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O R I G I N A L  A R T I C L E

Simultaneous Localization and Calibration (SLAC) Methods 
for a Train-Mounted Magnetometer

Benjamin Siebler1  Andreas Lehner1  Stephan Sand1  Uwe D. Hanebeck2

1  INTRODUCTION

In current railway systems, the safety distance between two trains is at least 
the absolute braking distance at all times. High-speed trains have to be separated 
by several kilometers due to the high mass of the vehicles. These large headways 
lead to inefficient use of the track network and reduce the overall capacity. While 
this may be tolerable in rural areas, it is not in urban areas in which the demand 
for transport capacity is high. To address this issue, network capacity has to be 
increased either by using the existing tracks more efficiently or by building new 
tracks. The latter is often not feasible because of the costs and required space, which 
is scarce in urban areas. It is, therefore, desirable to increase capacity by reducing 
the distance between trains below the absolute braking distance. The reduction 
of safety distances requires accurate real-time position information from all trains 
in a certain area to maintain traffic safety. In contrast to road vehicles, where it is 
usually sufficient to observe the environment of the vehicle, (e.g., with cameras or 
radars) to maintain safe operation, trains rely on information beyond the measure-
ment range of such sensors due to large braking distances. Furthermore, direct 
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distance measurements between trains may result in distances shorter than the 
actual distance due to the track geometry. Nowadays, train localization is based on 
the deployment of costly dedicated infrastructure. It is, therefore, desired to have 
a low-cost infrastructure-less alternative. One more modern alternative is the use 
of global navigation satellite systems (GNSSs) like GPS, Galileo, and GLONASS 
(Marais et al., 2017). While GNSS is a good choice in many environments, it is also 
vulnerable to jamming, spoofing, and shadowing. Fortunately, jamming and spoof-
ing are manmade and encountered only rarely. In contrast, shadowing is encoun-
tered regularly and leads to reduced performance and availability. In the extreme 
case of shadowing (e.g., in tunnels), GNSS signals are completely blocked. But even 
in urban canyons, the amount of visible satellites and the quality of their geometry 
are already dramatically reduced. When shadowing is encountered only for short 
periods, GNSS can be aided with an inertial sensor or an odometer. Depending 
on the quality of the sensors, it is possible to maintain a certain position accuracy 
during shadowing for a couple of seconds up to a few minutes. For longer outages, 
costly sensors with a very high quality are required.

In our works, Heirich et al. (2017) and Siebler et al. (2020), we proposed to 
exploit position-dependent distortions of the Earth’s magnetic field for train local-
ization to complement GNSS. These magnetic distortions are a result of ferromag-
netic material in the existing railway infrastructure and are free to use. The use 
of such distortions was also proposed for indoor (Frassl et al., 2013; Haverinen & 
Kemppainen, 2009; Jung et al., 2015; Kok & Solin, 2018; Li et al., 2012; Shao et al., 
2016), car (Shockley & Raquet, 2014), and airplane (Canciani & Raquet, 2017) 
localization.

Assuming a map of the magnetic distortions exists for the whole track net-
work, it is possible to localize a train on a track by matching the measurements 
of a low-cost onboard magnetometer with the magnetic map. One of the issues 
encountered during our research is that the matching of the magnetometer data 
to a map requires a calibration of the sensors. This is because the magnetometer 
is influenced by ferromagnetic material in the vicinity of its mounting position. 
A  lack of calibration causes the measurements of sensors in different trains to 
differ even when they measure along the same trajectory. Sensor calibration is, 
therefore, crucial if the same map should be used for different trains. Common 
magnetometer calibration procedures require the rotation of the sensor and the 
platform it is mounted on in a homogenous magnetic field (Kok & Schön, 2016; 
Renaudin et al., 2010; Vasconcelos et al., 2011; Wahdan et al., 2015). The rotation 
ensures that all sensor axes are excited and the calibration parameters become 
observable. Alternatively to rotating the sensor, the sensor can be exposed to a 
known but varying magnetic field. Due to the high mass and the large volume 
of the train, both approaches require considerable effort. In Siebler et al. (2021a, 
2021b), we showed that the magnetic distortions along a railway track can be 
used to render the calibration parameters observable. This requires a map of 
the magnetic field along the track where the map itself can be recorded with 
an uncalibrated sensor. During calibration, the current train position is used 
to obtain the magnetic field from the map that the magnetometer on the train 
should measure. Since we are mainly interested in estimating the train position, 
we cannot assume the position to be known. Therefore, simultaneous localiza-
tion and calibration (SLAC) is performed by a Rao-Blackwellized particle filter. 
In this paper, a reduced version of the SLAC algorithm that only estimates a sub-
set of the calibration parameters is introduced. In an evaluation, the different 
variants of the algorithm are compared to a particle filter that uses a fixed set of 
calibration parameters. 
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2  METHODOLOGY

