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Abstract—We propose a progressive particle filter that inher-
ently avoids sample degeneracy by splitting the likelihood into
a product of wider functions applied step by step. Between
steps, the particle distribution is resampled using projected
cumulative distributions (PCDs). To be able to handle weighted
Dirac mixture distributions, their corresponding one-dimensional
densities are interpolated with a piecewise constant function. Both
Cramér-von-Mises and 2-Wasserstein distance are used as base
objective functions for PCDs to deterministically and optimally
resample such distributions. The proposed filter is compared with
a standard SIR particle filter on a simulated tracking problem.

Index Terms—Nonlinear filtering, particle filter, progressive
filtering, resampling, probability metrics.

I. INTRODUCTION

Bayesian state estimation is an important topic for many
different fields of application. It requires a prior distribution
that encodes the current knowledge about the state and a
likelihood function that encodes how likely each measurement
is given a state. With these two building blocks, the posterior
distribution can be calculated with Bayes rule by multiplying
the prior distribution with the likelihood function for a given
measurement and normalizing the result. Systems with a linear
relation between the state and measurements, and only additive
Gaussian noise can be optimally handled with a Kalman
filter. In real systems this relation often is nonlinear and
may not even be analytically tractable. There are various
linearization techniques for filtering these systems. This can be
the straightforward linearization of the measurement function
as in an Extended Kalman Filter or stochastic linearization as
in an Unscented Kalman Filter [1] or Smart Sampling Kalman
Filter [2].

A different approach is to represent the prior distribution
with samples, also called particles. This is the idea behind par-
ticle filters, that can handle arbitrary nonlinear state transition
and measurement functions. There are no assumptions made
about the Gaussianity of any of the involved distributions.

In the prediction step, the particles are moved to new
locations by propagating them through the transition function.
In the filter step, the particles are then weighted according to
the measurement likelihood, but their position is not changed.
Many particles are typically necessary to get sufficiently good
approximations of the state distribution after each prediction
step and filter step. A common challenge to be dealt with
in particle filters is so-called sample degeneracy. Particles at
locations where the likelihood function is close to zero will
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Fig. 1: Prior distribution (blue) and estimated posterior dis-
tribution (yellow) with 50 particles for a Gaussian prior and
a cubic measurement function using the proposed progressive
particle filter. The outlines of the 50%, 80% and 99% per-
centiles of the true posterior are shown in purple and blue.

get assigned a weight that is almost zero. Without additional
measures, more particles will get assigned almost zero weight
until only very few of the original particles are left to represent
the current state distribution. Many different approaches have
been proposed to avoid sample degeneration and keep a
good sample-based approximation of the posterior density.
Nevertheless, this remains a demanding challenge and an open
topic of research.

We introduce a new type of progressive particle filter that
inherently avoids sample degeneracy. Like in other progressive
filters, the likelihood is applied to the prior distribution in
multiple progression steps. After each of these steps, the cur-
rent distribution is resampled to an equally weighted sample
distribution. For the resampling, existing methods based on
Projected Cumulative Distributions (PCDs) [3] were extended
to be able to handle weighted distributions. Lastly, two differ-
ent cost functions for PCD-based resampling are compared.



II. STATE OF THE ART

There exist many different strategies to handle sample
degeneracy in a particle filter. Some of them will now be
reviewed, focusing on methods similar to our proposed al-
gorithm.

A. Resampling
Resampling is one very common way to avoid degeneration
of particles. It works by approximating the set of posterior
particles with a different set of particles that all have the
same weight. As a result, particles with small weights are
removed and particles with a large weight are replaced by
multiple particles with smaller weights. A very well-known
algorithm to achieve this is called importance sampling. It
randomly samples particles from the posterior density with
replacement based on their weight until the desired amount of
particles is reached.

An overview of many resampling strategies for particle
filters can be found in [4]. One distinction to be made between
them is, if they use some kind of randomness like importance
sampling does or if they deterministically compute a new
set of particles. Some examples for deterministic resampling
by minimizing an objective function are methods based on
Localized Cumulative Distributions (LCDs) [5] and PCDs [6].

