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Abstract— Reliable quantification of uncertainty is crucial
for trustworthy predictions in estimation theory and machine
learning. However, existing credibility and calibration measures,
such as the widely used averaged normalized estimation error
squared (ANEES), often exhibit limitations when applied to
biased model predictions. In this paper, we systematically review
the ANEES and its alternatives, analyze their strengths and
weaknesses, and highlight cases where standard measures fail to
detect miscalibration. Building on recent advances in calibration
measures, we propose two new measures: the generalized
uncertainty calibration error and its normalized version.
These measures unify and extend the concepts of estimator
credibility and regression calibration to multivariate settings.
Comprehensive experiments demonstrate the characteristics
of credibility and calibration measures, including the proposed
measures, and their applicability to regression models.

Index Terms— Uncertainty quantification, credibility
measures, calibration measures.

I. INTRODUCTION

Quantifying uncertainty is a fundamental challenge in
both estimation theory and machine learning. Reliable
predictions are essential for decision-making in safety-critical
applications, and autonomous systems [1], [2]. However,
assessing the quality of these predictions—particularly their
uncertainty estimates—remains a nontrivial task [3], [4].

In estimation theory, measures such as the averaged
normalized estimation error squared (ANEES) [5] have long
been used to evaluate the credibility of state estimators, such
as Kalman filters. The ANEES assesses the consistency of
the estimated states and their associated covariance matrices
under the assumption of Gaussianity, and has been widely
adopted in the literature [6]–[9]. Subsequent works [10]–[12]
have further analyzed its properties, limitations, and proposed
alternatives, such as the matrix norm relative error (MNRE)
and the noncredibility index (NCI), to address specific
shortcomings of the ANEES. When used for assessing the
distribution of estimated states in state estimation, these
measures are often referred to as credibility measures [11].

In the context of machine learning, particularly for regres-
sion problems, research typically focuses on calibration mea-
sures that evaluate the similarity between predicted probability
distributions and observed data from a stochastic process. A
prediction is called well-calibrated if it is unbiased and has the
same uncertainty (e.g., variance) as the stochastic process [13],
as shown in Fig. 1. Popular measures include the uncertainty
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Fig. 1: Examples of different predictions and their characteristics in terms
of calibration, confidence and bias (adapted version from [13]).

calibration error (UCE) [14], expected normalized calibration
error (ENCE) [15], and quantile calibration error (QCE) [4].
These measures are designed to evaluate the global calibration
of predictive models. Furthermore, these calibration measures
can be used to assess the local calibration of regression models
when applied to local regions of the model’s input space, as
demonstrated in our previous work [16]–[18].

Despite the variety of available measures, there is no uni-
versal solution that is applicable across all domains and data
modalities. Many existing measures are tailored to specific
applications or assumptions, such as univariate or multivariate
predictions, Gaussianity, or the availability of ground truth in-
formation. This diversity complicates the comparison of model
performance and the interpretation of calibration results.

Motivation and Scope: This paper aims to bridge the
gap between credibility measures from estimation theory and
calibration measures from machine learning. Although both
types of measures are widely used, they are often developed
and applied in isolation, which can lead to inconsistent
or incomplete assessments of model quality. A unified
perspective is particularly important as predictive models
are increasingly deployed in safety-critical and high-stakes
domains, where both credible and well-calibrated uncertainty
estimates are essential for reliable decision-making. We
systematically review the ANEES and its alternatives,
highlighting their strengths and weaknesses in both theory
and applications. Building on [14], [15], we extend calibration
measures for regression models to multivariate predictions,
leveraging insights from estimator credibility measures.

Contribution: The main contributions of this paper are:
First, we provide a review of the fundamental concepts of esti-
mation and prediction quality assessment in estimation theory
and machine learning. Second, the ANEES and its limitations
are analyzed, with illustrative examples demonstrating cases
where it fails to detect incredibility. Third, alternative cred-
ibility measures, such as the MNRE, log-matrix norm ratio
(MNR), and NCI, are discussed and their properties compared.
Fourth, state-of-the-art calibration measures for regression



models, including the UCE, ENCE, and QCE, are reviewed,
and their relationships to credibility measures are examined.
Finally, a new calibration measure is proposed that extends
existing approaches to multivariate predictions in regression
models, leveraging insights from estimator credibility.

Notation: In this paper, underlined letters, e.g.,
¯
x,

denote vectors, boldface letters, such as
¯
x, represent random

variables, while boldface capital letters, such as A, indicate
matrices. Sets are denoted by calligraphic letters, e.g.,
D. Estimated or predicted quantities are denoted by the
superscript e, for instance,

¯
xe, and the ground truth quantities

are denoted by the superscript GT, e.g.,
¯
xGT. Covariance

matrices are denoted by C, and mean squared error (MSE)
matrices are given by Σ. Expectation operators are denoted
by E{·}; e.g., Ep(

¯
x){

¯
x} denotes the expectation of

¯
x under

the density p(
¯
x). When appropriate, the density argument

is omitted for simplicity. The same convention applies to
the variance operator, denoted by Var{·}.

