
Joint Pose and Shape Estimation of 3D Extended Objects
Using Recursive Tangent-Space Bayesian Filtering on SO(3)

Jiachen Zhou, Harald Kruggel-Emden, and Uwe D. Hanebeck

Abstract— In this paper, we propose a recursive estimation
framework for simultaneous pose and shape reconstruction
of three-dimensional extended objects from point cloud data.
While shape and other kinematic parameters, e.g., position,
naturally reside in a Euclidean vector space, rigid-body rotation
evolves on the nonlinear manifold, the special orthogonal
group SO(3). Fusing both through a joint density leads to
significant theoretical and practical challenges. To address this,
we reformulate the rotation estimation task in the Euclidean
tangent space of SO(3). Rather than directly filtering on the
manifold, we track a rotation perturbation in tangent space,
represented by a three-dimensional rotation vector, relative to
a time-varying reference orientation. This enables the use of
novel nonlinear Bayesian filtering techniques. After updating
the stochastic rotation vector, a reset operation is performed to
integrate the estimated rotation perturbation into the reference
orientation. This procedure adjusts the deviation statistics while
rigorously following the group operations on rotation manifolds.

Index Terms— Bayesian inference, extended object tracking,
orientation estimation, Gaussian assumed density filter

I. INTRODUCTION

Context: We consider the problem of three-dimensional
extended object tracking (EOT), where the main objective is
to simultaneously estimate the target’s kinematic state and its
spatial extent (or shape) recursively over time, using noisy
position measurements obtained from the target’s surface.
While EOT is well established in robotics and autonomous
navigation, it also plays a pivotal role in advancing particle
measurement techniques. Precise reconstruction of particu-
late solids’ shapes is essential, as their morphology directly
determines their mechanical, thermal, and chemical behavior
in various industrial processing stages. When integrated with
advanced tracking algorithms capable of estimating each
particle’s time-varying three-dimensional position and orien-
tation, this approach can significantly enhance measurement
accuracy across a broad spectrum of particulate applications.

Recent advances in sensor resolution and multi-modal in-
tegration have dramatically increased the quantity and quality
of tracking data, which benefits EOT, where targets are
modeled by their spatial extent rather than as points. These
rich measurements enable a more accurate joint estimation
of both the object’s pose and its shape via probabilistic
nonlinear filtering. In such a framework, the system state
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Fig. 1: Illustrative example of three-dimensional EOT, where
the target’s pose and shape are recursively estimated from
noisy surface measurements (green dots). The true cone (red)
is shown at three representative time steps with its center
trajectory (solid red). The estimated shape appears in cyan,
and the dashed gray line traces the inferred center trajectory.
Local body-fixed axes at each estimated pose visualize the
recovered orientations in the inertial coordinate system.

typically includes the target’s position, orientation, shape
parameters, and optionally velocities or accelerations. Since
most of these components are usually not directly observable,
they must be inferred from available measurements. A central
objective of EOT is therefore to effectively interpret and
process these data by integrating reasonable measurement
models with advanced nonlinear filtering techniques.

State-of-the-art: Relatively few studies have directly ad-
dressed the challenge of EOT in three-dimensional environ-
ments, despite the widespread availability of point cloud
data from depth cameras and LiDAR sensors [1], [2], [3].
Targets of interest typically undergo full spatial rigid-body
motion, exhibiting six degrees of freedom (DoF). This mo-
tion comprises both translation and rotation that must be
explicitly modeled for joint pose–shape estimation [4], [5].
While translation evolves in Euclidean space and can be
handled within standard filtering frameworks, the rotational
component lies on the special orthogonal group SO(3) and is
particularly challenging due to its non-Euclidean geometry.
This geometry prevents the straightforward use of Euclidean-
state nonlinear estimators [6].

An extended object’s three-dimensional orientation can be
represented in several ways, including rotation matrices, unit
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Fig. 2: Example illustration of the proposed recursive tangent-space filtering for planar rotation perturbations on SO(2).
The deterministic reference orientation in (a) appears as a blue point on the rotation manifold SO(2) (the unit circle S1,
shown in black). After each prediction step, the predicted probability density function (PDF) (lime) of the state a, used to
parameterize the rotation deviation, is calculated in the Euclidean tangent space (dark green) at this reference. The mean of
that distribution is then transferred back onto SO(2) via the exponential map (red), yielding the updated reference orientation
(orange). This step equivalently resets the tangent-space mean to zero at the new reference in (b). Subsequent measurement
updates in (c) follow the same pattern, recentering the tangent-space distribution around zero in (d). Crucially, we also
explicitly parallel-transport the state’s uncertainty between successive tangent spaces after each processing step, a procedure
that is often overlooked or mishandled but essential to preserve uncertainty consistency when dealing with manifolds.