B. Progressive Filtering
In cases where only very few particles of the posterior have
nonzero weight, resampling might not be enough to give an
accurate representation of the true posterior. In these cases
the multiplication of the prior with the likelihood can be
split into multiple steps and applied progressively. The goal
is to slowly transform the prior distribution into the posterior
without loosing too much information.

A Gaussian progressive filter that uses samples as an in-
termediate density representation was introduced in [7]. This
can similarly be done for filtering based on Gaussian mixture
densities [8]. A progressive particle filter was described in [9],
where the position and weight of each particle is corrected
after every progression step. Another type of progressive
particle filter is better known as annealing particle filter [10]. It
uses simulated annealing for reapproximation of the posterior
density between progression steps. Alternatively, sequences
of optimal transport maps can also be used for doing this
reapproximation [11].

C. Particle Flow Filters
Particle flow filters go one step further than progressive
filters and model the transformation from prior to posterior
distribution as a PDE or ODE. Daum-Huang particle flow
filters use the Fokker-Planck equation to model this and solve
it for the posterior sample positions [12]. Other approaches
use the Liouville equation to model the flow [13] or derive an
ODE based on repulsion kernels around particles [14].

III. PROBLEM FORMULATION

We consider a general dynamic system with state vector
x ∈ RD of dimension D. This system can be observed through
measurements ẑ that are connected to the state through a
likelihood function Lẑ(x).

Given a prior distribution fp(x) of the state, the posterior
distribution fe(x) can be calculated using Bayes rule as

fe(x) = η · Lẑ(x) · fp(x) . (1)
The normalization factor η makes sure that the resulting
function integrates to one and therefore is a valid probability
distribution.

In a particle filter, the prior distribution is approximated
through samples of the underlying continuous distribution.
This discrete sample distribution can be written as a Dirac
mixture distribution

fp(x) =

N∑
n=1

wp
n · δ(x− xp

n) (2)

with sample positions xp
n and sample weights wp

n. In the filter
step of the particle filter, Bayes rule (1) is applied directly
to the Dirac mixture approximation. Each of the particles is
weighted according to its likelihood to obtain the posterior
distribution

fe(x) = η · Lẑ(x) ·
N∑

n=1

wp
n · δ(x− xn) (3)

= η ·
N∑

n=1

wp
n · Lẑ(xn) · δ(x− xn) (4)

= η ·
N∑

n=1

we
n · δ(x− xn) . (5)

This is also a Dirac mixture density with we
n = wp

n · Lẑ(xn)

and η = 1/
∑N

n=1 w
e
n. In a simple particle filter, this density

would be propagated through the transition function and the
result used as the prior for the next filter step. It is important
to note, that in the filter step only the weights of the particles
change, but not their position. During the prediction step on
the other hand, only the positions change and not the weights.

In systems with low measurement noise and therefore a
narrow likelihood function, often only very few particles lie in
areas, where the likelihood is nonzero. In these cases, many of
the new particle weights are set close to zero during the filter
step, effectively leading to dying out of particles in regions
with low likelihood. Over time, this reduces the number of
particles that effectively contribute weight to the Dirac mixture
and therefore reduces the quality of the density approximation.

Importance resampling can be an effective measure to
mitigate these effects. It randomly removes samples with small
weights and clones samples with large weights. After the next
prediction step, which spreads out the cloned samples, most
of the particles lie in areas with high posterior weights. The
weights of this new prior distribution are then set to be all
equal to 1

N . This means that all the information about the
distribution is now in the position of the particles and their
weights are “reset” for the next filter step. One drawback of
this method is the poor approximation of the posterior density
after resampling and before spreading the cloned particles out
again. The spreading is commonly done in the prediction step
of the filter, introducing an additional dependence of the filter
step on the prediction step and its properties.



