BNN Training as State Estimation:
A Progressive Filtering Approach

Leon Winheim! and Uwe D. Hanebeck?

Abstract— Standard deterministic neural networks produce
point estimates as prediction results. Although these results
are sufficient in many fields, critical applications require
computational models to make an uncertainty statement in
combination with their prediction. Bayesian neural networks
(BNNs) provide this combination by modeling uncertainty and
yielding a predictive distribution instead of a point estimate.
The parameters of a BNN are random variables and therefore
standard training methods cannot be used directly. The training
of a BNN can be understood as a problem of Bayesian inference,
where filtering methods are a common approximate solution.
This paper reviews existing filter-based training approaches and
introduces implementation of and results from training a BNN
with a Progressive Gaussian Filter.

I. INTRODUCTION

Context: Traditional system modeling relies on explicit
mathematical equations derived from domain knowledge.
Machine learning (ML) offers an alternative by learning
surrogate models, such as neural networks (NNs), directly
from observed data [1]. However, standard NNs provide only
point estimates and lack uncertainty quantification. In critical
applications like, e.g., medical imaging, a point estimate is
not sufficient [2]. Bayesian neural networks (BNNs) address
this by modeling weights as random variables, resulting in
probabilistic outputs that quantify prediction uncertainty. This
distinction is illustrated in Figure 1.

The probabilistic nature of BNNs requires specialized
training methods, as conventional optimization techniques are
not directly applicable to learning distributions over weights.
In particular, the training of a BNN constitutes a problem
of Bayesian inference [2]. The goal can be formulated as
inferring the posterior distribution over the weights that
incorporates the training data into a prior distribution.

Several classes of methods exist for solving Bayesian
inference problems; one such class for sequential problems
is filtering [3]. The Kalman filter is a well-known filtering
method for linear systems; however, numerous other filtering
techniques exist, some of which have been applied to the
training of BNNs. This paper aims to advance filter-based
BNN training by using a Progressive Gaussian Filter.

Contributions: This work presents a review of filter-
based training methods for BNNs, with focus on their
underlying assumptions. We propose and implement a novel
BNN training algorithm based on Progressive Gaussian

All authors are with the Intelligent Sensor-Actuator-Systems Labora-
tory (ISAS), Institute for Anthropomatics and Robotics, Karlsruhe In-
stitute of Technology (KIT), Germany leon.winheim@kit.edu,
uwe.hanebeck@kit.edu.

\ /gy@ N

Conventional neural network on the left vs. Bayesian neural network

Frpt}

g” denotes the activation function.

Fig. 1.
on the right.

Filtering, and evaluate its performance, particularly in low-
data regimes. Furthermore, we investigate the impact of
different sample generation strategies—namely, i) random
sampling and ii) deterministic sampling based on localized
cumulative distributions.

After outlining the problem statement, the paper presents a
survey of related work on filter-based BNN training. This is
followed by a discussion of the progressive filtering approach
and its application in a BNN. The paper concludes with
experimental results and a discussion.

II. PROBLEM FORMULATION
A. Training as Bayesian Inference

This work addresses the problem of training BNNs, which
can be formulated as a problem of Bayesian inference. In this
framework, a hidden, non-observable state must be estimated
from observations of a related quantity [4]. The mathematical
foundation for Bayesian inference is Bayes’ Law

L(D]6)f(8)

SOIP) = T r D @

where 0 is the random vector of the state, D denotes the
observed data and f(-) denotes the probability density func-
tion of the respective random variable. The prior distribution
over the state f() encodes any prior knowledge about the
state before seeing any data. The term L£(D|f) is called
likelihood of the data given a specific state parametrization
and the integral term in the denominator is the evidence, which
is a measure of explanatory power of the model regarding
all its possible parameterizations. Bayes’ law relates these
values to the posterior distribution f(6|D), which is the
desired inference result [3]. In the case of BNN training, the
distribution over the network weights constitutes the state,

the training data is the observed data, and the likelihood
expresses the probability of the observed outputs given the
network’s predictions based on those weights.

