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Abstract—The maximum likelihood problem arising from
multilateration or source localization via signal times of arrival
(TOA) leads to a nonlinear least squares problem in target position
and target transmission time (TTT). Since we are not interested
in the latter, it is usually eliminated from the equation system. We
eliminate the TTT in closed form, which is simpler to design, easier
to implement, and faster to compute than the often used pairwise
time differences of arrival (TDOAs). We propose an unweighted
nonlinear least squares formulation of the multilateration problem
whose minimization with the Levenberg-Marquardt algorithm is
very fast.

Index Terms—source localization, multilateration, maximum
likelihood, time of arrival (TOA), time difference of arrival
(TDOA), Weighted nonlinear least squares, Levenberg-Marquardt

Julia source code is available here (others added on request):
https://github.com/KIT-ISAS/MFI2025_MLAT-TOA

I. INTRODUCTION

Multilateration is a method for passive source localization,
i.e., a “listening-only” sensor passively receives signals (e.g.,
electromagnetic signals or sounds) that have propagated with
known propagation speed (trough vacuum, air, or water) from
the emitter. Based on time of arrival (TOA) measurements, the
emitter location can be determined. This can be realized with
a relatively cheap sensor infrastructure and can yield very high
accuracy. A major application area is secondary surveillance
radar (SSR), i.e., the tracking of cooperative aerial targets.

There are convenient algebraic methods providing a closed-
form solution [1], [2], [3]. All these methods, however,
introduce some nonlinear transformation of the measurement
equation, usually to get rid of the square root from the
Euclidean distance. This implies that the solution is no longer
optimal under the presence of additive Gaussian measurement
noise.

The “gold standard” maximum likelihood estimation requires
an iterative search for target position and target transmission
time (TTT) via numerical optimization. This is proposed in [4].
Some also require target and sensors being time-synchronized,
i.e., the TTT to be known, so that one needs to search for
target position only [5], [6].

The TTT can also be eliminated by taking differences of
pairs of measurements or by solving a linear least squares
problem, which we focus on in this work. The specific and
somewhat subtle distinction from prior state of the art in these
areas is given in Section III-E and Section IV-C, after having
established the notation and problem structure.

II. PROBLEM DESCRIPTION
A. Measurement Equation
A target at unknown location
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transmits a radio signal at unknown time ¢y. This signal is
received by various sensors at known locations
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Each sensor measures the TOA ¢; with zero-mean additive

Gaussian noise v; with stochastic properties

Var{v;} = o7 , 3)
Cov{v;,v;} =0 fori#j . 4
Therefore, we have the measurement equation
1
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where c is the signal propagation speed. In vector notation, for
all measurements combined, it is

t=to-1+h(z)+uv, (6)
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B. Maximum Likelihood Estimation
The likelihood is therefore
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Finally, the maximum likelihood (ML) solution is
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where ||z||4 = 2T Caz. This can, for diagonal C,, also be

written as
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This nonlinear least squares problem could readily be solved
with the Gauss-Newton algorithm [7], [8], or its regularized
variant, the the Levenberg-Marquardt algorithm [9], [10], or
also Powell’s hybrid “dog-leg” method [11], [12]. However, it
seems desirable to first get rid of the unknown TTT ¢, that
we are not interested in, to not burden the optimizer with
unnecessary work.

III. TDOA METHOD

What is often done is to subtract two TOA measurement
equations from each other, yielding the so-called time difference
of arrival (TDOA) measurement equation
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Two things have changed here: the TTT ¢y got eliminated, as

desired, and the measurement noise changed from v; to
(17
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To again obtain the appropriate ML estimator, we have to
compute the noise covariance of v; ;

Cov{vi j, vk} = Cov{v, — v;, vk — v;}
= E{vivx} — E{vivi} — E{vjus} + E{vu;} .

(18)
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A. Consecutive Topology

Assuming we take differences of consecutive measurements,
i.e., N — 1 measurements 7; ;, in particular,
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because
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B. Star Topology

Alternatively, we could use a star-like topology, where we
also get N — 1 measurements 7;_;

T
T = [7'1,2 71,3 7'1,N] (29)
In that case the covariance is
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C. Combinatorial

One may also decide to take all combinations of two
measurements. Then 7 has

N\ N-(N-1)
2) 2
elements, and C,, must be individually compiled from (18) for
the respective N and ordering of the combinations.

