims to compare the average filter
performance in recursive hidden state estimation scenarios.
50 independent true state sequences x

(i)
k , i = 1, . . . , 50 over

500 time steps k = 1, . . . , 500 are generated according to the
identity system equation xk+1 = xk+wk, i.e., random walk,
corrupted by Gaussian system noise wk with a standard
deviation of 1.0. The initial true state is always set to x1 =

0.0. The corresponding measurement sequences ỹ
(i)
k , k =

1, . . . , 500, i = 1, . . . , 50 are generated according to the
measurement equation in (13). The resulting state estimate
sequences are given as x̂

e,(i)
k , k = 1, . . . , 500, i = 1, . . . , 50.

Thus, the Root Mean Square Error (RMSE) between the state
estimates and the true states at each time step is calculated
as a measure for filter performance assessment.

Figure 5 demonstrates that the estimation outcomes of
the proposed filter closely match the ground truth from the
GPF. Notably, our filter exhibits a much smaller RMSE
between steps 250 and 300, as 106 samples might not be
sufficient enough for the GPF to fully converge. Furthermore,
our filter significantly outperforms both the LRKF and the
ALRKF by a large margin. These results are expected.
Because an implicit linearization of the measurement model
through a second Gaussian assumption comes at the price of

diminished filter performance compared with other GADFs
working without such simplification.

The following analysis compares the computational com-
plexity of various filters during the measurement update, as
shown in table I, and highlights the differences in average
measurement update runtimes in Figure 6. While faster
than the GPF, our filter has lengthy runtimes, which arise
from two sequential matrix inversions, each with cubic time
complexity. Despite this computational burden, it delivers
higher-quality Gaussian filtering than the PGF and LRKFs,
ensuring more accurate state estimation.

TABLE I: Computational complexity of different filters. n is
the number of drawn samples in one measurement update.

Filter Sample-Based Time Complex. Space Complex.
GPF Yes O(n) O(n)
IGP Yes O(n3) O(n2)
PGF Yes O(n) O(n)

LRKF Yes O(n) O(n)
ALRKF No O(1) O(1)

B. Non-Additive Measurement Noise Example

So far, we considered a nonlinear measurement equation
suffering from additive noise and explored recursive state
estimation scenarios under the same level of nonlinearity.
To demonstrate the proposed filter’s enhanced versatility and
robustness in handling non-additive measurement noise along
with increasingly uncertain prior information, we consider a
bilinear measurement equation, as found in [23], [24],

y = x+ v · x, (14)

where v is zero-mean state-independent multiplicative Gaus-
sian noise with a standard deviation of 0.2. The experiment
evaluates average filter performance under varying levels of
prior uncertainty. To simplify the analysis, we only consider
a single filter step and take up the procedures in [14].

The true state is drawn from a uniform distribution over
[−1, 1], and the measurement is generated using the mea-
surement equation in (14). The prior estimate x̂p is formed
by adding a zero-mean Gaussian sample with variance σp to
the true state. The experiment is repeated 200 times for each
of the 200 different prior density “widths”, σp, ranging from
0.1 to 5. As the uncertainty in prior information increases,
the effective nonlinearity of a nonlinear dynamic system
intensifies, requiring advanced filters for higher-quality state
estimation.

The estimation results are depicted in Figure 7, showing
the RMSE at each prior uncertainty level, together with the
minimum and maximum errors. Our proposed filter delivers
nearly the same results as the reference GPF, showing
its potential to maintain high estimation quality even with
significant nonlinearities. In contrast, the results from the
LRKF are unsatisfactory. The rapid increase in RMSE and
maximum errors indicates significant degradation in filter
performance with increasing prior uncertainty.
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VI. CONCLUSIONS
In this paper, we introduced a novel GADF for high-

quality state estimation of nonlinear dynamic systems. The
novelty lies in the measurement update step, which leverages
a non-Gaussian local approximation for the true joint density
of measurement and prior state. This is obtained through a
sequential use of two IGPs, effectively eliminating the need
for a second Gaussian assumption. As demonstrated in sim-
ulations, the performance of our proposed filter approaches
that of the MMSE estimator in recursive state estimation
scenarios and its enhanced filter versatility can handle non-
additive measurement noise well.

Current research is focused on extending estimation sce-
narios to multidimensional cases by generalizing single-
output IGPs to multi-output IGPs. This involves specify-
ing the cross-correlations between multiple model outputs.
Additionally, exploring alternative interpolation techniques
presents a promising direction for further investigation.
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