Bayes’ law provides a closed-form expression for the
posterior distribution. In practical scenarios, the integral term
in the denominator is often analytically intractable. Therefore,
approximate methods must be employed.

Two of the most widely used classes of approximate
methods are Markov Chain Monte Carlo (MCMC) and
Variational Inference (VI). MCMC methods allow obtaining
samples from the posterior under certain conditions. One
example is the Metropolis-Algorithm and its descendants like
Hybrid Monte Carlo, that are especially suited for situations
that arise from Bayes’ Law, where the main problem is the
computation of the evidence [5]. Methods of Variational
Inference reformulate the task into an optimization problem.
The parameters of a variational distribution are chosen in
a way that maximizes the evidence lower bound (ELBO)
to the true posterior. Maximizing the ELBO is a tractable
version of minimizing the Kullback-Leibler-divergence (KL),
which is a measure of divergence between two probability
distributions [4]. These methods are in general popular
for BNN training, but will play a subordinate role in this
publication.

B. Filtering Methods

Filtering methods represent another class of approaches for
problems of Bayesian inference [3]. To clarify their relevance
to the present topic, it is useful to frame BNN training as
a state estimation problem for a (quasi-) dynamic system
defined by its generative system and measurement equations

Y, = g(8) +€&, Measurement Equation
Qk+1 = Qk; + P,

e~ N(0,v),

System Equation

p~N(©O,r7) .

This formulation entails several assumptions. The system
state, corresponding to the network weights, is assumed to
remain static throughout the training process, apart from
additive Gaussian process noise p, which can be used to
take time variance of the weights into account. Note that the
static nature of the state refers to the classic setup of training
on a fixed, closed dataset. In an online-learning scenario,
the state may evolve in time as new data becomes available.
Additionally, the measurements are assumed to be corrupted
by additive Gaussian observation noise €. In the BNN case,
this noise resembles the uncertainty in the training data. The
measurement equation is nonlinear due to the function g,
which represents the neural network model.

In summary, the goal is to estimate a BNNs state 8 given
the training data D = {y, }. Naturally, each output y,_
corresponds to a deterministic input, which is omitted from
the notation for readability.

In practice, filtering methods are used in a recursive
manner, where new data arrives sequentially and the state
estimate is updated with each new observation [3]. Filtering
algorithms can be categorized based on their assumptions

about the system and measurement equations, the underlying
distributions, and the representation of probability densities.

A PFarticle Filter (PF) does not assume a specific shape
of distributions or linearity of model equations, but instead
is a stochastic approximation of Bayes’ Law that uses a
set of particles (samples) to represent the distributions and
perform computations. The filter step in a PF consists of
weighting every particle with its corresponding likelihood and
then obtaining equally weighted samples from the weighted
sample set. The distributions can be arbitrary, as they are
nonparametric [3]. Common problems in particle filtering
are sample impoverishment and degeneration, which are
especially prominent in systems with little dynamic behavior.
Besides that, PFs are computationally intensive.

An important class of filtering methods are Gaussian Filters.
They assume the state distribution to be Gaussian and thus
enable simplifications [3]. The Kalman Filter is a well-known
Gaussian Filter. Importantly, the Kalman Filter additionally
makes a second Gaussian assumption on the joint density of
state and measurement distributions [3]. This enables fast,
closed-form computation, but imposes a strong assumption.
Methods such as the Extended Kalman Filter and the
Unscented Kalman Filter make use of different linearization
strategies to enable the use of Kalman filters for nonlinear
system and measurement equations [3]. An extensive overview
of different nonlinear Kalman filter approaches is given in [6].
In the case of a BNN, the joint density may be strongly non-
Gaussian and thus the second Gaussian assumption imposed
by Kalman filters could be too strong.