Our goal is to develop a progressive particle filter that
can handle narrow likelihoods and large system noise while
only using a small number of particles. An important part of
its design is the introduction of a new deterministic resam-
pling strategy that can approximate a weighted Dirac mixture
density with another one where all particles have the same
weight.

IV. RESAMPLING

After the filter step of the particle filter, we would like to
resample the posterior distribution in such a way that the new
particles all have the same weight. We also keep the number of
particles before and after resampling the same. This means that
we would like to find the positions of N samples with weight
1/N that optimally represent an original set of N samples
with unequal weights wj .

With new sample positions xi and given some original
sample positions yj we want to find

N∑
i=1

1

N
δ(x− xi) ≈

N∑
j=1

wjδ(x− y
j
), (6)

where both Dirac mixtures should represent the same under-
lying density.

The new sample positions should be found in a deterministic
and optimal way. Therefore, a metric is needed to compare the
two distributions. The optimal new sample positions can then
be found by minimizing this metric.

Because Dirac mixture densities are zero almost every-
where, most classical statistical distances, like the KL-
divergence, cannot be used to compare them. In fact all metrics
that use the probability density functions (PDFs) directly, will
run into this problem and might not give meaningful results
for Dirac mixtures.

In one dimension this can be circumvented by using metrics
that utilize the cumulative density functions (CDFs) of the
involved distributions as the CDF of a Dirac mixture is just
a staircase function. Examples for such distances are the
Cramér-von-Mises distance and the 2-Wasserstein distance.
Given two CDFs F (x) and G(x) of two distributions µ and
ν the Cramér-von-Mises distance

dC(µ, ν) =

∫ ∞

−∞
(F (x)−G(x))2 dx (7)

straight up integrates the squared difference between them.
The 2-Wasserstein distance on the other hand can be written
as

dW (µ, ν) =

∫ 1

0

(F−1(x)−G−1(x))2 dx, (8)

using the quantile functions F−1(x) and G−1(x) [15]. Alter-
natively, it can be written in terms of an optimal transport plan
π(x, y) as

dW (µ, ν) = min
π(x,y)

∫ ∞

−∞

∫ ∞

−∞
π(x, y)(x− y)2 dx dy. (9)

In this interpretation, the 2-Wasserstein distance can be seen as
the minimal cost needed to transform one of the distributions
into the other one and is the result of the minimization problem
to find the optimal transport plan, that does this.

For probability distributions in two or more dimensions
a CDF cannot be uniquely defined [16]. Instead, the results
depend on the order of integration. Alternatives to the CDF
have been proposed that circumvent this problem and yield
unambiguous results.

One of them are Localized Cumulative Distributions [16].
They work by integrating over Gaussian kernels of all different
sizes and creating a unique and smooth representation of the
local probability mass at each point. While this method can be
used with any density, it is computationally quite expensive.

PCDs are another surrogate for a multi-dimensional CDF.
Here, the density is projected onto each possible one-
dimensional subspace and the CDFs of these projected dis-
tributions are compared. The concept of PCDs was first
introduced to sample from probability distributions [6] and
was later also extended to distributions on the circle [17]. They
have also been used for sample reduction and deterministic
resampling of sets of samples [3].

This concept is very similar to the so-called sliced Wasser-
stein distance [18] and other sliced measures for probability
distributions. They approximate the true distance between two
distributions with the average distance between projections
onto one-dimensional slices through the distributions.

In fact, it can be shown that any distance metric between
one-dimensional probability distributions can be used in this
manner and induces a corresponding sliced metric [19].

With a general distance metric dG(α, β) for one-
dimensional distributions α and β, the corresponding sliced
metric DG(µ, ν) between distributions µ and ν can be written
as

DG(µ, ν) =
1

V

V∑
v=1

dG(pv#µ, p
v
#ν), (10)

where p
v
#µ is the push-forward measure of µ projected onto

p
v
. The vectors p

v
are unit vectors uniformly sampled from

the unit hypershpere and serve as projection directions or
slicing directions. A fixed number of V of these directions
are sampled and the distributions are projected onto each of
them, resulting in V one-dimensional distributions. The final
distance is then calculated as the average distance between the
two distributions along all of the directions. The term “sliced”
is a little misleading for these metrics, because the distributions
are actually projected rather than just sliced.