quaternions, or Euler angles. Each representation exhibits
inherent trade-offs between minimality, singularity, and re-
dundancy. Euler angles provide an intuitive and compact
representation, but suffer from singularities, such as gimbal
lock, which can lead to loss of one rotational DoF. In EOT,
Euler angles remain useful when motion is kinematically
constrained. For instance, [3] models a sailing boat’s orien-
tation using only a single yaw angle. In [2], a cuboid target
under planar motion is represented by yaw and roll, enabling
recursive estimation of both shape and orientation. Although
reducing the number of angles mitigates gimbal-lock risks,
such parameterizations cannot represent arbitrary full spa-
tial rotations. From an estimation standpoint, probabilistic
filtering must provide orientation with uncertainty. However,
placing a Gaussian directly on Euclidean angle coordinates
ignores both the non-Euclidean geometry of SO(3) and the
periodic nature of Euler angles. This Euclidean–Gaussian
assumption, made explicitly in prior EOT studies, e.g., [3],
[2], is a further limitation.

While non-singular parameterizations avoid discontinu-
ities, they introduce redundancy and require constraints. A
full 3 × 3 rotation matrix uses nine parameters to represent
a 3-DoF rotation, i.e., it introduces six redundant parameters
that must be constrained by explicitly enforcing orthonor-
mality. Such constraints can cause numerical instabilities
and increase computational cost [7], [8]. In contrast, unit
quaternions incur only a single redundant DoF and are free of
singularities [9], [10]. Recursive filtering of unit quaternions
must, however, respect their nonlinear manifold geometry,
namely the unit 3-sphere S3 embedded in R4 [11], [12].

Extending EOT to fully three-dimensional settings is con-
siderably more challenging. Orientation must be estimated on
the curved hypersphere S3, while shape and other kinematic
parameters are simultaneously inferred in other multidimen-
sional Euclidean space. To avoid the challenge of defining
a joint density across fundamentally different manifolds, a
hierarchical orientation representation is employed in [4],
[5], which is closely related to our approach. A deterministic
unit quaternion provides a globally non-singular reference

orientation, while the rotation deviation is parameterized by
a three-dimensional Gibbs vector relative to this reference.
Both the Gibbs vector and the object’s shape parameters are
then estimated jointly in a common Euclidean space, en-
abling standard Bayesian filters for vector-valued states. The
reference orientation gets updated after each processing step.
However, the non-Euclidean geometry of the SO(3) rotation
manifold is overlooked in the aforementioned approaches. As
a result, the uncertainty associated with this stochastic Gibbs
vector fails to be properly parallel-transported alongside the
reference orientation update.

Contribution: In this article, we develop a unified frame-
work for tracking three-dimensional targets while simultane-
ously inferring their geometries from noisy point cloud data.
Our novelty lies in the reformulation of the spatial orientation
estimation problem by embedding successive orientation
updates within the Euclidean tangent space of the SO(3)
rotation manifold. Instead of filtering directly on this curved
nonlinear manifold, our method tracks a compact, three-
dimensional rotation vector, also known as the axis–angle
vector, in the Euclidean tangent space about a deterministic
time-varying reference orientation. The reference orientation
is encoded as a globally non-singular 3 × 3 rotation matrix
and is incrementally updated by composing it with the
expected value of the rotation perturbation parameterized by
this stochastic rotation vector.

In the context of three-dimensional EOT, this approach
bridges the gap between manifold-valued spatial orientation
and Euclidean shape and kinematic states. We achieve this
by jointly estimating the rotation vector together with the
target’s shape and kinematic parameters in a single Euclidean
state vector. Consequently, no intractable joint density over
mixed manifolds is required. As a result, various nonlinear
Bayesian filtering algorithms (usually defined in Euclidean
space) can be directly employed.

After each update of the stochastic rotation vector, we
apply a post-update reset that absorbs the estimated rotation
perturbation into the reference orientation. Concretely, the
mean of the tangent-space distribution is transferred back



onto the SO(3) manifold via the exponential map, yielding
a new reference. Simultaneously, these perturbation statistics
are re-centered to zero in the updated tangent space.

Moreover, propagating the full uncertainty of the tangent-
space random vector across successive tangent spaces along
a manifold is frequently overlooked or mishandled. In this
paper, we exploit the intrinsic geometry of SO(3) to derive
closed-form expressions for the parallel-transport operator
that propagates rotation-vector covariances along manifold
geodesics. By explicitly incorporating these manifold-aware
operations into our recursive filter, we ensure that uncertainty
remains correctly aligned with the local linearization at
each reference orientation. For enhanced clarity and intuitive
understanding, a detailed two-dimensional example on the
SO(2) manifold is provided in Fig. 2 to illustrate the core
concepts of our SO(3) filtering framework.