The Kalman and Particle Filters are edge cases regarding
their underlying assumptions on the system. Several methods
exist that impose assumptions on specific components of the
problem. For example, Gaussian Particle Filters perform the
resampling step based on a Gaussian re-approximation of
the weighted particles, but no second Gaussian assumption is
required [7]. Progressive filters such as the Progressive Gaus-
sian Filter (PGF) extend this idea by gradually incorporating
the likelihood to prevent the mentioned problems in particle
filtering. They only make a Gaussian assumption about the
state distribution, but no second Gaussian assumption like the
Kalman Filter [8]. The filter step is still based on weighting
samples with their likelihood.

As the PGF mitigates typical problems of a Particle Filter,
but does not make the second Gaussian assumption, it appears
suitable for application to the BNN case. After reviewing
related work, a more detailed explanation of the algorithm
will be presented.

III. RELATED WORK

Several comprehensive surveys on the history of Bayesian
neural networks and their training methods are available,
e.g., [2] and [4]. For detailed discussions of classical ap-
proaches such as Markov Chain Monte Carlo (MCMC) and
Variational Inference (VI), the reader is referred to these
works.

A. Filter-based Training Methods

Training conventional neural networks with filter-based
methods is beyond the scope of this work, examples can be
found in [9] and [10]. Instead, we focus on publications that
specifically address the BNN case. As previously mentioned,
filtering methods can be categorized based on assumptions
they make about underlying probability densities and the
ways these densities are represented. We emphasize on how
the methods differ in this regard.

Probabilistic backpropagation (PBP), introduced in [11],
can be understood as an instance of Assumed Density Filtering.
In PBP, the distribution over the weights is modeled as
multiple independent, one-dimensional Gaussians. During
the forward pass, moment matching is used to approximate
the pre-activation and the post-activation values as Gaussian
distributions. To perform the backward pass, the authors use
a closed-form update rule based on the partial derivative of
the model evidence with respect to the network parameters.
The update minimizes the Kullback-Leibler (KL) divergence
between the collection of Gaussians and the true, intractable
posterior [11]. To summarize, PBP relies on Gaussian
approximations of all intermediate quantities and updates
these distributions by using a rule that minimizes the KL
divergence, with all computations performed in closed form.
An interesting detail in the original publication is the repeated
processing of the input data, which is relatively uncommon
in traditional filtering approaches as it can lead to covariance
degeneration [11].

Two closely related methods are the Kalman Bayesian
Neural Network (KBNN) [12] and Tractable Approximate
Gaussian Inference (TAGI) [13]. Like PBP, both rely heavily
on moment matching of Gaussian distributions during the
forward pass. While TAGI restricts covariance structure
to full independence, KBNN allows correlation between
weights associated with a single neuron. Another distinction
is how the moments are matched. In the KBNN case, the
transformed moments are obtained by applying the law of
the unconscious statistician. In contrast, TAGI utilizes the
moment generating function. The backward pass is based
on the Kalman update formula for conditioning on the joint
distribution of weights and observations, which is assumed
to be jointly Gaussian. Especially this second Gaussian
assumption enables closed-form processing, but poses a
strong limitation on the approximation quality. In summary,
KBNN and TAGI rely on Gaussian approximations of every
intermediate quantity and use Kalman-based updates for the
the weights, similar to PBP performed in closed form. Again,
multiple training epochs are a possibility in both methods.

In [14], the use of an Ensemble Kalman Filter (EnKF) is
suggested. The authors note that the mathematical situation
does not fit directly as the system equation of the neural
network regarding time is linear while the measurement
equation is nonlinear. The EnKF algorithm tolerates a
nonlinear system equation, but requires a linear measurement
equation. As a solution, a state augmentation is proposed. The
forward pass in the EnKF case starts with drawing [NV samples

from the prior distribution of the state. For every sample in
the distribution, the combined predicted measurement of a
mini-batch is computed to obtain the predicted measurement
distribution as samples. From these samples, the empirical
mean and covariance of joint measurements and states are
estimated. These are processed in a Kalman filter step, applied
individually to each state sample. The resulting transformed
state samples form the prior for the next mini-batch. The
results in [14] are generated based on sequential processing
of minibatches with a batchsize of 32 data points. In the
aforementioned methods PBP, TAGI, and KBNN, sequential
processing refers to the isolated processing of every data
point, which is an important difference. In summary, the
EnKF-BNN relies on a sample approximation of the state
distribution without assuming a specific parametric form, but
the update of each state sample is a Kalman filter step based
on the sampled covariances. Again, multiple training epochs
are conducted on the same data.