We will use two of these sliced metrics with the 2-
Wasserstein distance and Cramér-von-Mises distance for re-
sampling.

A. Resampling of Weighted Dirac Mixtures
In previous research, PCDs were only used for sampling from
continuous densities and reducing the number of samples for
discrete densities. To be able to use them for resampling a
weighted Dirac mixture some modifications have to be made.

The core challenge to be solved is that the resampling
algorithm does not know about the underlying density, that the
samples are drawn from. It only takes probability mass at the
sample positions into account. This is fine when representing
multiple samples with small weights through one new samples,
that will lie somewhere in between them. On the other hand,



if one sample with a large weight should be represented by
several new samples, they will all lie at the original sample
location, while ideally they would be spread around the orig-
inal sample position. This effect leads to clumping and other
undesired effects when trying to directly resample a weighted
Dirac mixture with the proposed PCD-based algorithm.

To get around this limitation, some kind of interpolation
or reconstruction of the underlying density from which the
new samples can be generated is needed. We propose to
interpolate each of the one-dimensional projected densities
with a piecewise constant function leading to piecewise linear
CDFs. The mass of a sample is then spread over an interval
around the sample and not concentrated at its position. This
approach raises the question of how to choose the size of this
interval. A very simple method would be to draw the interval
borders in the middle of each pair of neighboring samples. For
the first and last sample, where only one neighbor is present,
the outer borders can either be set as a fixed distance from the
sample or the inner border can be mirrored.

This strategy can lead to problems in some situations,
especially when there are only few original samples available
as in the example in Fig. 2. In these cases, the density resulting
from the projection and interpolation is still far from the
projection of the ground truth underlying density, see Fig. 2b
One reason for this is that distances between samples are
generally compressed through projections onto subspaces in
Euclidean spaces. However, this is not a uniform compression,
but depends on the projection direction and positions of
the samples. Samples might lie much closer together in the
projections than they are in the original space, reducing the
area, that their probability mass is be spread over.

To alleviate these negative effects, we propose to fix the
interval width for each sample for all projection directions,
see Fig. 2c. As a general approach, we propose to use the
average distance of a sample to its k nearest neighbors as
interval width. Some other option would be to use a predefined
interval width or derive the optimal width from a k-dist graph,
as is done in clustering, where similar challenges exist [20].

B. Sampling Using PCDs
After choosing an interpolation strategy for the original
weighted Dirac mixture density, we now want to find new
sample positions that minimize a sliced distance (10) to it.

Mathematically this means solving the minimization prob-
lem

X ∗ = argmin
X

DG(µ(X ), ν) . (11)

In this notation, the sample positions x1, . . . , xN are stacked
into a column vector X in an arbitrary but fixed order. This
optimization problem can be solved with standard gradient-
based optimization methods such as gradient descent or New-
ton’s method. The gradient of (11) with a general distance
function can be written as

∇DG(µ, ν) =

[
∂DG

∂x1

, . . . ,
∂DG

∂xN

]⊤
. (12)

To calculate the required partial derivatives for the 2-
Wasserstein and Cramér-von-Mises distance, we can use the

fact that the resampled density is a Dirac mixture density.
This means, that its projected cumulative distribution Fv(r; rv)
for direction p

v
is a staircase function that only depends on

the projected sample positions rv = [p⊤
v
x1, . . . , p

⊤
v
xN ]⊤. We

further denote the PCD of the density to be resampled as
Gv(r). By substituting these definitions into (10) and using
that drv,i

dxi
= p

v
we get

∂DG

∂xi

=
1

V

V∑
v=1

∂

∂rv,i
dG(Fv(r; rv), Gv(r)) pv . (13)

Replacing the general distance with the definitions of the
Cramér-von-Mises distance (7) yields the final partial deriva-
tives

∂DC

∂xi

=
2

V

V∑
v=1

(F (rv,i, rv)−Gv(rv,i)) pv . (14)

Note that due to the sifting property of the Dirac impulse
the PCDs only need to be evaluated at the projected sample
positions rv,i.