Furthermore, our full spatial orientation estimator can be
seamlessly integrated as a higher-quality plug-in replace-
ment into any three-dimensional EOT framework, regardless
of whether the measurement model employs a parametric
or non-parametric shape representation. We evaluate the
proposed EOT framework in a simulated free-fall of an
elliptic cone undergoing unconstrained rigid-body motion.
The object is initialized with a nonzero angular velocity
to enable unrestricted three-dimensional rotation. This setup
provides a realistic benchmark for particle measurement
research, facilitating rigorous evaluation of full pose-shape
reconstruction. The results demonstrate superior performance
over state-of-the-art methods, with our approach accurately
recovering both the target’s spatial extent and its time-
varying orientation in the inertial frame.

II. PROBLEM FORMULATION

We aim to estimate the parameters of an unknown three-
dimensional extended object, in particular its shape, posi-
tion, and orientation, based on noisy position measurements
sequentially collected from its surface. As outlined above,
all recursively estimated variables are embedded in a single
Euclidean space. At discrete time step k, the Euclidean
system state vector xk, which encapsulates all necessary
kinematic and extent parameters, is denoted by

xk =
[
(xkin.

k )⊤, (xext.
k )⊤

]⊤
. (1)

The kinematic component xkin.
k comprises the position of the

target’s center of mass in the inertial frame Ick (which also
defines the body-fixed frame origin), velocity Iφ

k
, a three-

dimensional rotation vector δB, k, and the angular velocity
of the body with respect to the inertial frame IωB, k. The
rotation vector δB,k is defined about the current deterministic
reference orientation IRref.

B, k−1 and parameterizes the rota-
tional deviation BRpert.

k

(
δB, k

)
. The extent component xext.

k

contains the object’s shape parameters. Given the wealth of
available shape models [13], [14], we adopt an existing pa-
rameterization and focus on the proposed filtering framework
rather than introducing a novel representation.

During each measurement update, we assume the avail-
ability of a measurement set Yk = {Iỹ

k,i
}Nk
i=1, consisting

of Nk individual Cartesian position measurements expressed
in the inertial frame. The total number of measurements
Nk can vary over time. These measurements are highly
informative to infer the hidden system state, as they not only
provide evidence about the target’s kinematic state, but also
reflect characteristics of its spatial extent. Each individual
measurement Iỹ

k,i
is modeled as a noisy observation of an

unknown three-dimensional point in the inertial frame Izx
k,i,

referred to as the measurement source, which is assumed to
lie on the target boundary, i.e.,

Iỹ
k,i

= Izx
k,i + vk,i ,

Izx
k,i =

Ick + IRref.
B, k

Bzx
k,i

= Ick + IRref.
B, k−1

BRpert.
k

(
δB, k

)
Bzx

k,i ,

i = 1, . . . , Nk , (2)

where Bzx
k,i is the measurement source expressed in the local

body-fixed frame, vk,i denotes additive zero-mean Gaussian
white noise with a known probability distribution. Measure-
ment noises are mutually independent and independent of
the state.

We represent the probability density function (PDF) of
the state xk at time step k conditioned on the k received
measurement sets Y1, . . . ,Yk as

fe
xk

(xk) = fxk
(xk | Y1, . . . ,Yk) = fxk

(xk | Y1:k) , (3)

and the predicted state density, that is the state PDF at time
step k conditioned only on Y1, . . . ,Yk−1 as

fp
xk

(xk) = fxk
(xk | Y1:k−1) . (4)

One of our primary objectives is to correct the predicted
state estimate fp

xk
(xk) using the newly arrived measurements

Yk. Typically, this refinement is performed by applying
Bayes’ rule and assuming that the current measurement set
Yk is conditionally independent of the already processed
measurement sets Y1:k−1 given the predicted state estimate

f (Yk | xk, Y1:k−1) = f (Yk | xk) . (5)

The corrected state density then follows as

fe
xk

(xk) ∝ f(Yk | xk) f
p
xk

(xk) . (6)

By exploiting the mutual independence of the noise terms,
we obtain a likelihood function that simultaneously processes
all the measurements within a single filter step

f(Yk | xk) =

Nk∏
i=1

fyk
(Iỹ

k,i
| xk) . (7)

A key benefit of this factorization is that each measurement
Iỹ

k,i
can be processed independently. First, we express the

generative measurement model (2) in probabilistic form
as the conditional density fyk

(Iy
k
| xk). We then define

the likelihood function for a specific observation I ỹ
k,i

as

fL
k,i(xk)

def
= fyk

(I ỹ
k,i

| xk). Once this likelihood function
fL
k,i(xk) is explicitly obtained, it can be incorporated into a

recursive Bayesian filter for extended object tracking.



III. KEY IDEAS AND GROUNDWORK

We present a brief overview and notation of the basic
mathematical preliminaries that are necessary to understand
the Riemannian geometry used in this work. This treatment
is primarily based on [15], [16], and partially on [17].