The first application of a Particle Filter to BNNs can be
found in [15]. The authors employ a black-box approach
to modeling the BNN, where no sequential structure of
the network is exploited. Instead, one particle (one sample)
represents a parametrization of a deterministic network. The
BNN can thus be seen as an ensemble of deterministic
networks. The publication discusses bootstrap filtering, a basic
form of a Particle Filter. In dynamic systems, the particles
are propagated through the system equation to obtain the next
predicted state. Common issues in particle filtering include
impoverishment and weight degradation. For weakly (or non)-
dynamic systems like the training scenario of a BNN, this
is especially a problem. As a solution, the publication offers
a method called HySIR, which uses gradient information of
the error surface in combination with an Extended Kalman
Filter to move the particle set in an optimal direction in the
parameter space.

In [16] and [17], two more particle filter-based algorithms
are presented. Instead of viewing the BNN as a black-
box, multiple particle filtering steps are applied on layer-
wise subproblems. This reduces the dimensionality of the
problem. As in [15], movement of the samples is introduced
by incorporating gradient information. At prediction time,
after every layer, only the empirical mean is passed on to be
processed in the next layer. This is a limitation of the method,
but eases the handling and algorithmic implementation.

All presented particle filter-based methods utilize mecha-
nisms for movement of the particle set in parameter space
to avoid typical challenges associated with resampling-based
algorithms. An alternative strategy is progressive filtering,
which we introduce and motivate in the next section.

B. Progressive Gaussian Filtering

In [8], a Progressive Gaussian Filter (PGF) using explicit
likelihoods is proposed. It can be categorized as a Gaussian
Assumed Density Filter. Similar to particle filters, measure-
ment updates are performed by weighting a sample-based
representation of the state density with the corresponding
likelihood. However, unlike particle filters, the PGF introduces

the likelihood gradually. Instead of weighting the particle
set with the full likelihood values L£(D|¢), a progression
parameter v € [0, 1] is introduced. It describes the partial
likelihood £(D|0)7 that is already applied. For small values
of v, only little information is incorporated. If v = 1,
the progression is finished. After every progression step
A~ (how many are made can be adaptive), a Gaussian re-
approximation of the weighted samples occurs, which is
the second key difference to standard particle filters. The
progression procedure mitigates the mentioned degeneration
and impoverishment problems.

The ability to gradually incorporate the likelihood via pro-
gression offers an alternative to designing suitable importance
distributions, which often requires nested filtering or gradient-
based optimization. Howeyver, it is important to note that the
PGF imposes assumptions about the density.

IV. PROGRESSIVE NET

As the considered model is a Bayesian neural network
trained with a progressive filter, we call it Progressive Net.!
In our experiments, the model was used as an ensemble. This
means that the forward pass for one input value consists of as
many deterministic network instances as there are ensemble
members. Each ensemble member is one sample from the
distribution over the weights. The collection of predictions
from all ensemble members constitutes the predictive dis-
tribution. We assume the distribution over the weights is
a fully correlated, multivariate Gaussian distribution, with
parameters to be inferred during training. We do not exploit
the sequential, layer-wise structure of the network but instead
view it as a black box. Obtaining the posterior distribution is
the objective of the training procedure shown in Algorithm 1.