Regarding the Hessian matrix required in the Newton step
only the diagonal terms are of interest, as all cross terms are
zero. With the probability density function gv(r) correspond-
ing to Gv(r) these can be derived to be

∂2DC

∂x2
i

= − 2

V

V∑
v=1

gv(rv,i). (15)

To calculate the gradient of (10) when the 2-Wasserstein
distance is used, the optimal transport representation (9) is
inserted into (12).

This makes the gradient of the original optimization prob-
lem dependent on another minimization problem to find the
optimal transport plan. The EM-style algorithm from [3] is
adopted to solve this nested optimization problem. It optimizes
the transport plans and sample positions alternately until
convergence, doing an optimization step for one of them, while
keeping the other one fixed.

The calculation of the optimal transport plan between a
Dirac mixture and another density can be done quite easily
in one dimension. First, the samples of the Dirac mixture are
sorted by position. The PDF of the second density is then
split into intervals matching the probability masses of the
Dirac mixture samples. The optimal transport plan for the i-th
sample is then identical to the PDF of this second density in
the i-th interval and zero everywhere else [21].

Gradient-based optimization methods are then used to op-
timize the sample positions. Starting with the general gradi-
ent (12) and inserting the 2-Wasserstein distance the partial
derivatives are

∂DW

∂xi

=
2

V

V∑
v=1

∫ ∞

−∞
πv,i(r) · (rv,i − r) dr · p

v
. (16)

The fact that the resampled density is a Dirac mixture was
used to convert one of the integrals in (9) into a sum over
all sample positions. Therefore, in the partial derivative with
respect to xi all terms except the i-th one vanish. The transport
plan was also simplified, so we have one continuous transport
plan for each of the new sample positions rv,i, that encodes
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Fig. 2: (a) Example Dirac mixture density and projection direction with (b) interpolation based on interval centers and
(c) interpolation with a fixed interval width, determined by the average distance of each sample to its 4 nearest neighbours.

which part of the complete probability mass is moved to this
position.

By splitting the integral and using that the total probability
mass moved to a sample position needs to equal its weight the
derivatives can be simplified further to

∂DW

∂xi

=
2

V

V∑
v=1

p
v

(
1

N
rv,i −

∫ ∞

−∞
πv,i(r) · r dr

)
. (17)

Substituting back in p⊤
v
xi for rv,i and setting r∗v,i =

N
∫
π(r, rv,i) · r dr we get

∂DW

∂xi

=
2

V N

V∑
v=1

p
v

(
p⊤
v
xi − r∗v,i

)
. (18)

The values r∗v,i can be seen as the optimal solutions for the
corresponding one-dimensional problem and are calculated as
the mean of the interval that was assigned to this sample.

It can be observed, that (18) is equivalent to the partial
derivatives of the least-squares problem

x∗
i = argmin

xi

1

V N

V∑
v=1

∥p⊤v xi − r∗v,i∥22 . (19)

Instead of using a general iterative solver, this least-squares
problem can be solved with a specialized linear solver like
conjugate gradient, improving performance. These small least-
squares problems for each of the samples positions can also
be combined into one large problem, that solves for all sample
positions at once, as has been done in [3]. When using the EM-
style alternating algorithm, there is one major difference be-
tween using this least-squares method and Newton’s method.
The least-squares method will always calculate the optimal
solution for a fixed transport plan, after which the transport
plan is updated with the new sample positions. Iterative solvers
on the other hand usually only take a small step toward
the optimum per iteration. The transport plan can then be
recalculated after each small change, which might lead to a
different solution than least-squares.