A. Rotation Manifold SO(3) and Its Tangent Spaces
In three dimensions, any finite rigid-body rotation can be

rigorously described as an element of the special orthogonal
group SO(3), which is the curved manifold of all valid
rotation matrices R

SO(3) :=
{
R ∈ R3×3

∣∣ R⊤R = I3, detR = 1
}
. (8)

This Lie group forms the natural geometric framework for
analyzing and composing three-dimensional rotations.

While rotation matrices and unit quaternions provide
global, non-singular representations, it is often convenient
in practice to employ minimal three-parameter coordinates,
such as the rotation vector. By definition, it is derived from
the tangent space TI3SO(3) at the identity matrix I3 that
represents zero rotation [18]. This canonical choice yields a
compact Euclidean parameter for estimation. The resulting
rotation parameterization is detailed in the next subsection.

To formalize this tangent-space perspective, we briefly
recall the notion of tangent vectors on SO(3). Let Φ(η) :
R→SO(3) be a smooth curve with Φ(0) = R. Its tangent
vector at R is defined as

Φ̇(0) := lim
η→0

Φ(η)−Φ(0)

η
∈ TRSO(3) , η ∈ R , (9)

characterizing the instantaneous rate of change of the curve at
R. The tangent space TRSO(3) consists of all such tangent
vectors and provides a linear approximation of the manifold
in a neighborhood of R. This characterization forms the basis
for the minimal rotation parameterizations used in this work.

B. Rotation Parameterization
Building on the tangent–space framework introduced

above, we formalize the rotation vector parameterization
and its mapping between the Euclidean space R3, the Lie
algebra so(3), and the rotation manifold SO(3). Given a
rotation vector δ = (δ1, δ2, δ3)

⊤ ∈ R3, whose direction
specifies the axis of rotation and whose magnitude ∥δ∥2
equals the rotation angle. We interpret δ as an element of
the tangent space TI3SO(3) = Lie algebra so(3) at I3. The
correspondence between R3 and so(3) is established via the
operator [·]× : R3 → so(3), δ 7→ [δ]×. This operator gives
rise to a skew-symmetric matrix

[δ]× =

 0 −δ3 δ2
δ3 0 −δ1
−δ2 δ1 0

 ∈ so(3) . (10)

Similarly, the operator (·)∨ : so(3) → R3 recovers the
rotation vector from its skew-symmetric matrix [5].

A rotation matrix R and its corresponding rotation vector
δ are related via the matrix-exponential series [15]

R = exp ([δ]×) := I3 + [δ]× +
1

2!
[δ]2× +

1

3!
[δ]3× + · · · .

For ∥δ∥2 ̸= 0, setting A = [δ]×, the cubic identity
A3 = −∥δ∥22 A collapses all higher powers so that the
odd- and even-order terms sum to sin

(
∥δ∥2

)
and cos

(
∥δ∥2

)
,

respectively, giving the Rodrigues’ formula in closed-form

R = I3 +
sin

(
∥δ∥2

)
∥δ∥2

[δ]× +
1− cos

(
∥δ∥2

)
∥δ∥22

[δ]2× . (11)

The logarithm map returns a unique skew-symmetric matrix
in the Lie algebra with rotation angle in the interval (0, π)
from a rotation matrix R ̸= I3

log(·) : SO(3) −→ {[δ]× ∈ so(3) | 0 < ∥δ∥2 < π} ,

[δ]× =
f (R)

2 sin (f (R))

(
R−R⊤) ,

f (R) = arccos
(

tr(R)−1
2

)
. (12)

Because rotations differing by multiples of 2π coincide, one
obtains log

(
exp([δ]×)

)
= [δ]×, if and only if ∥δ∥2 < π,

while for ∥δ∥2 ≥ π, the logarithm map projects the rotation
vector into the principal interval, resulting in angle wrapping.

In this paper, we represent a full spatial orientation IRB

of the body with respect to the inertial coordinate system
IRB := IRref.

B
BRpert. = IRref.

B exp ([δB ]×) , (13)

where δB ∈ R3 is a perturbation rotation vector in the
tangent space at reference IRref.

B . More precisely, δB is
mapped onto the Lie algebra at the identity I3 via the [·]×
operator in (10), yielding [δB ]× ∈ so(3). The exponential
map (11) projects this element to a perturbation rotation on
SO(3), which is then applied by left multiplication with the
reference IRref.

B . A globally valid orientation is obtained,
which we adopt as the new reference. This operation is
known as left translation. For an intuitive illustration, see the
SO(2) examples in Fig. 2 (a) and (c). The same concepts
generalize directly to the SO(3) setting, where the green
point marks δB on the tangent space at the old reference
and the orange point denotes the updated reference through
the exponential mapping shown by the red arrow.