II. PRELIMINARIES

In this section, we introduce the fundamental concepts used
throughout the paper and clarify the terminology related to the
assessment of estimation and prediction quality. This includes
credibility, as known from estimation theory [10], [11], and
calibration, as it is common in recent machine learning
applications [3], [4], [14], [15]. Credibility refers to how well
a single estimate matches the true state (a random variable),
typically assessed using ground truth information or Monte
Carlo (MC) simulations, whereas calibration evaluates how
well the predicted distribution of a regression model aligns
with the true data-generating process. In the remainder of this
paper, the term estimations is used in relation to credibility
measures, and predictions in terms of regression models. This
distinction guides the structure of the paper: following the pre-
liminaries in this section, credibility measures are discussed
first in Sec. III, followed by calibration measures in Sec. IV.

A. Credibility of Estimators

Credibility refers to how well an estimator, such as a
parameter estimator or a filter, estimates the true random
variable of interest, referred to as estimand or state. The
moments of the true random variable

¯
xGT are described

by its mean
¯
µGT and its covariance matrix CGT, whereas

the estimand is given by its mean
¯
µe and covariance matrix

Ce. For credibility assessment, the estimation error
¯
e is

used, which is defined as
¯
e =

¯
xGT −

¯
µe. An optimal (and

credible) estimator would match the true state (is unbiased),
i.e.,

¯
µe =

¯
µGT and Ce = CGT, with the optimal error

¯
e∗ =

¯
xGT −

¯
µGT, meaning that the estimation should be

unbiased (E{
¯
e} =

¯
0), and the MSE matrix Σ = E

{
¯
e
¯
e⊤
}

should be equal to Ce. Assessing the credibility involves
checking both expectations; however, in practice, calculating
the expectations is not applicable since the true random
variable is usually unknown, and therefore, the evaluation is
typically performed using sample approximations based on
multiple MC simulations [19]. Furthermore, there is no univer-
sally accepted scalar measure of the credibility of estimators.
One of the most commonly used measures is the ANEES,
whose weaknesses and alternatives are described in Sec. III.

B. Calibration of Regression Models

Measuring the calibration of regression models in the
context of machine learning involves assessing the quality
of predictions made by a model using available test data. In
this context, data is generated from a true data-generating
process that follows the distribution

¯
y ∼ pGT(

¯
y |

¯
x), where

¯
y is a random variable over the Ny-dimensional sample
space

¯
y ∈ RNy , and

¯
x is the input as a random variable

over the Nx-dimensional sample space. The data-generating
process can also be represented as

¯
y = fGT(

¯
x), with

fGT : RNx → RNy being the true mapping from the input
data

¯
x to the output data

¯
y. In regression tasks, the goal

is to learn a mapping fapprox(·) approximating the true,
but unknown data-generating process fGT(·) given a finite
training data set D that consists of one or multiple realizations
of

¯
y, given different input realizations of

¯
x. For example,

this can be achieved by using approximation methods such as
Bayesian neural networks, or other machine learning models.

Once training is complete, the learned model is used to
predict the output distribution p(

¯
y |

¯
x,D) for a given input

¯
x.

Since the estimated distribution is based on the finite training
data set, it may not perfectly capture the true distribution.
Therefore, model predictions are evaluated using the test data
set DTest = (

¯
xn,

¯
y
n
)
NTest

n=1
, which consists of NTest input-

output pairs. Note that there could be multiple realizations
of the output for the same input value. However, we assume
that, in the standard case, there is only one realization per
input value. For evaluation, calibration measures are used
to assess the quality of the predicted probability density
functions (PDFs) p(

¯
y |

¯
xn,D) in terms of how well they

match the true PDFs p(
¯
y |

¯
xn), at the test points

¯
xn.

III. ANEES, ITS WEAKNESSES AND ALTERNATIVES

Assessing the credibility of estimates can be done
concerning different aspects, such as bias credibility
(E{

¯
e} =

¯
0), MSE credibility (Σ = Ce, assuming zero

mean errors), or their joint evaluation [11]. In this section,
we first review the ANEES, which is widely used in the
literature [5], [11], [19], along with its weaknesses and
alternatives proposed in the literature.