2.1  Frame Definitions

For the subsequent presented methodology, we first define the used coordinate 
frames. All frames are attached to the sensor but have different orientations. 

• Track frame: This frame is always parallel to the track plane. The x-axis 
points into the direction of an increasing along-track position, s, the y-axis to 
the right, and the z-axis points downwards. 

• Vehicle frame: The x- and y-axes are parallel to the floor of the train. The 
x-axis points along the train, the y-axis to the right, and the z-axis points 
downwards. Due to the definition of the frames, for zero roll and pitch angles 
between the track and vehicle frame, the x-axis of the vehicle frame is either 
pointing in the same or opposite direction as the x-axis of the track frame. The 
same holds for the y-axis. Therefore, the yaw angle is limited to 0° or 180°. The 
actual yaw angle depends on how the train is placed on the track, which is 
information that is typically known or easy to obtain. To simplify notation, in 
the remainder of the paper, the vehicle frame is always assumed to be rotated 
such that the yaw angle to the track frame is zero. 

• Body frame: This frame coincides with the physical x-, y-, and z-axes of the 
magnetometer triad. The relation between the body and vehicle frame is 
assumed to be fixed and defined by the mounting attitude of the sensor in the 
train. 

The frame definitions are also visualized in Figure 1. Regarding the notation, a 
superscript on a vector indicates in which frame it is measured (e.g., the variables 
a t  and a v  define the same measurement a  in the track frame t  and the vehicle 
frame v). A vector is transformed from one frame to another by the rotation matrix 
between those two frames. For the previous example, we can write a R at

v
t v=  and 

a R a R av
v
t t

t
v t� ��( ) 1 .  

2.2  Localization Particle Filter

Magnetic field-based localization utilizes time persistent spatial variations 
in the Earth’s magnetic field. In its essence, the localization can be seen as a 

FIGURE 1 (left) track frame; (right) vehicle frame
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pattern-matching problem. The goal is to find a sequence of positions on the track 
for which the measurements of a train-mounted magnetometer best fit the mag-
netic field stored in a prior recorded map. In this paper, the localization problem 
is addressed by a Bayesian filter that attempts to calculate the posterior probability 
density function (pdf), p k k( | ,: :d z0 1 m),  of a state vector, d, from time step 0  to k 
given the magnetometer measurements, z, of the magnetic flux density vector and 
a magnetic map, m( )⋅ .  For simplicity, we assume for now that the measurements 
are measured in the same frame as the map and that the sensor is calibrated. Under 
the given assumptions, a normal particle filter, e.g., a sampling importance resam-
pling filter (Arulampalam et al., 2002), is suitable to estimate the posterior density 
with a weighted particle set, { }: :d0 1k Np

:  

 p wk k
i

N

k
i

k

p

k
i( | , ) ( ): : ::

d z dd0 1
1

00
m �

�
� �  (1)

where Np  is the number of particles, wk
i  the weight associated to particle i  at 

time step k, and δd0:k
i  is the Dirac distribution, which vanishes everywhere in the 

state space except at the value of particle i. The filter algorithm is composed of two 
steps. First, in a prediction step, new samples are drawn from a proposal distribu-
tion. Here, the chosen proposal distribution is equal to the movement model of the 
train and hence: 

 d d dk
i

k
i

k
ip� �( | ):0 1  (2)

Second, for each predicted particle, the weight is updated based on the newest 
measurement by multiplying the old weight with the measurement likelihood: 

 w w pk
i

k
i

k k
i

k� � �1 0 1 1( | , ): :z d z  (3)