V. PROGRESSIVE FILTERING

If the prior distribution and likelihood function have very
little overlap it may happen that resampling the posterior after
the filter step, does not give satisfactory results. In this case too
much information about the true underlying posterior density
was already lost during weighting of the samples and a lot of
samples have a very small weight.

Progressive filtering tries to solve this problem by gradually
applying the likelihood to the samples, taking care to not lose
too much information in each progression step [7], [8]. This
is done by introducing a progression parameter γ and splitting
the likelihood into a product of wider functions. With γr > 0
and Γ =

∑R
r=1 γr = 1 it leads to the Bayesian filter step
fe(x) = η · Lẑ(x) · fp(x) (20)

= η ·
R∏

r=1

[
Lẑ(x)

]γr · fp(x) . (21)

In the first progression step, the prior samples are weighted
only with a part of the likelihood

[
Lẑ(x; ŷ)

]γ1 . The resulting
density can then be resampled and the next progression step
is applied with the partial likelihood

∏2
r=1

[
Lẑ(x; ŷ)

]γr . This
is repeated until the complete likelihood is processed, see
algorithm 1.

By choosing appropriate progression step γr, the amount of
information loss due to the weighting can be reduced and the
amount of “dead” particle can be minimized. One strategy to
select the size of the progression step is to look at the quotient
of the samples with the smallest and largest likelihood [22]

q =
[
Lẑ(xmin)/Lẑ(xmax)

]γr
. (22)

These samples xmin and xmax can either be found by eval-
uating the likelihood or in the case of a Gaussian likelihood
using the Mahalanobis distance. In this case, they will be the
samples with the largest and smallest Mahalanobis distance to
the mean of the likelihood. The optimal γr can now be found
by fixing the quotient q and solving (22) for γr

γr = log(q)/ log(Lẑ(xmin)/Lẑ(xmax)) . (23)



Algorithm 1 Proposed progressive filter step.

function PROGRESSIVEFILTERSTEP(X , ẑ, q)
Γ← 0.0
while Γ < 1.0 do

γr ← log(q)/ log(Lẑ(xmin)/Lẑ(xmax))
if Γ + γr > 1.0 then

γr ← 1.0− Γ
end if
w ←

[
Lẑ(x)

]γr

X ← resamplePCD(w, X )
Γ← Γ + γr

end while
return p
end function

Choosing the quotient q is a trade-off between information
loss and number of progression steps. If it is set too small,
too much information is and therefore the advantage of the
progressive filter is lost. If it is set too big, only small changes
in the density are allowed in each progression step, resulting in
an increased number of steps. This can be somewhat remedied
by setting a minimum value for γr at the cost of losing more
information. In our practical experiment, q was set to 0.5 and
a minimum value of γr = 0.001 was chosen.

VI. EVALUATION

The progressive filter scheme was implemented with the
proposed PCD-based resampling with interpolation between
progression steps. The filter performance when using the two
selected distances, 2-Wasserstein distance and Cramér-von-
Mises distance for resampling as well as the effectiveness of
the progression steps are evaluated.

A. One-dimensional Example
We first compare the results of a single filter step of a
one-dimensional problem with a cubic measurement equation
h(x) = x3. The initial state is set to a Gaussian distribution
with mean 0.0 and variance 1.0. From this distribution, 40
samples are randomly drawn as initial particles. Then a filter
step with measurement y = 1.5 and measurement variance
2.0 is applied. The results of this experiment are depicted in
Fig. 3. The posterior distribution without progressive filtering
was resampled once after the application of the likelihood
with the Cramér-von-Mises distance as optimality measure
and gives a relatively good approximation of the true density.
Still some clumps and gaps in the samples are present,
because of the random nature of the original samples. Both
of the progressively filtered posteriors are almost completely
without clumps, especially the one that was resampled with
the Cramér-von-Mises distance. They smoothly approximate
the underlying ground truth density.

B. Two-dimensional Examples
In fig. 1 the progressive filter was applied to a cubic filtering
problem in two dimensions with good results. In a second ex-
periment, the performance of the proposed filter was evaluated
on the two-dimensional point tracking problem seen in Fig. 5.