A. Definition and Properties of the ANEES

To assess the MSE credibility, the ANEES [5], [19] is
commonly used, which is based on the squared Mahalanobis
distance. The ANEES is defined by [19]

ANEES =
1

NMC ·Ne

NMC∑
n=1

¯
e⊤n (C

e
n)

−1

¯
en , (1)

where
¯
en ∈ RNe is the Ne-dimensional error realization, Ce

n

is the estimated covariance matrix, and d2M,n =
¯
e⊤n (C

e
n)

−1

¯
en

is the squared Mahalanobis distance, also known as
normalized estimation error squared (NEES). The error
realization is given by

¯
en =

¯
xn −

¯
µe
n

, where
¯
xn is the

realization of the true state
¯
xGT in the n-th out of NMC

MC runs,
¯
µe
n

is the estimated mean, and Ce
n is the estimated

covariance matrix, both given by the estimator. Note that
¯
µe
n

and Ce
n can also remain constant across multiple MC runs

for comparison with multiple error realizations. The usage



and interpretation of the ANEES is based on the fundamental
assumption that is key to understanding its values.

Assumption 1: The errors are normal, have zero mean,
and the MSE matrix Σ = E

{
¯
e
¯
e⊤
}

is equal to the true error
covariance matrix CGT, that is,

¯
e ∼ N (

¯
e;
¯
0,Σ).

A direct consequence of Assumption 1 is that the squared
Mahalanobis distance of the errors d2M,n is chi-square
distributed with Ne degrees of freedom [5], [19]. This is
conveniently illustrated by the following example.

Example 1: Consider the case of an unbiased univariate
estimate (Ne = 1). The average squared Mahalanobis
distance is given by

NMC∑
n=1

d2M,n =

NMC∑
n=1

( en
σGT

)2
=

NMC∑
n=1

z2n

with zero mean normally distributed error
e ∼ N (e; 0, (σGT)2), and standard deviation σGT = σe

n.
The squared Mahalanobis distance, therefore, is equal to the
squared error divided by the estimated variance, i.e., z =
e2
/(σe)2. This can be seen as standardizing the error, so that

each realization zn follows the standard normal distribution.
Summing over all normalized squared errors results, by
definition, in a chi-squared distributed random variable with
NMC degrees of freedom, i.e.,

∑NMC

n=1 z2n ∼ χ2
NMC

[20].

The univariate case can be generalized to multivariate
random variables, resulting in the ANEES being chi-square
distributed with k = NMC ·Ne degrees of freedom [19]. A
convenient property of the chi-square distribution is that its
expected value equals its degrees of freedom, i.e., E

{
χ2
k

}
= k.

This is used to normalize the ANEES by dividing it by
the degrees of freedom. Therefore, the expectation of the
ANEES is equal to one, if Assumption 1 holds [11].

Following the definition of the ANEES and its distribution,
three cases can be distinguished:
1) When the ANEES is equal to one, the estimates are MSE

credible, which means that the estimated uncertainties, i.e.,
the covariance matrices Ce

n, match the true MSE matrix Σ.
2) When the ANEES is lower than one, the estimated

covariance matrices are dominating the errors, which
means that the estimated uncertainty is too high.

3) When the ANEES is larger than one, the errors are
dominating over the estimated uncertainty, which means
that the estimated uncertainty is too low.

The latter two cases indicate that the estimated uncertainty
is not MSE credible, i.e., the estimated covariance matrices
Ce

n do not match the true MSE matrix Σ.
Furthermore, by utilizing the chi-square distribution,

the ANEES can be used to perform a statistical test for
the goodness-of-fit of the estimated distribution. For this,
one compares the ANEES with the critical values of the
chi-square distribution [19].

B. Weaknesses of the ANEES
Weaknesses of the ANEES have been examined in several

papers [10]–[12]. Most prior work has evaluated the ANEES
as a credibility measure for normally distributed estimators,
typically by comparing results with ideal estimators and

known MSE matrices [10], [11], or by applying statistical
tests for the goodness-of-fit of the estimated distribution [12].

1) Use of the Arithmetic Mean: The primary limitation
of the ANEES is its reliance on the arithmetic mean
of the squared Mahalanobis distances d2M,n in (1) [11].
The NEES itself is a ratio of the MSE matrix to the
estimated covariance matrix, which is inherently asymmetric:
underconfident estimates yield values between zero and
one, while overconfident estimates can range from one to
infinity. This asymmetry complicates the comparison of
different estimators based solely on their ANEES values, as
underconfidence and overconfidence are treated differently.
Averaging of ratios can lead to unexpected results, where one
NEES component of the ANEES that is close to zero can be
compensated by another component that is larger than one,
leading to a ANEES close to one, even though the estimated
distribution does not match the true distribution [10].

Example 2: To illustrate the weakness of averaging
ratios in the ANEES, consider the problem of estimating
temperature in two separate MC runs, A and B. Run A is
overly cautious: it reports a very wide uncertainty (variance
much larger than the actual squared error). Run B is
overconfident: it reports a very narrow uncertainty (variance
much smaller than the actual squared error). Suppose both
runs are unbiased, so their mean estimands are correct, but
their reported variances differ greatly. In terms of the NEES,
run A yields a value of 1/100 (variance 100 times too large),
while run B yields 199/100 (variance about two times too
small). The average of these two NEES values is one, which,
according to the ANEES, suggests perfect MSE credibility.