D. Solver

To obtain the ML solution, we have to solve a weighted
nonlinear least squares problem similar to (12) but adapted to
the transformed measurements 7; ;

(33)

& = argmin||n(z) — |2 (34)
with n(z) the vectorized version of 7; j(z) (16). Now we have
a non-diagonally weighted nonlinear least squares problem.
Although the Levenberg-Marquardt algorithm can be derived
for such problems [13], [14, p. 515], the major implementations
do not give the option to provide a weighting matrix. We can,
however, rewrite the quadratic form in (34) into a sum of
squares [15, p. 6] via the Cholesky decomposition C,, = RR."
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Thus, transforming the vector (n(z) — 7) with R™! renders
the least squares problem unweighted. However, this matrix
multiplication makes computation of the objective function
noticeably slower and can be avoided by our proposed method.

E. Distorted Solvers

It seems that some TDOA users do not take into account
the correlations between the v; ; and simply treat the TDOA
measurements as if they had uncorrelated noise, i.e., with C,,
diagonal [16, Eq. 29], [17, Eq. 10-11], [18, Eq. 7], [19, Eq. 10],
[20, Eq. 5-6]. This may be justified in some cases, namely
when time differences are directly measured, e.g., via cross-
correlation of the two received waveforms [21], [22], [23]. But
usually, the TOA are determined separately in each sensor, and
only subsequently the resulting timestamps being subtracted,
yielding the “TDOA” values, which should actually better
be called difference of times of arrival (DOTA) [15]. Some
users, however, do correctly respect the TDOA correlations
[24, Eq. 44], [25, Eq. 46], [26, Eq. 33], [14, p. 514], [27,
Eq. 3], [15, Fig. 2], [28, Eq. 8]. Finally, some aim to respect
correlations but use the wrong covariance matrix [29, Eq. 11],
[30].

IV. PROPOSED TOA METHOD

We claim that using differences of TOAs unnecessarily
complicates things (in particular, the covariance matrix), and
instead propose a different way dealing with the “unwanted
unknown” t(, which does not lead to a non-diagonal weighting
matrix.

A. Key Idea

Note that the measurement equation (5) is affine in ¢y. Thus,
if  was given, we could solve for ¢y via linear least squares,
i.e., in closed form. And that is exactly what we propose: let
the nonlinear solver, just like for TDOA, propose some value
for x and not for 3. Then for that specific z, compute the
optimal ¢y and return the resulting loss as objective function.

B. Computing tg
In particular, we simply solve the vectorized measurement

equation (6) for ¢(. First, we rearrange it from being affine in

tp to being linear in %y
t—h(z)=1-to+uv . (39)

For normally distributed v we obtain the ML estimate %, via
linear least squares

fo(z) = (L7C;') 717Gt~ hlz) . (40)
which for diagonal C, as in (8), becomes
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Thus, %o is simply the weighted sample mean of
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Inserting this into (6) yields a measurement equation that
depends only on z.

C. State-of-Art

A similar approach has already been proposed in [31,
Eq. 8+10]. However, they include a penalty that keeps the t(-
estimate of the next iteration close to the current one, which we
deem unnecessary. Furthermore it requires an initial guess of £,
which our method does not. But most of all, they treat finding
to and iy as two entirely separate optimizations problems
that are executed alternately. Thus, after each linear least
squares ¢, estimation, they perform a multi-iteration nonlinear
optimization solving for x with the same ¢, [31, Alg. 1].
Lastly, they propose a gradient-descent optimization, while
we propose, exploiting the problem structure, the Levenberg-
Marquardt method for the variant described in Section IV-D,
or quasi-Newton for Section I'V-E.

Similarly, [32, Eq. 4], [33] use the closed-form t,-estimate
(41) but solve the entire problem via semidefinite programming,
which is generally slower. Also [34, Eq. 6] uses this trick — but
still arrives at a non-diagonally weighted least squares problem
[34, Eq. 7+AT7], just like we do for the correctly-weighted
TDOA problem (36) (with the associated somewhat higher
computational cost) and unlike our diagonally-weighted least
squares problem for TOA (45).

D. Levenberg-Marquardt

Inserting (41) into (13) gives a sum-of-squares minimization
problem that depends only on z and can be solved with the
Levenberg-Marquardt algorithm.

Objective Function: Levenberg-Marquardt requires an
objective function fy,; that returns a vector of the terms to be
squared and summed, which would be

%Hx — 51| +to(a) —ta
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with #o(z) from (41), where
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Jacobian: Furthermore, Levenberg-Marquardt needs the
Jacobian of 0;,,(x). First, we define the Jacobian of h(z),
Jﬁ( 2) c RN X3
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Method | Weighted | Unweighted |
TDOA-Consecutive 229 ps 190 ps
TDOA-Star 228 us 198 us
TOA (proposed) unnecessary 156 us

TABLE I: Computation times for the setup described in
Section VI-A.