Algorithm 1 PROGRESSIVE NET

1: Generate j = 1...N samples from prior distribution of &
with importance weights w$ = ~
2: Iterate through ¢ = 1...M training data points

3: fori=1to M do

4: Set vy =0

5 while v < 1 do _

6: Compute (log)-Likelihood £(D;[8")

. _ log N

T: A’y — min(log £L)—maz(log L)

8 y=7+Ay ,

9: Partial Likelihood £, = £(D;]0')A
10: w) =wl). L, m
11: Q:Z;V:lw(j)’g(]) ' A , A
12 Co =55 wt - (07 =) - (8V —§)T
13: Obtain new samples 09 from N (Q, Cy)
14; Set wl) = &
15: end while
16: end for

17: return Q(j)

I'The implementation of Progressive Net and the presented examples can
be found at https://github.com/leonwinheim/PROGRESSIVE_
NET_MFI25_PUB

In summary, we process every training point sequentially
and once. The assumed Gaussian weight distribution is
represented through samples. In the filter step, the samples
are weighted with a partial likelihood and no assumption on
the joint density is required. For every processed data point
we perform multiple intermediate Gaussian re-approximations
progressively.

Although in our case the algorithmic realization of the
update step resembles a particle filter, the motivation behind
a PGF is not a direct statistical approximation of Bayes’
law. As mentioned earlier, it is better understood as a
Gaussian assumed density filter, in our special case using a
sample representation to perform computations. The Gaussian
assumption is introduced by intermediate re-approximations
in every filter step. There also exist realizations of true particle
filters that use a progressive approach, see, e.g., [18], [19].

As every Gaussian re-approximation introduces an error,
we aim to reduce their number by using the adaptive step size
strategy proposed in [8]. When the likelihood of a training
point assigns significant probability mass far from the current
distribution over the weights, more intermediate steps are
taken to slowly shift the distribution in that direction.

Samples used for density representation can be categorized
into two classes: random samples and deterministic samples.
The simplest approach to Gaussian resampling is using a
random sample generator. As an alternative, in [8], the use
of deterministic samples based on the Localized Cumulative
Distribution (LCD) is proposed. Deterministic LCD samples
exhibit superior space coverage and homogeneity when
compared to random samples. Unfortunately, computing
them is costly as they are the result of an optimization
procedure. To enable their use, a sample set from a standard
normal distribution with desired number and dimensionality
is generated offline and the adaptation to arbitrary Gaussian
distributions is performed by a matrix decomposition method.
This preserves optimality and reduces computational cost.
In the result section, we compare the performance of both
sampling methods on an example.

V. EXPERIMENTS

For all experiments, a prior with diagonal covariance matrix
is chosen. Progressive Net is implemented in PyTorch and
run on an NVIDIA RTX 500 Ada laptop GPU. The PyTorch-
based KBNN implementation from [12] is used and executed
on CPU. The MCMC model uses the JAX-based NumPyro
library [20] and also runs on CPU.

A. Synthetic Regression

A classic benchmark is the synthetic regression problem
defined by the cubic function y = 23 + v, v ~ N(0,9),
as it is also used in [12]. The networks consists of a single
hidden layer with 100 neurons and ReLU activation. We
used 800 training points with an 80/20 train/test split and
applied input normalization. All data is processed sequentially
and only once. Progressive Net used 25000 LCD samples.
MCMC was run with 10 chains and 500 samples per chain.
As shown in Figure 2, Progressive Net is very similar in

= Ground Truth

= Progressive, RMSE: 3.39+0.3, UCE: 2.014+0.8
40 KBNN, RMSE: 3.924+0.4, UCE: 9.49+1.5
= MCMC, RMSE: 3.17+0.2, UCE: 1.45+0.7

Prediction / Ground Truth

Fig. 2. Comparison of regression results on cubic function.

performance to the quality gold standard method MCMC and
outperforms KBNN — particularly in terms of uncertainty
calibration error (UCE). The mean training times were 1.2s

for KBNN, 27.4s for Progressive Net and 99.9s for MCMC.

B. Synthetic Classification

We tested binary classification and especially the online
learning capabilities as proposed in [12], using the moon
dataset [21]. A 2x10x10x1 ReLU Network with Sigmoid
output activation was trained on 1500 samples, achieving
(98.80 4 0.01) % accuracy. Results are shown in Figure 3.
After initial training, the dataset was rotated by 20° and
the network was further trained with 100 samples from the
rotated set. The model successfully adapted to each rotation
step, maintaining accuracy of above 90 % throughout the ten
applied rotations.