However, this average is misleading: neither estimand
is actually reliable—one is much too uncertain, the other
much too confident. This example demonstrates how the
arithmetic mean of ratios, as used in the ANEES, can
obscure significant incredibility, since extreme over- and
under-confidence can cancel each other out in the average.

2) Biased Estimates: A second caveat to the ANEES
is that it is not designed to check the bias credibility of
the estimated distribution. The behavior of the ANEES for
biased estimates can be misleading, e.g., when the ANEES
is used and it is not checked if an estimate is biased. The
following theorem formalizes this.

Theorem 1: Let xGT ∼ N (x;µGT, (σGT)2) be the
true random variable. Suppose an estimate is given by
xe ∼ N (x;µe, (σe)2), where µe = µGT + ∆µ, ∆µ ̸= 0
(biased mean) and (σe)2 = c · (σGT)2, with c > 1
(overdispersed variance). Then, the ANEES, computed with
respect to the estimated mean and variance can satisfy
ANEES = 1, even though the mean and variance of xe are
not equal to the mean and variance of xGT. For simplicity,
the superscript GT is omitted in the following proof.

Proof: We start with the expected value of the squared
Mahalanobis distance

ANEES = E

{
(x− (µ +∆µ))

2

(σe)2

}
,

which, for univariate estimates, i.e., Ne = 1, can be viewed
as the expectation-based counterpart of (1). For a perfectly
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Fig. 2: Illustration of Example 3 for the weakness of the ANEES, where
the ANEES is approximately one, but the estimated distribution is biased
with a larger than true variance.

credible estimate, we have ANEES = 1. Therefore, for
perfect credibility, it holds that

E
{
(x− (µ +∆µ))2

}
= c · σ2 , (2)

since c · (σ)2 is constant. Expanding the left-hand side

E
{
x2 − 2x+ µ2

}︸ ︷︷ ︸
=E{(x−µ)2}=σ2

+E{2µ∆µ− 2x∆µ}︸ ︷︷ ︸
=2∆µE{µ−x}=0

+E
{
(∆µ)2

}︸ ︷︷ ︸
=(∆µ)2

and solving for c yields

c =
1

σ2

(
σ2 + (∆µ)2

)
= 1 +

(∆µ)2

σ2
. (3)

Thus, whenever (3) holds, ANEES = 1. Since the right-hand
side of (3) is greater than one for ∆µ ̸= 0, bias can be traded
for a larger variance and the ANEES can be equal to one, even
if the moments of xe are not equal to the moments of x.

Note, however, that the considered scenario violates
Assumption 1, since E{e} = ∆µ ̸= 0, and the NEES and
ANEES are no longer chi-square distributed. In fact, for
biased estimates, the distribution follows a non-central
chi-square distribution [21]. As a result, an ANEES value
of one is not meaningful, since the expectation of the
non-central chi-square distribution is not equal to one, and
the ANEES can no longer be used to assess the MSE
credibility. This issue is illustrated by the Example 3.

Example 3: In this example, the true distribution is a
univariate normal distribution with µGT = 0 and σGT = 1.
The estimated distribution is a univariate normal distribution
with µe = µGT + ∆µ and (σe)2 = c · (σGT)2, where the
mean is shifted by ∆µ = 3 and the estimated variance is
c = 10 times larger than the true variance. This corresponds
to a situation in which the condition (3) holds. 50 samples
are drawn from the true distribution, and the squared
Mahalanobis distance of each sample to the estimated
distribution is calculated. The ANEES is equal to one, even
though the estimated distribution does not match the true
distribution. However, the cumulative density function (CDF)
of the Mahalanobis distances in Fig. 2 reveals that they are
not chi-square distributed, which violates Assumption 1.

Even though the ANEES is widely used [6], [8], [22],
[23], Assumption 1 is often not checked in practice. As
demonstrated in Example 3, these results can be misleading.
Therefore, the ANEES should be applied with caution.

Violations of the underlying assumptions can be detected,
e.g., by using the Kolmogorov–Smirnov test to check for
significant differences between the empirical distribution of
squared Mahalanobis distances and the chi-square distribution
with Ne degrees of freedom, as demonstrated in [7], and
should always accompany the application of the ANEES.