For a calibrated sensor, the measurement model depends only on the current 
state: 

 z d nk k k� �m( )  (4)

where zk  is the magnetic flux density vector measured by a magnetome-
ter triad and n Ik n� ( , )0 2�  is a white Gaussian measurement noise. Thus, 
the likelihood depends only on the current state and the weight update 
reduces to w w pk

i
k
i

k k
i� �1 ( | )z d .  With Equation (4), the likelihood becomes 

p k k
i

k k
i

n( | ) ( ; ( ), )z d z d I�  m � 2 .  The likelihood depends on the Mahalanobis dis-
tance, �n k k

i T
k k

i� � �2 ( ( )) ( )( )z d z dm m ,  between the magnetic vector in the map 
at the particle position and the current measurement. Therefore, the likelihood is 
high for particles at a position where the map is close to the measured magnetic 
vector and vice-versa. This shows that sensor calibration is crucial for the filter 
to work. For example, in the presence of a bias or scale errors, the distance is not 
guaranteed to be small when the particle is in the correct position. 

2.3  Magnetometer Calibration

The magnetometer under consideration in this paper has three orthogonal axes. 
This enables the sensor to measure the direction and amplitude of the magnetic 
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field at the current position. One of the difficulties in measuring the magnetic field 
is caused by the disturbance from nearby magnetic material. Hard iron effects will 
cause an offset in the measured magnetic field vector and soft iron effects interact 
with the external magnetic field, resulting in a rotation and scaling of the measured 
values. These two effects can be captured with a linear transformation of the true 
magnetic field (Kok & Schön, 2016):

 z CR z b nk
b

t
b

k
t

kk� � �( )  (5)

where zkb  is the magnetic flux density vector measured in the sensor’s body frame 
at the discrete time step k, zkt  is the true magnetic field in the track frame, and 
Rt
b k( )  is the rotation matrix from the track to the body frame. The calibration 

parameters are contained in a matrix, C� �3 3,  that accounts for soft iron effects 
and a vector, b∈3,  accounting for hard iron effects. As in Equation (4), nk  
is the measurement noise of the magnetometer. Transforming the map from 
the track to the body frame with a single rotation implicitly introduces certain 
assumptions. First, for Equation (5) to hold, the sensor during the map creation 
has to be mounted at the same height and lateral position as the sensor that is 
measuring zkb .  Second, the sensor position is not affected by the rotation. The 
first assumption can be taken care of by placing the sensors always at the same 
position relative to the track, for example, in the center of the train’s under-floor. 
The second assumption is never fulfilled completely. If the train has a non-zero 
roll angle, the sensor will move away from the track center to the left and to the 
right. Fortunately, the roll angle of a train is typically small, e.g., in the exam-
ple used in the evaluation, the angle was below ≈ 2.5°. For a sensor mounted on 
the floor at a one-meter height, the change in the sensor position is only a few 
centimeters. In comparison, to observe a significant change in the magnetic field 
with regard to the measurement errors, the position has to change in the order of 
meters. Therefore, the change of the sensor position due to rotations is ignored.

The sensor model in Equation (5) is linear in its parameters and calibration can 
be performed with a linear least-squares estimator assuming that the true mag-
netic field, zkt ,  and the rotation to the body frame are known. This becomes clearer 
when the model is rewritten as a function of a single parameter vector comprised 
of the elements of C and b: 
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where zkb  is the value a calibrated sensor should measure and H  is a matrix: 

 H z
z

z
z

( )
( )

( )
( )

k
b

k
b T

k
b T

k
b

�

�� ��
�� ��

� �

� �

� �

1
1

1 4 1 4

1 4 1 4

1 4 1 4

0 0
0 0
0 0 TT 1�� ��

�

�

�
�
�
�

�

�

�
�
�
�

 (7)

and �� �12  is the parameter vector: 

 �� � �� ��c c c1 1 2 2 3 3: : :b b b
T

 (8)

where ci:  is the i-th row of matrix C  and bi  is the i-th component of the bias 
vector. Equation (6) is clearly linear in θθ ,  and therefore, can be estimated by a 
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linear least-squares estimator. The least-squares estimator is obtained by stacking 
the left-hand and right-hand sides of Equation (6) for Nz  measurements: 
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and then calculating the pseudo-inverse, ( )D D DT T−1 ,  of the design matrix, D. If 
the inverse ( )D DT −1  exists, the least-squares solution is unique. For the example 
we investigate in this paper, this is the case from which we conclude that the mag-
netic variations contain enough information to fully observe the calibration param-
eters. Because the parameter vector has dimension 12 and a single measurement in 
the sensor’s body frame, zb,  has dimension three, at least four different measure-
ments are required. For a good estimate, in practice, we will use more measure-
ments to mitigate the errors introduced by the measurement noise. Furthermore, 
for the least-squares estimator, the calibration parameters are considered constant. 
If this is not the case, the Kalman filter can be used to track the calibration over 
time. The implementation only requires a state space model that describes how the 
parameters change over time.