Prediction Mean

Prediction Variance

1.0

0.0

Fig. 3. Moon dataset classification results with Progressive Net.

C. Learning with Limited Data

One notable advantage of Progressive Net is its ability to
learn meaningful representations from limited data. As an
illustrative example, we present a comparison of the cubic
regression problem, but only 100 samples of the training set
were used. We perform 10 experimental runs for statistical
averaging. In Figure 4, the clear advantage of the Progressive
Net over the KBNN is visible.

For the moon classification problem, we conducted similar
experiments and the performance of the KBNN and Progres-
sive Net over varying sizes of the training data set is compared

= Ground Truth
=== Progressive

40 KBNN
= MCMC

Prediction / Ground Truth
f=]

Fig. 4. Cubic regression with 100 training points.

in 10 independent experiments for statistical averaging. In
Figure 5, the accuracy advantage is observable. Progressive
Net reaches superior accuracy with smaller training sets
compared to the KBNN.

Accuracy vs. Number of Training Points for the Moon Dataset

100 A . o> o
x
A
g
£
=
3
<
& Progressive
KBNN
0 200 400 600 800 1000 1200 1400
Training points
Fig. 5. Evolution of accuracy over training set size, mean and standard
deviation.

D. Random vs. Deterministic Samples

We compare the performance of deterministic LCD samples
against the performance of random samples in the Progressive
Net. For that, we again turn to the cubic toy example, but
slightly modify the network structure to have only 20 hidden
units instead of 100.

Sample-based methods often face challenges in high-
dimensional domains due to the number of samples required
for adequate space coverage. Especially in situations like the
Progressive Net where we apply a potentially complex and
narrow likelihood, computation of the empirical, weighted
covariance matrix can lead to unstable estimates.

For the original network structure, training with random
samples failed entirely for low sample counts. Therefore, a
smaller network was selected for this demonstration. Figure 6
shows the performance of training with different sample
counts, depending on the type of samples. Training was
performed on the same dataset, but shuffled differently 30
times. This results in the variance visible in the charts. For low
sample counts, the high uncertainty for random sample results
can be explained by sensitivity with respect to the shuffling.
The deterministic samples do not exhibit that sensitivity,

TABLE I
PERFORMANCE ON UCI REGRESSION DATASETS.

Dataset RMSE | NLL | Training Time (s) |
MCMC KBNN Progressive MCMC KBNN Progressive MCMC KBNN Progressive
Concrete 5.81 031 824 £0.69 7.02 £ 033 | 3.17 £ 005 352 £0.09 3.38 £0.06 | 17.04 & 1.41 134 + 0.28 64.48 £ 3.99
Yacht 047 £0.15 423 £091 235+£072|-032+0.27 3.06£ 005 234+0.12 | 586 £0.71 023 +002 21.76 £ 222
Energy 0.62 +0.08 3.42 £0.22 331 £ 1.04 | 0.81 £ 0.10 3.36 £0.02 2.61 +0.19 | 14.60 + 1.58 0.87 + 0.27 60.66 £ 2.61
Power 3702 £ 233 4.154+0.09 4.19 £0.09 | 9.16 £ 1.15 344 £ 0.16 298 £0.04 | 2362+ 7.6 7.18 £0.92 4548 £ 6.7
Kin8nm 0.07 £0.00 0.17 £0.01 0.10 £ 0.01 | -1.17 = 0.01 0.04 £ 0.26 -0.83 = 0.08 | 1989 £34 6.61 £ 0.69 5149 £ 65.9
Naval 2.5e-3 £ 5e-4 0.04 £ 0.01 0.01 & 2e-4 | -3.56 & 0.10 1.64 £+ 0.22 -0.23 £ le-4 | 198.6 = 20.7 10.42 £ 0.94 6414 +9.4
€ LOD samples realistic sample count for MCMC would change that scenario,
407 Random samples and Progressive Net would likely fall between. Both MCMC
i 307 and Progressive Net require specification of the likelihood
S 9204 variance as a hyperparameter. Both have the ability to learn it
" from the data alongside the weights. For the Naval Propulsion
dataset, however, Progressive Net failed to learn this parameter
®ee¢ e © © . © . . S
0 T T T T T T T T effectively, and a grid search had to be performed to identify
0 2500 5000 7500 10000 12500 15000 17500 20000 . .
Sample Count an optimal value. For the KBNN, a grid search was performed
for its hyperparameter for each dataset, as it currently lacks
71 =@~ LOD samples the ability to learn it.
Random samples
2] VI. DISCUSSION
Z°7 We implemented a novel training algorithm for BNNs based
4 1 . on a Progressive Gaussian Filter (PGF) and evaluated its
5] [S o) 2 @ T 1 T ¢ performance across various tasks. The method demonstrated
0 2500 5000 7500 10000 12500 15000 17500 20000 strong results, particularly in low-data regimes. The progres-