C. Alternatives to ANEES
To account for the weaknesses of the ANEES, several

alternatives have been proposed in literature [10], [11]. All
of these avoid using the arithmetic average of the squared
Mahalanobis distances. Instead, the measures proposed in [10],
[11] are based on ratios or differences of the matrix norms
of the estimated covariance matrix and true MSE matrix,
thereby overcoming the asymmetry inherent in the ANEES.
E.g., the MNRE, and log-MNR, are defined by [10], [11]

MNRE =

∥∥Σ−Ce
∥∥∥∥Σ∥∥+ ∥∥Ce
∥∥ , (4)

log-MNR = log10

( ∥∥Σ∥∥∥∥Ce
∥∥
)

, (5)

where || · || is an arbitrary matrix norm. The MNRE has the
property that it is bounded between zero and one, where a
value of zero indicates perfect MSE credibility. Note that the
MNRE cannot distinguish between over- and underdispersed
estimates. However, it is symmetric, meaning that it, in
contrast to the ANEES, penalizes over- and underconfident
estimates equally. The log-MNR is not bounded and
symmetric. It can be used to distinguish between over- and
underdispersed estimates, where Σ = Ce implies a value
of zero, but not vice versa. If the norm of the estimated
covariance matrix is larger than the norm of the MSE matrix,
the log-MNR is negative, indicating an overdispersed estimate,
while a positive value indicates an underdispersed estimate.
Additional measures with similar properties are proposed
in [10], [11], such as the log-mean squared error ratio and
log-generalized error variance ratio, which are based on the
trace and determinant of the covariance matrices, respectively.
However, none of these measures, including the ANEES,
check the bias credibility of the estimated distribution, i.e.,
they assume unbiased estimates. In fact, the weakness of
the ANEES from Theorem 1 (relative comparison of the
MSE and covariance matrix) also applies to difference-based
comparisons, such as in the numerator of the MNRE. This can
be seen by considering again the univariate case, and setting
the difference E

{
e2
}
− (σe)2 to zero, which is equal to (2).

To check both the bias and the MSE credibility of the
estimated distribution, [10], [11] proposed the NCI measure,
which is a joint bias and covariance credibility measure. The
NCI is given by [11, Eq. 4]

NCI =
10

N

N∑
n=1

∣∣∣ log10((¯en −
¯
bn)

⊤(Ce
n)

−1
(
¯
en −

¯
bn)
)

(6)

− log10

((
¯
eGT
n

)⊤
Σ−1

¯
eGT
n

)∣∣∣ ,
where

¯
bn is the bias vector of the estimated distribution and

¯
eGT
n =

¯
xn −

¯
µGT is the error between the n-th realization

and the true mean. The NCI assumes that the bias and the



covariance matrix are provided by an estimator, and the true
mean µGT is known, or can be approximated by multiple
MC runs [11].

IV. CALIBRATION MEASURES FOR REGRESSION MODELS

In regression, assessing the calibration of predictions does
not concern a single random variable or estimate, but rather
evaluates how well multiple predicted distributions align with
a typically unknown stochastic process. Furthermore, the true
MSE matrix Σ for each input is generally unknown, and
performing multiple MC simulations to estimate it is usually
not feasible. Instead, one is typically given only a test data set
DTest with only one sample per input. Therefore, each pre-
diction cannot be evaluated individually, and measures such
as the MNRE cannot be applied. However, several calibration
measures have been proposed in literature to assess the quality
of regression model predictions without requiring ground truth
knowledge or multiple MC simulations; these are discussed
below. First, however, we outline the general stochastic model
on which the calibration measures are implicitly based.

A. Stochastic Model
For our derivations, let us w.l.o.g. assume a stochastic

process with a single output dimension, and furthermore that
the predictions are given by their moments, where µe(

¯
x) is

the predicted mean and (σe(
¯
x))2 is the predicted variance for

input
¯
x. For simplicity, we denote the predicted mean and vari-

ance as µ(
¯
x) and σ2(

¯
x), omitting the superscript e. To derive

calibration measures for the predicted distributions, following
the principles in [24], we first define the error as e = y−µ(

¯
x).

Using the law of total variance, the error variance is given by

Varp(e){e} = Ep(
¯
x)

{
Varp(e){e |

¯
x}
}

+Varp(
¯
x)

{
Ep(e){e |

¯
x}
}

.
(7)

The left-hand side can be rewritten as
Varp(e){e} = Ep(e)

{
e2
}
− E2

p(e){e}. If we assume
that errors are unbiased, we obtain Ep(e){e |

¯
x} = 0 and

Ep(e){e} = 0. Furthermore, the conditional variance can
then be rewritten as

Varp(e){e |
¯
x} =E

{
(y − µ(

¯
x)− E{y − µ(

¯
x)})2

∣∣∣
¯
x
}

=E
{
(y − µ(

¯
x))

2
∣∣∣
¯
x
}
= σ2(

¯
x) .

Thus, (7) simplifies to

Ep(e)

{
e2
}
= Ep(

¯
x)

{
σ2(

¯
x)
}

. (8)

Here, Ep(e)

{
e2
}

is the MSE, and Ep(
¯
x)

{
σ2(

¯
x)
}

is
the expected predicted variance over the input space

¯
x.