C. Rotation Vector Kinematics
In three-dimensional rigid-body kinematics, the rotation

vector δB is related to the angular velocity ωB via the
time derivative of the exponential map (11). In a discrete-
time setting, we assume ωB, k is constant over [tk, tk+1]
of duration ∆t. Under this assumption, the exact temporal
evolution of the rotation vector is governed by the rotation
vector composition rule introduced in [19] as

δB, k+1 =
(
log

[
exp([δB, k]×) exp([ωB, k ∆t]×)

])∨
, (14)

where exp([ωB, k ∆t]×) represents the incremental rotation
resulting from the constant angular velocity. All quantities
are expressed in the body-fixed coordinate system.

IV. RECURSIVE TANGENT-SPACE BAYESIAN FILTERING

So far, we have established the foundations. In this section,
we develop our recursive tangent-space Bayesian filtering
framework for three-dimensional EOT. We first study uncer-
tainty propagation for a tangent-space random vector across
successive tangent spaces on a manifold.



A. Gaussian Assumed Density Filter

EOT is conventionally formulated as a nonlinear state
estimation problem and addressed via recursive Bayesian
filtering. Most standard off-the-shelf filtering approaches
require a Euclidean state space. Our unified formulation
directly meets this assumption, in which all the random
variables, including the rotation vector, object shape, and
kinematic parameters are jointly represented within a sin-
gle Euclidean state vector. However, state PDFs are often
multi-modal or non-Gaussian, making closed-form Bayesian
updates intractable. Therefore, we employ simplifications in
the form of Gaussian Assumed Density Filters (GADFs),
which, at each time and measurement update, approximate
the complex true state PDF with a single Gaussian.

B. Uncertainty Propagation via Parallel Transport

We model the entire hidden system state as a joint
Gaussian in Euclidean space, in which the stochastic ro-
tation vector appears as one of the Gaussian components
and is interpreted in the tangent space at a deterministic
reference orientation. Its mean is projected onto SO(3) via
the exponential map after each processing step. Concurrently,
its uncertainty, captured by the covariance matrix, must
also be explicitly and correctly transported between the
corresponding Euclidean tangent spaces. This dual mapping
of mean and covariance is one of the fundamental points for
the construction of our filters.

At each R ∈ SO(3), the tangent space TRSO(3) is
a three-dimensional real vector space isomorphic to R3.
A tangent vector v ∈ TRSO(3) is anchored at the base
point R. Since TR1SO(3) and TR2SO(3) are distinct vector
spaces for R1 ̸= R2, vectors based at different points are
not directly comparable or subtractable. They must first be
transported to a common tangent space. Parallel transport
provides a principled mechanism to move tangent vectors
along a smooth curve α : [0, 1] → SO(3). For each t ∈ [0, 1],
the parallel–transport operator

PTα(0)→α(t)(·) : Tα(0)SO(3) → Tα(t)SO(3) , (15)

is a linear isomorphism that carries vectors from the source
to the target tangent space. The key property of parallel
transport for Lie groups is the preservation of inner products
between the two Euclidean tangent spaces.

The subsequent question is how to define a well-posed
curve on the manifold. We leverage the intrinsic geometry of
the SO(3) manifold to derive its geodesics in closed form and
then adopt these geodesics as the curves along which parallel
transport is carried out. Geodesics are the local minimizer of
the length of a curve between two points on a manifold M
computed with a Riemannian metric. On SO(3), geodesics
are described by rotations carried out at a constant angular
velocity [20]. When orientations are parameterized by unit
quaternions, geodesics are great circles on a unit 3-sphere
S3. Fig. 3 shows an analogous great circle on a S2.

Definition 1: Let R0,R1 ∈ SO(3) and define the relative
rotation ∆ := R−1

0 R1 = R⊤
0 R1 ∈ SO(3), where we have

used R−1
0 = R⊤

0 , since rotation matrices are orthogonal.

Fig. 3: A great circle (blue) on the unit 2-sphere S2, shown as
a lower-dimensional analogy for geodesics on SO(3). Under
unit-quaternion coordinates, geodesics on SO(3) are great
circles on S3. The gray S2 is for intuition only.

Let A := log(∆) ∈ so(3) denote the matrix logarithm.
Equivalently, there exists a unique rotation vector ω ∈ R3

with ∥ω∥2 ∈ [0, π) such that A = [ω]×. The curve on SO(3)

γ(t) = R0 exp
(
tA

)
∈ SO(3) , t ∈ [0, 1] ⊂ R , (16)

is the unique geodesic connecting R0 and R1 with γ(0) =
R0 and γ(1) = R1. When ∥ω∥2 = 0, i.e., R0 = R1, γ
reduces to the constant curve. □

We equip SO(3) with the canonical Riemannian metric
[16]. For R ∈ SO(3) and u1, u2 ∈ TRSO(3), define

⟨u1, u2⟩R := ⟨R−1u1, R
−1u2⟩I3 . (17)

The induced norm is ∥u∥2R = ⟨u, u⟩R. Under the definition
of the geodesic and using γ′(τ) = γ(τ)A, γ(τ)−1 γ(τ) =
I3, its energy functional reduces to a constant, highlighting
an important structural property of geodesics.