Sample Count

Fig. 6. Performance of the Progressive Net with random and LCD samples,
mean and standard deviation.

which is an advantage. Additionally, different random sample
sets were used for each run, which also increases the variance.
For high sample counts, both methods perform equally well,
but significantly fewer samples are required to obtain reliable
performance when using LCD-based, deterministic samples.
We suggest that this is due to the optimal space coverage of the
LCD samples. The apparent convergence of both methods for
higher sample counts is to be expected because the accuracy
is eventually limited by the expressivity of the Gaussian
density itself.

E. UCI Regression Datasets

We evaluated the proposed method on UCI regression
datasets [22] and compared it to the performance of KBNN
and MCMC. A subset of datasets from [11] was selected,
and we adopted their proposed architecture: a single-hidden-
layer neural network with 50 ReLU-activated neurons in the
hidden layer and linear activation in the output layer. The
number of inputs was determined by the respective dataset.
Results are shown in Table 1. Due to runtime constraints, we
limited the MCMC network training to 100 samples, which
is in general considered a small number. Despite this, its
performance is dominant. The performance of Progressive
Net is in between the KBNN and MCMC method, but the
training time exceeded that of both methods. Using a more

sive update approach showed sufficient dynamic capability
in the update step. Compared to closed-form methods such
as KBNN, Progressive Net has a higher computational cost.
However, this cost enables higher-quality results and may
be acceptable up to a reasonable scale in scenarios where
training on bigger datasets can be done offline. As the cubic
regression example demonstrates, Progressive Net can have
a benefit in computational efficiency compared to MCMC
sampling, particularly when a high number of samples is
desired. Importantly, Progressive Net is a highly parallelizable
method, allowing for efficient scaling with increased sample
counts — especially when larger GPU resources are available.
Beyond its performance, the proposed method is a useful
application of employing deterministic samples in high-
dimensional spaces, where they have a significant advantage.
Future work could consider a layer-wise approach to improve
scalability or employing the mean-field assumption to simplify
the resampling stage.

REFERENCES

[1] Mingi Cho, Jaepil Ban, Minseok Seo, and Sang Woo
Kim. “Neural Network MPC for Heating Section of An-
nealing Furnace”. In: Expert Systems with Applications
223 (Aug. 2023), p. 119869.

Martin Magris and Alexandros losifidis. “Bayesian
Learning for Neural Networks: An Algorithmic Sur-
vey”. In: Artificial Intelligence Review 56.10 (Oct.
2023), pp. 11773-11823.

Simo Sarkkéd and Lennart Svensson. Bayesian Filtering
and Smoothing. 2nd ed. Cambridge University Press,
May 2023.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Ethan Goan and Clinton Fookes. “Bayesian neural
networks: An introduction and survey”’. In: Case
Studies in Applied Bayesian Data Science: CIRM
Jean-Morlet Chair, Fall 2018 (2020), pp. 45-87.
Christophe Andrieu, Nando De Freitas, Arnaud Doucet,
and Michael I Jordan. “An Introduction to MCMC for
Machine Learning”. In: Machine learning 50 (2003),
pp. 5-43.