Therefore, (8) suggests a procedure in which the calibration of
the predicted distributions is assessed by comparing the MSE
with the expected predicted variance. Since only realizations
of the stochastic process are available, both expectations are
replaced by their sample approximations, leading to

0 =
1

NTest

NTest∑
n=1

(yn − µ(
¯
xn))

2 − 1

NTest

NTest∑
n=1

σ2(
¯
xn) ,

where NTest is the number of test data points,
¯
xn is the n-th

input data point, and yn is the corresponding output data point.

Therefore, a general approach for assessing the calibration of
the predicted distributions is to compare the (sample-based)
MSE with the mean predicted variance; if both are equal, the
predictions are considered well-calibrated. In the following,
we will discuss different measures that are based on this idea.

B. Calibration Measures from Literature

The UCE [14] assesses the calibration of univariate predic-
tions of regression models, where the differences between the
MSE and the mean predicted variance are summed over S bins
of partitioned test data. Binning partitions the test data into
more homogeneous groups to localize calibration assessment
and prevent the over- or underestimation of errors that may
cancel each other out when aggregated globally [25]1; there-
fore, binning is helpful in preventing cancellation of biases
by large predicted variances. The UCE is defined as [14]

UCE =

S∑
s=1

|Bs|
NTest

|MSE(Bs)−MV(Bs)| , (9)

where Bs is the set of indices of test data points contained
within the s-th bin, and |Bs| is the number of test data points
within the s-th bin. The MSE and mean variance (MV) per bin
are calculated as MSE(Bs) = 1/|Bs|

∑
i∈Bs

(yi − µe
i )

2, and
MV(Bs) = 1/|Bs|

∑
i∈Bs

(σe
i )

2, respectively, where µe
i is the

predicted mean, σe
i is the predicted standard deviation, and yi

is the observed output of the i-th test data point in the s-th bin.
Instead of absolute differences such as the UCE, [15]

proposed the ENCE, which is a normalized measure for
univariate predictions, using the root MSE and the root MV.
It is defined as [15]

ENCE =
1

S

S∑
s=1

|RMSE(Bs)− RMV(Bs)|
|RMV(Bs)|

. (10)

Both the UCE and ENCE are only defined for univariate
predictions. To overcome this limitation, [4] introduced the
QCE to assess the calibration of multivariate predictions. It
is defined as [4]

QCE(τ) =
S∑

s=1

|Bs|
NTest

|freq(Bs)− τ |

freq(Bs) =
1

|Bs|
∑
i∈Bs

1
(
d2M,i ≤ aτ

)
,

where τ is the selected quantile level of interest, 1(·)
is the indicator function, aτ = F−1

χ2
k
(τ) is the inverse

CDF of the chi-square distribution, and k are the degrees
of freedom. Similar to the ANEES, the QCE relies on
Assumption 1—that the squared Mahalanobis distances d2M,i
within a bin of the predicted multivariate normal distributions
follow a chi-square distribution. To check this assumption,
the QCE compares the observed frequency of the squared
Mahalanobis distances with the selected quantile of the

1E.g., the average of the errors [−2,−2, 2, 2] is 0 (appears well-
calibrated), but binning reveals systematic biases: The average for Bin 1
is −2 and the average for Bin 2 is 2. The absolute average over the bins
is 2, which exposes the miscalibration.



chi-square distribution. To avoid relying on a single quantile
level, [4] also proposed the mean QCE, defined as

QCE = E{QCE(τ)} ≈ 1

Q

Q∑
q=1

QCE(τq) , (11)

where τq is the q-th quantile of interest, and Q is the number
of quantiles.

Note that the UCE, ENCE, and QCE are designed for
regression problems and are zero in the case of perfect
calibration. However, by inserting the estimation error
from Sec. III into the definitions of these measures, they
can also be used to assess the credibility of estimators. This
results in comparing the MSE and variance of the estimates,
or, in the case of the QCE, the observed frequency of the
squared Mahalanobis distances with a specific quantile of the
chi-square distribution, which is similar to the ANEES and
its alternatives. However, unlike credibility measures such
as the ANEES, MNRE, or NCI, the presented calibration
measures use binning strategies to partition the test data.

Additional methods to assess the quality of predictions
include proper scoring rules such as the average negative
log-likelihood (ANLL) of the predicted distributions. In the
case of normally distributed predictions, the latter reads

ANLL=− 1

NTest

NTest∑
n=1

ln
(
p(
¯
y
n
|
¯
xn,D)

)
=

1

2NTest

NTest∑
n=1

(
Ny ln(2π)+ln

(
det
(
Ce

n(¯
xn)
))

+
(
¯
y
n
−
¯
µe
n
(
¯
xn)
)⊤

(Ce
n(¯
xn))

−1
(
¯
y
n
−
¯
µe
n
(
¯
xn)
))

.