E(γ) =
1

2

∫ 1

0

∥∥γ′(τ)
∥∥2
γ(τ)︸ ︷︷ ︸

= ⟨γ′(τ), γ′(τ)⟩2γ(τ)

dτ

=
1

2

∫ 1

0

〈
γ(τ)−1 γ′(τ), γ(τ)−1 γ′(τ)

〉
I3︸ ︷︷ ︸

=
∥∥γ(τ)−1 γ′(τ)

∥∥2

I3

dτ

=
1

2

∫ 1

0

∥∥γ(τ)−1 γ(τ)A
∥∥2
I3
dτ = const. . (18)

Below we give the definition of parallel transport on SO(3).
Definition 2: Let R0, R1 ∈ SO(3) and set γ(t) =

R0 exp
(
tA

)
, A = log

(
R⊤

0 R1

)
, t ∈ [0, 1] be the geodesic

joining R0 to R1. For any tangent vector v ∈ TR0
SO(3),

write v = R0 n, n ∈ so(3), n = R⊤
0 v. Then the left-

trivialized parallel transport of v along γ is defined by

PTR0→γ(t)(v) = γ(t)n = R0 exp
(
tA

) (
R⊤

0 v
)
. (19)

This map is a linear isometry under the canonical bi-invariant
Riemannian metric. □



At t = 1 with γ(1) = R1, i.e., after transporting from t = 0
to t = 1 along the full geodesic, we obtain

PTR0→R1(v) = R0 exp
(
A
) (

R⊤
0 v

)
= R0 exp

(
log(R⊤

0 R1

)) (
R⊤

0 v
)

= R1 R
⊤
0 v . (20)

Hence, transporting v along the full geodesic from R0 to R1

is equivalent to applying the single rotation R1 R
⊤
0 to v.

Beyond vectors, parallel transport applies naturally to
covariance matrices, yielding a rigorous mechanism for
uncertainty propagation on manifold-valued trajectories. We
adapt the proposition in [21] to the specific case of SO(3).

Proposition 1: Let Σ0 ∈ R3×3 be a symmetric, and
positive definite covariance matrix on the tangent space
TR0SO(3) at R0. Σ0 admits the eigendecomposition

Σ0 =

3∑
m=1

λm vm v⊤m, (21)

where {vm}3m=1 are the eigenvectors of Σ0, forming an
orthonormal basis of TR0SO(3), and λm are the eigenvalues.
Let α : [0, 1] → SO(3) be a geodesic on SO(3) with α(0) =
R0 and denote the parallel transport of each eigenvector
vm along α for t ∈ [0, 1] as v′m(t) = PTR0→α(t)(vm).
According to definition 2, the updated covariance matrix

Σt =

3∑
m=1

λm v′m(t) v′m(t)⊤

=

3∑
m=1

λm

[
R0 exp

(
tA

)
R⊤

0

]
vm v⊤m

[
R0 exp

(
tA

)
R⊤

0

]⊤
=
[
R0 exp

(
tA

)
R⊤

0

]
Σ0

[
R0 exp

(
tA

)
R⊤

0

]⊤
(22)

is precisely the parallel transport of Σ0 along curve α. □
Building on the results above, we have thus achieved our

key objective for uncertainty propagation along SO(3). After
mapping the mean rotation vector from TR0

SO(3) onto a
new point R1 of SO(3) via the exponential map, we transport
its covariance matrix Σ0 in closed form as

Σ1 = R1 R
⊤
0 Σ0 R0 R

⊤
1 . (23)

This procedure ensures that the Gaussian uncertainty remains
correctly aligned with the local Euclidean approximation at
each updated reference orientation.

C. Post-Update Orientation Reset

After each prediction step or measurement update, our
framework executes three core operations to maintain consis-
tency between the manifold-valued mean and its Euclidean-
space covariance. Given the predicted or posterior tangent-
space mean vector B̂δk|1:k−1,

B̂δk|1:k ∈ R3, we retract it
onto SO(3) via the exponential map

IRref.
B, k|1:k−1 = IRref.

B, k−1|1:k−1 exp

([
B̂δk|1:k−1

]
×

)
or

IRref.
B, k|1:k = IRref.

B, k|1:k−1 exp

([
B̂δk|1:k

]
×

)
, (24)

respectively, thus yielding a new deterministic reference
orientation on SO(3) after each processing step.