Jannik Steinbring and Uwe D. Hanebeck. “LRKF
Revisited: The Smart Sampling Kalman Filter (S2KF)”.
In: Journal of Advances in Information Fusion 9.2 (Dec.
2014), pp. 106-123.

J.H. Kotecha and PM. Djuric. “Gaussian Particle
Filtering”. In: IEEE Transactions on Signal Processing
51.10 (Oct. 2003), pp. 2592-2601.

Jannik Steinbring and Uwe D. Hanebeck. ‘“Progressive
Gaussian Filtering Using Explicit Likelihoods”. In:
Proceedings of the 17th International Conference on
Information Fusion (Fusion 2014). Salamanca, Spain,
July 2014.

Isabelle Rivals and Léon Personnaz. “A Recursive
Algorithm Based on the Extended Kalman Filter for
the Training of Feedforward Neural Models”. In:
Neurocomputing 20.1-3 (Aug. 1998), pp. 279-294.
Simon S. Haykin, ed. Kalman Filtering and Neural
Networks. Adaptive and Learning Systems for Signal
Processing, Communications, and Control. New York:
Wiley, 2001.

José Miguel Herndndez-Lobato and Ryan Adams.
“Probabilistic Backpropagation for Scalable Learning
of Bayesian Neural Networks”. In: International Con-
ference on Machine Learning. PMLR, 2015, pp. 1861—
1869.

Philipp Wagner, Xinyang Wu, and Marco F. Huber.
“Kalman Bayesian Neural Networks for Closed-Form
Online Learning”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence 37.8 (June 2023),
pp. 10069-10077.

James-A Goulet, Luong Ha Nguyen, and Saeid
Amiri. “Tractable Approximate Gaussian Inference for
Bayesian Neural Networks”. In: Journal of machine
learning research 22 (2021), pp. 1-23.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Chao Chen, Xiao Lin, Yuan Huang, and Gabriel
Terejanu. “Approximate Bayesian Neural Network
Trained with Ensemble Kalman Filter”. In: 2019
International Joint Conference on Neural Networks
(IJCNN). Budapest, Hungary: IEEE, July 2019, pp. 1-8.
Jodo Ferdinando Gomes de Freitas. “Bayesian Methods
for Neural Networks”. PhD thesis. University of
Cambridge, 2003.

Giuseppina Carannante, Nidhal C. Bouaynaya, and
Lyudmila Mihaylova. “An Enhanced Particle Filter
for Uncertainty Quantification in Neural Networks”.
In: 2021 IEEE 24th International Conference on
Information Fusion (Fusion). Sun City, South Africa:
IEEE, Nov. 2021, pp. 1-7.

Giuseppina Carannante, Nidhal Bouaynaya, Lyudmila
Mihaylova, and Ghulam Rasool. “BaSIS-Net: From
point estimate to predictive distribution in neural
networks-a Bayesian sequential importance sampling
framework”. In: Transactions on Machine Learning
Research (2024).

Dominik Prossel and Uwe D. Hanebeck. “Progressive
Particle Filtering Using Projected Cumulative Distribu-
tions”. In: 2023 IEEE Symposium Sensor Data Fusion
and International Conference on Multisensor Fusion
and Integration (SDF-MFI). Bonn, Germany: IEEE,
Nov. 2023, pp. 1-8.

Uwe D. Hanebeck. “Progressive Bayesian Particle
Flows Based on Optimal Transport Map Sequences”.
In: Proceedings of the 26th International Conference on
Information Fusion (Fusion 2023). Charleston, USA,
June 2023.

Du Phan, Neeraj Pradhan, and Martin Jankowiak.
Composable Effects for Flexible and Accelerated
Probabilistic Programming in NumPyro. Dec. 2019.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
“Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12 (2011), pp. 2825—
2830.

Arthur Asuncion, David Newman, et al. UCI machine
learning repository. 2007.