(12)

However, the ANLL has the disadvantage that there is
no clearly defined best value, whereas UCE, ENCE, and
QCE are zero if the predictions are perfectly calibrated.
Furthermore, ANEES can serve as a calibration measure
by averaging the Mahalanobis distances per test prediction.
However, its drawbacks remain.

V. NEW CALIBRATION MEASURES
FOR MULTIVARIATE PREDICTIONS

Building up on the ideas of state-of-the-art measures for
univariate predictions, we now propose an extended calibra-
tion measure for multivariate regression model predictions,
using the same principles as in the derivation of the UCE.

Analogous to (7) and (8), we start with the law of total
covariance, which, after inserting the assumption of unbiased
predictions, simplifies to

E
{
¯
e
¯
e⊤
}
= Ep(

¯
x){C(

¯
x)} . (13)

Here,
¯
e =

¯
y −

¯
µe(

¯
x) is the estimation error, C(

¯
x) is the

predicted covariance matrix, and
¯
µe(

¯
x) is the predicted

mean vector for the input
¯
x. As in the univariate case, the

MSE matrix and the expected predicted covariance matrix
can be approximated using sample approximations.

To directly compare the difference between the averaged
predicted covariance matrices and the approximated MSE

matrix, we use an arbitrary matrix norm || · ||, combined with
the binning scheme of the calibration measures, resulting in

GUCE =

S∑
s=1

|Bs|
NTest

∥∥Σ̄(Bs)− C̄e(Bs)
∥∥ , (14)

which we call the generalized UCE (GUCE). Note that when
only one bin is used, i.e., S = 1, the GUCE reduces to
a numerator similar to that of the MNRE. Otherwise, the
sample approximations are calculated using

Σ̄(Bs) =
1

|Bs|
∑
n∈Bs

¯
en¯

e⊤n , C̄e(Bs) =
1

|Bs|
∑
n∈Bs

C(
¯
xn) .

This derivation is generic in the sense that other credibility
measures can also be applied as calibration measures by
replacing their MSE matrix Σ and their predicted covariance
matrix Ce with the sample approximations for (13). and
applying a binning scheme. For example, using the idea of
the MNRE, the GUCE can be normalized by the norms of
Σ̄ and C̄e, leading to the normalized GUCE (NGUCE)

NGUCE =

S∑
s=1

|Bs|
NTest

∥∥Σ̄(Bs)− C̄e(Bs)
∥∥∥∥Σ̄(Bs)

∥∥+ ∥∥C̄e(Bs)
∥∥ . (15)

VI. EXPERIMENTS

In this section, we numerically compare the presented
measures in both estimation and regression settings. For this,
where appropriate, we also apply credibility measures to the
regression setting and calibration measures to estimation, to
develop a unified picture of the strengths and limitations of
the measures.

A. Comparison as Credibility Measure

We compare the behavior of the credibility measures for
an estimate xe of the ground truth xGT ∼ N (x; 0, 1) that is
slightly scaled and shifted, i.e., xe ∼ N

(
x;µe, (σe)

2
)

, with

mean shift ∆µ = µe and variance scaling factor c = (σe)
2.

From the ground truth, we generate 10 000 random samples,
which are used to estimate the MSE matrix Σ for the
credibility measures. To visualize the characteristics of
the measures, we consider multiple shifts of the mean
∆µ ∈ [−0.5, 1] and multiple scaling factors c ∈ [0.5, 2]. For
comparison, we consider the ANEES (1), the MNRE (4),
the log-MNR (5), and the NCI (6), and the ANLL (12).
Furthermore, we use the UCE (9), the ENCE (10), and the
QCE (11) (with ten equally spaced quantile levels in (0, 1))
as credibility measures, with 40 test samples per bin.

The results are displayed in Fig. 3. The parabola drawn in
Fig. 3 depicts the curve where condition (3) holds, and the
ANEES is one even for biased estimates. Accordingly, the
ANEES reports values close to one in large areas even for
largely biased estimates. The MNRE, the log-MNR, and the
QCE are also unable to assess the bias credibility of the esti-
mated distribution and behave similarly to the ANEES. The
binning of the UCE and ENCE measures leads to a slightly
more robust behavior, with gradients pointing to the ground
truth estimate, which is not the case for the ANEES, MNRE,
and log-MNR measures. However, neither the UCE nor the
ENCE reaches its optimal value due to the used binning.
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Fig. 3: Comparison of the ANEES, MNRE, log-MNR, and NCI measures, as well as the UCE, ENCE, and QCE for different shifts of the mean ∆µ
and different scaling factors c of the variance. Note that the estimate is perfect for zero bias and exact variance (i.e., c = 1 and ∆µ = 0). The optimal
value for each measure is given in parentheses in the sub-captions.
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Fig. 4: Comparison of calibration measures for a synthetic regression
example with known ground truth. The figure shows the behavior of the
ANEES, UCE, GUCE, NGUCE, and ANLL as the number of ground truth
samples increases. Each bar in the plot shows the average and the standard
deviation over 20 runs. Lower values indicate better calibration, except for
the ANEES, where a value close to one is optimal.