The ground truth movement starts at the origin [0.0, 0.0]⊤ and
then continues in a straight line towards [2.25, 4.5]⊤. A new
measurement of the points position is received and processed
at each location of a red diamond. Each measurement consists
of the Euclidean distance to three landmarks (black triangles)
with additive Gaussian noise with variance 0.01. Between each
filter step a prediction step is performed, adding Gaussian
noise with variance 0.1 to the particles. For all experiments
20 initial particles are drawn from the initial state distribution
using the LCD-procedure implemented in [23]. The problem
was run with four different filter setups.

We compared a SIR particle filter (SIR-PF) against a particle
filter with PCD-based resampling, but without progression
steps (PCD-PF), and against two of the proposed progressive
particle filters. One of the progressive filters used the Cramér-
von-Mises distance (CVM-PPF) for resampling, while the
other one used the 2-Wasserstein distance (WS-PPF). All
filters were run 100 times with different random measure-
ments and the average MSE to the ground truth position was
recorded, see Fig. 4.

Because of the relatively low number of particles used
and the narrow likelihood of the problem, the SIR particle
filter exhibits severe sample degeneracy after only two filter
steps. This also reflects in the average MSE, which increases
with each filter step performed. Exchanging the importance
resampling with our PCD-based resampling method yields a
slightly more spread out posterior than the SIR-PF, see Fig. 5b.
After the likelihood application still only very few samples
have a nonzero weight, causing a high tracking deviation from
the ground truth.

Both of the progressive filters on the other hand, do not
exhibit sample degeneracy and are able to follow the track
more accurately. Both filters hover around an average MSE
of slightly above 0.1. Cramér-von-Mises and 2-Wasserstein
distance seem both to be well suited to be used in the proposed
resampling scheme and filter. There is no significant difference
in the MSE of the CMV-PPF and WS-PPF.

VII. CONCLUSION

We introduced a new kind of progressive particle filter
making use of PCDs for resampling in-between progression
steps. An interpolation strategy was proposed to enable PCDs-
based resampling for the weighted Dirac mixtures occurring
in the filter step. The Cramér-von-Mises and 2-Wasserstein
distance were investigated as one-dimensional metrics to use
with PCDs.

The proposed filter was compared to a standard SIR particle
filter in a simulated tracking problem. It showed a higher
accuracy, resilience toward sample degeneracy, and a visually
better approximation of the posterior density than the SIR
particle filter. One drawback of the proposed filter is its
computational cost, which is significantly higher than that
of the SIR particle filter. While importance resampling is
linear in the number of samples N , PCD-based resampling is
additionally dependent on the number of projection directions
V and the distance used in the optimization. The filter step then
adds additional cost with each progression step that is applied.
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Fig. 3: (a) Prior distribution and estimated posterior distributions of a one-dimensional cubic filtering problem. The filters were
run (b) without progressive filtering using the Cramér-von-Mises distance for resampling and with progressive filtering using
(c) Cramér-von-Mises distance and (d) 2-Wasserstein distance for resampling. For the progressive filter a maximum ratio of
0.5 between the largest and smallest weight was chosen, which resulted in 12 progression steps. The weighted posterior was
interpolated using the midpoints between samples.
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Fig. 4: Average MSE of a SIR particle filter and the proposed
progressive particle filters over 100 runs with random mea-
surements on the problem in Fig. 5.

By using a parallelized implementation at least the dependency
on the number of directions can be reduced. For example,
many intermediate results for each projection direction can be
calculated in parallel without any dependencies between them,
making some workloads embarrassingly parallel.

Some further improvements to the filter could be made
by introducing a deterministic prediction step. This would
make the whole filtering process deterministic. Some different
solution strategies for the nested minimization problem, when
optimizing the Wasserstein distance could lead to faster so-
lutions. Finally, trying some more sophisticated interpolation
methods for the one-dimensional subspaces as well as the
high-dimensional space could increase the accuracy of the
resampling result.
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