Moreover, we transport the covariance from the previous
tangent space into the tangent space at the updated reference
orientation via parallel transport. We construct an orthogonal
update matrix after prediction step or measurement update

PPred. = IRref.
B, k|1:k−1

[
IRref.

B, k−1|1:k−1

]⊤
or

PFilt. = IRref.
B, k|1:k

[
IRref.

B, k|1:k−1

]⊤
, (25)

and then update the covariance matrix of δ by

Σδ
k|1:k−1 = PPred. Σδ

k−1|1:k−1

[
PPred.]⊤ or

Σδ
k|1:k = PFilt. Σδ

k|1:k−1

[
PFilt.]⊤ . (26)

Finally, we reset the tangent-space mean to zero
B δ̂k|1:k−1 = 0 or B δ̂k|1:k = 0 . (27)

so that subsequent filtering steps always operate around a
zero-mean Gaussian in the newly updated tangent space.

These three steps, including exponential mapping, covari-
ance transport, and mean value re-centering, are repeated
after each prediction and measurement update, guaranteeing
that both mean and covariance remain correctly aligned with
the local linearization at every reference orientation.

D. Nonlinear Bayesian Filtering

To address the nonlinear state estimation problem, we
adopt the advanced particle-flow-based Progressive Gaussian
Filters (PGFs) [22], [23], which outperforms conventional
nonlinear Kalman filters. Unlike methods that rely on lin-
earizing the nonlinear measurement equation, PGF employs a
progression mechanism that splits each measurement update
into a sequence of sub-updates and gradually incorporates
observation information into the state estimate. Within this
framework, closed-form likelihoods for a specific target
tracking scenario have been derived [24]. In this work, we
choose PGF [23] for recursive Bayesian inference due to its
proven accuracy and high computational efficiency.

V. EVALUATION

We evaluate our proposed EOT framework on a simulated
free-fall experiment involving an elliptic cone released from
a known height. During its descent, the cone undergoes
fully unconstrained rigid body motion. It is endowed with
an unknown initial angular velocity about an axis through
its center of mass and subsequently rotates freely. This
scenario provides a realistic and representative benchmark
for simultaneous estimation of the full pose with six DoF
and the object’s geometric parameters.

To keep the simulation tractable, we fix the cone’s center
of mass as the reference point for all force and torque
analyses. We assume a uniform gravitational field acting
exclusively through this point, so that gravity induces no net
torque. We further neglect any other external torques and
model the cone as a perfectly rigid body of homogeneous
density, yielding a constant inertia tensor in the body frame.



Under these assumptions, translational and rotational dynam-
ics decouple completely and may be treated independently.
Our evaluation thus concentrates on the EOT framework’s
capacity to recover both the full pose trajectory and the
cone’s shape under idealized free-fall conditions.

We benchmark our framework against state-of-the-art ori-
entation estimators. In [5], approaches based on the Ex-
tended Kalman Filter (EKF) and the Unscented Kalman
Filter (UKF) are introduced. Like our approach, these filters
encode rotational perturbations as rotation vectors within the
state. However, while we compute the update matrix in (25)
by parallel transport, they propagate uncertainty between
tangent spaces using different mechanisms. We also evaluate
a zero-order approximation technique [4], [25], in which the
covariance matrix of the stochastic rotation vector is kept
unchanged after each update. In other words, our covariance-
update procedure defined in (26) is not employed in these
methods. To ensure a fair comparison among all frameworks
for orientation estimation, we employ the same shape model
and the same nonlinear filtering technique.

The experiment evaluates multiple EOT frameworks in a
recursive state estimation scenario. We generate 100 inde-
pendent ground-truth state trajectories, each comprising 500
discrete time steps sampled at a constant interval of 0.01
seconds. The target is an elliptic cone with height h = 10
cm and base semi-axes rx = 4.5 cm, ry = 2.5 cm. At each
time step, we observe surface point measurements that are
corrupted by additive, zero-mean isotropic Gaussian noise
with a standard deviation of 0.3 cm per coordinate. We
quantify the error of orientation estimation between two
rotation matrices, namely a true one RGT and an estimated
one REst., by the smallest relative rotation angle that aligns
them. Concretely, let RGT, REst. ∈ SO(3) be two valid
rotation matrices. We define the relative rotation RErr. =(
RGT

)⊤
REst., compute c =

tr(RErr.)−1

2 , and then clamp c
to the interval [−1, 1]. The angular error in degrees is then
θerr =

180
π arccos(c). To expedite execution, all simulations

were implemented in Julia and deployed on the HAICORE
KIT cloud platform. Each Monte Carlo trial was assigned a
dedicated CPU core on an Intel Xeon Platinum 8368 CPU
with 2.40 GHz, thereby fully exploiting the available parallel-
computing infrastructure and reducing overall runtime.