Method | Weighted | Unweighted |
TDOA-Consecutive 0.370 0.452
TDOA-Star 0.370 0.804
TOA (proposed) — 0.370

TABLE II: Median Euclidean deviation of the results for the
setup described in Section VI-C.

and weight vector w containing the diagonal elements of the
diagonal C;!
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Then the derivative of y(z) from (41), 6’50(9” € RY*3, with
included o;, is
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Alternatively, the Jacobian may be computed via Automatic
Differentiation if supported by the respective language.

E. As Sample Variance Computation

Consider again the nonlinear least squares objective function,
slightly modified from (13)

N 2
-1 Z iQ [illm —sill —ti — (—fo(x))]
' (50)

and compare it to our linear least squares estimate f, from
(41)
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Inserting (51) into (50) shows that what we have here
is precisely a sample variance computation. This has two
implications. First, we can also write it as

1 X1 2
0z) =——— S |z —s,| —t; 52
(z) vallfzi—l Uisz sl }d (52)
N 2
1
L E g [H:cs Il — tl} (53)

2 =1

Second, we can simply use a readily available, highly optimized,
and fast sample variance computation function to compute the
weighted variance of the vector

Hz—sl—t

zllz = 5ol —t2

h(z) —t = (54)
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Say, SVar(y; w) computes the weighted sample variance of

a vector of univariate samples y, then our desired objective
function can be written as

O(z) = SVar(h(z) — t; w) , (53)

Consequently, we can interpret the nonlinear least squares
solution

& = argmin 6(z) (56)

z

as the z that minimizes the sample variance of (h(z) — t).
Gradient: The gradient of the objective function is

M(z) 2
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This can be seen as twice the weighted sample covariance
between (h(z) —t) and Jj. But computation with available
covariance computation functions would have to be done
separately for the three columns of J; such that both samples
have the same dimension, one. Either way, with this we can now
also solve the three-dimensional TOA multilateration problem
with, e.g., a Quasi-Newton algorithm.

V. TL;DR — MINIMAL IMPLEMENTATION

Implement the TTT estimator #o(z): R3 — R (42), using
the measured TOAs ¢; and sensor locations s,. Implement the
objective function fp;(z): R — RY (44). Minimize 6y (z)
with the Levenberg-Marquardt algorithm, using forward differ-
ences for the gradients. This is also what you can find in our
GitHub repository.

VI. EVALUATION
A. Setup

For evaluation, we place N = 100 sensors s; randomly in
[0,10]3, define a ground truth, to = 0.2 and z = [3,1,5] ",
assume ¢ = 1, compute the noise-free measurements and add
standard normal noise (o = 1). We define the initial guess
zo = [9,8,2]T and optimize in Julia using LeastSquaresOp-
tim.jl, with standard settings (x_tol = f_tol = g_tol = 107%),
using in-place syntax for the objective function and automatic
differentiation via ForwardDiff.jl [35] for the Jacobian.

B. Timing

Computation times are shown in Table I. Thus, with the
proposed TOA we have a computational load comparable than
than unweighted TDOA — or even somewhat lower.
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Fig. 1: Evaluation of our proposed TOA multilateration algorithm against four state-of-art methods. The correctly weighted
TDOA methods as well as the proposed TOA method identically give the optimal results.

C. Accuracy

Now we randomly vary the sensor locations, repeating the
experiment 100,000 times. The root mean square error (RMSE)
values are listed in Table II. See Fig. 1 for a visualization of
the distribution of the errors. All TDOA methods with the
correct weighting matrix as well as the TOA method produce
identical results.

D. Interpretation

The proposed TOA method has a runtime comparable than
the unweighted TDOA methods — while producing the same
result as the correctly weighted TDOA.

VII. CONCLUSION

We proposed a novel combination of unweighted least-
squares objective function and Levenberg-Marquardt solver
for the exact maximum likelihood problem in multilateration,
yielding a very fast, efficient estimator. State-of-the-art methods
use differences of pairs of TOAs, called TDOAs, but then
the least squares problem turns into a weighted one — with
non-diagonal covariance matrix, which is easily forgotten in
design, error-prone in implementation, and slow in runtime. Our
method is purely TOA-based, preserves the diagonal weighting
matrix, and is faster to compute.

In particular, we derive a vector-valued objective function
that is very simple to implement in-place and is suitable for the
Levenberg-Marquardt algorithm (45), as well as a scalar-valued
one that can be computed via a sample variance routine and
then be optimized with a quasi-Newton method (56).
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