The NCI measure behaves differently and has its minimum
at the perfect estimate; however, the NCI assumes that the
bias is provided by the estimator, which is typically not the
case in practice. The characteristics of the ANLL behave as
expected, with a minimum when the estimate matches the
ground truth. However, the value at this point cannot be used
as an absolute measure of calibration and therefore must be
compared with the ANLL of multiple estimates.

B. Comparison as Calibration Measure in Regression
To compare calibration measures, we consider a synthetic

regression example, in which the ground truth is given
by N (

¯
y;
¯
µGT(x),CGT(x)) with

¯
µGT(x) =

[
x x3

]⊤
, and

x being the input variable. Each prediction is normally
distributed with mean

¯
µGT(x) + ∆

¯
µ and ∆

¯
µ =

[
0 1.5

]⊤
.

The covariance matrices for the ground truth and the
regression model are given by

CGT(x) =

[
1 0.5
0.5 1

]
, Ce(x) =

[
1 0.5
0.5 3

]
,

respectively. Note that the choice of which variable
contains the bias or incorrect variance is irrelevant when
error structures are similar. As demonstrated in univariate
examples, higher variances can compensate for biased
predictions, allowing for the construction of arbitrary
situations with such error structures. This makes it an
appropriate test case for evaluating calibration measure
properties. The calibration measures are evaluated using
different numbers of ground truth samples, ranging from
10 to 1000, with equally spaced x values in [−1, 1]. Each
experiment is repeated 20 times to account for the MC error
when assessing the accuracy of the measures. As calibration
measures, we consider the ANEES (1), the UCE (9), the
GUCE (14), the NGUCE (15), and the ANLL (12). The
Frobenius norm is used as the matrix norm. In preliminary
experiments, we also tested the 1-norm and spectral norm,
but observed no significant differences in the results.

The results are shown in Fig. 4. The ANEES is close to one,
and therefore, unlike all other measures, is unable to detect the
biased mean and scaled covariance matrix of the regression
model properly. When comparing the ground truth realizations
(test data) to the ground truth process rather than to the
predictive distributions, one can see that, as desired, all mea-
sures approach their optimal value as the number of samples
increases. When we compare the differences in the measures
fed with predictions from the regression model vs. the ground
truth process, we observe that these differences are always



positive for the GUCE and ANLL. This indicates that the
regression model is always considered worse than the ground
truth, which is a desirable property for a calibration measure.
As expected, for low sample sizes, all measures exhibit high
variance, which decreases as the sample size increases.

C. Discussion
Our experiments numerically demonstrated that the ANEES

is not able to detect biased means and incorrect covariance ma-
trices of the estimated distributions, and fails in specific cases,
in particular if condition (3) is fulfilled. Moreover, also alter-
natives such as the MNRE and log-MNR suffer from the same
weaknesses and are not able to detect the bias in the mean and
the erroneously estimated covariance matrix. Alternatives such
as the NCI require that the bias is provided by an estimator. If
this is the case, the NCI works well. Applying calibration mea-
sures for credibility testing of estimates yields good results ex-
cept for the QCE. In particular, they show preferable behavior
compared to the ANEES and its alternatives, since their gradi-
ents point to the ground truth estimate. We think that this is pri-
marily due to the binning scheme employed in these measures.
Our proposed GUCE and NGUCE measures both work well
for regression models, and demonstrate robust behavior for
examples where the ANEES fails. Furthermore, we showed
that the ANLL has good properties, is able to detect biases and
incorrect covariance matrices, but has the main disadvantage
that there is no clear optimal value, such as for the GUCE.

VII. CONCLUSION

In this paper, we systematically reviewed the ANEES
and its alternatives for assessing the credibility of estimators
and calibration of regression models. While the ANEES
remains a widely used and valuable measure, our analysis
and experiments highlighted its limitations, particularly in
detecting bias and miscalibration in certain scenarios. We
demonstrated that alternative measures, such as the MNRE,
log-MNR, and NCI, address some weaknesses but also suffer
from similar limitations.

Building on recent advances, we extended calibration
measures to multivariate settings and introduced new
measures that unify concepts from estimator credibility
and regression calibration. Our comprehensive experiments
showed that using a combination of measures provides a more
robust and informative assessment of model performance.

We recommend that practitioners employ multiple credibil-
ity and calibration measures, rather than relying solely on the
ANEES, to ensure a comprehensive evaluation. This helps to
avoid misleading conclusions and supports the development
of more reliable and trustworthy predictive systems.
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