The mean rotation error in degrees between the ground-
truth and estimated orientations is computed at each of the
500 time steps over 100 Monte Carlo runs. The resulting
error curves, shown in Fig. 4, reveal distinct behaviors
for the three methods under comparison. The zero-order
scheme used in [25], [4] can be viewed as a straight-
forward extension of the classical Multiplicative Extended
Kalman Filter (MEKF). In our experiments, it achieves only
a marginal initial error reduction before rapidly diverging.
By step 200, the mean error exceeds 14◦ and continues to
grow rapidly thereafter, indicating an inability to correct the
orientation error effectively. The reason for that behavior is
the ignorance of the explicit uncertainty propagation. The
full-order reset approach [5] exhibits little improvement.
The error drops to around 9.5◦ by step 100, but then

steadily climbs. This behavior may be attributed to incorrect
propagation of uncertainty between successive tangent-space
updates, leading to continuous filter degradation. In contrast,
our method quickly reduces the mean orientation error and
maintains it at a relative low and nearly constant level until
the end of the simulation. Although exact reconstruction
of the ground-truth orientation trajectory is not achievable
due to measurement noise and model inaccuracies, the error
consistently converges to a low magnitude, demonstrating
the effectiveness of the proposed framework. Fig. 5 plots
the Root Mean Square Error (RMSE) between the ground-
truth and estimated shape parameters of the elliptic cone, i.e.,
its height and the two base semi-axes, over the same trials.
We show only our method, as the two baselines diverge in
orientation and thus yield uninformative geometry estimates.
Our framework achieves low, convergent RMSEs, indicating
accurate geometric reconstruction alongside reliable orienta-
tion estimation.

VI. CONCLUSION

In this work, we present a recursive Bayesian filter for
joint pose–shape estimation that treats rotations on SO(3)
via a stochastic tangent-space parameterization with explicit
parallel transport of uncertainty. By estimating a stochas-
tic rotation vector in the Euclidean tangent space about a
deterministic time-varying reference, the method integrates
with standard GADFs while consistently propagating un-
certainty on SO(3). However, working in tangent spaces is
only local and thus works best under small rotation vector
uncertainty around the current reference. Large rotations
between successive updates can cause the local, reference-
centered linearization to break down. In future work, we will
exploit the state’s product structure, modeled as a Cartesian
product of a nonlinear manifold and a Euclidean space.
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Sweden, July 2022. DOI: 10.23919/FUSION49751.2022.
9841384.

[7] Daniel Martinec and Tomas Pajdla. “Robust rotation and translation
estimation in multiview reconstruction”. In: 2007 IEEE conference
on computer vision and pattern recognition. IEEE. 2007, pp. 1–8.

[8] Robert Mahony, Tarek Hamel, and Jean-Michel Pflimlin. “Nonlinear
complementary filters on the special orthogonal group”. In: IEEE
Transactions on automatic control 53.5 (2008), pp. 1203–1218.

[9] F Landis Markley. “Attitude estimation or quaternion estimation?”
In: The Journal of the Astronautical Sciences 52 (2004), pp. 221–238.

[10] Urban Maeder and Manfred Morari. “Attitude estimation for vehi-
cles with partial inertial measurement”. In: IEEE Transactions on
Vehicular Technology 60.4 (2011), pp. 1496–1504.

[11] Gerhard Kurz, Florian Pfaff, and Uwe D. Hanebeck. “Discretization
of SO(3) Using Recursive Tesseract Subdivision”. In: Proceedings
of the 2017 IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems (MFI 2017). Daegu, Republic
of Korea, Nov. 2017. DOI: 10.1109/MFI.2017.8170406.

[12] Kailai Li, Florian Pfaff, and Uwe D. Hanebeck. “Grid-Based Quater-
nion Filter for SO(3) Estimation”. In: Proceedings of the 2020
European Control Conference (ECC 2020). Virtual, May 2020. DOI:
10.23919/ECC51009.2020.9143723.

[13] Antonio Zea, Florian Faion, and Uwe D. Hanebeck. “Tracking
Extended Objects using Extrusion Random Hypersurface Models”.
In: Proceedings of the IEEE ISIF Workshop on Sensor Data Fusion:
Trends, Solutions, Applications (SDF 2014). Bonn, Germany, Oct.
2014. DOI: 10.1109/SDF.2014.6954722.

[14] Florian Faion, Antonio Zea, Jannik Steinbring, Marcus Baum, and
Uwe D. Hanebeck. “Recursive Bayesian Pose and Shape Estimation
of 3D Objects Using Transformed Plane Curves”. In: Proceedings of
the IEEE ISIF Workshop on Sensor Data Fusion: Trends, Solutions,

Applications (SDF 2015). Bonn, Germany, Oct. 2015. DOI: 10.
1109/SDF.2015.7347698.
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