2.4  Simultaneous Localization and Calibration (SLAC)

In this section, the SLAC algorithm is developed and it is shown that, in the rail-
way domain for calibration, it is not necessary to record the map with a calibrated 
magnetometer. 

2.4.1  Mapping and Calibration

The main problem encountered during the calibration of a train-mounted mag-
netometer is obtaining the true magnetic field in the body frame, z R zk

b
t
b

k
tk= ( ) , 

a  calibrated sensor is supposed to measure because the rotation matrix, Rt
b k( ), 

and the true magnetic field, zkt ,  in the track frame can continuously change along 
a railway track. Hence, to obtain the correct value, three quantities are required: 

• Along-track position sk  of the magnetometer on the track at time step k  
• Map function mt

ks( )  of the magnetic field along the railway track that returns 
the true magnetic field zkt  from Equation (5) in the track frame at position sk  

• Rotation matrix Rt
b k( )  between the body frame and the track frame of the 

sensor at time step k  

The map creation is a problem for itself, particularly in GNSS-denied areas such 
as tunnels. One possibility in such areas is to equip a train with additional, pos-
sibly costly, sensors to perform simultaneous localization and mapping (SLAM). 
The map creation, therefore, will require some effort, but the calibration approach 
in this section makes it possible to use the same map for different train types. 
In addition to the position, to create the true magnetic field map in the track frame 
mt

ks( ),  a calibrated magnetometer and its attitude, Rt
b k( ),  relative to the track 

are required. That means the mapping of the true magnetic field requires a cali-
brated magnetometer and, to calibrate the magnetometer, the true magnetic map 
is required. To resolve this issue, we show in the remainder of this section that, for 
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the railway scenario instead of the true map, mt ( )⋅ ,  it is sufficient to record the 
map with an uncalibrated sensor and then perform SLAC with respect to this map. 
In order to prove this, in a first step, we define the uncalibrated magnetic map, 


mb ( )⋅ ,  in terms of the true magnetic map, mt ( )⋅ ,  and the calibration parameters, 
C  and b,  of the magnetometer used to create the map: 

 




 m mb
k t

b
k

t
ks s s( ) ( ) ( )� �CR b  (10)

where R R Rt
b

k v
b

t
v

ks s





( ) ( )=  is the position-dependent rotation matrix between the 
track frame and the body frame of the magnetometer during map creation. To 
differentiate between the frames of the magnetometer that is to be localized and 
the frames of the magnetometer during mapping, the latter are indicated by b  
and v.  Note, Equation (10) is closely related to Equation (5), but instead of giving 
the relation between the measurement at time step k  and the true magnetic field, 
Equation (10) shows the relation between the uncalibrated map in the body frame 
and the true map in the track frame at position sk .

In a second step, the link between the measurements used for localization, zkb ,  
and the uncalibrated map is created by solving Equation  (10) for mt

ks( )  and 
plugging the result for zkt  in the sensor model in Equation (5), which gives the 
relation between the uncalibrated map,  mb

ks( ),  and the measurements used for 
localization: 
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From Equation (11), one can see that the mapping between the map and the 
measurement is, again, linear but time variant. Fortunately, a train is basically 
aligned with the pitch and yaw angle of the track and the only major change in 
rotation that might happen on the roll angle depends on the train type and speed. 
From our experience, this difference is also rather small, and we will show in the 
evaluation that, for the evaluated data set, the difference is below 0.5°. Hence the 
v  and v  frame coincide and, with R I

v
v ≈ ,  we can write: 
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(12)

which is now a linear model with constant parameters. Because the map  mb ( )⋅  in 
Equation (12) is in the body frame of the sensor during mapping, the map not only 
contains magnetic variations due to inhomogeneities, but also the variations due 
to a changing attitude. Luckily, the assumption R I

v
v ≈  enables the use of these 

attitude-dependent variations without having to estimate the platform attitude.
The simplification R I

v
v ≈  is particular for railways. For example, when the 

magnetometer is mounted in a road vehicle, the attitude of the vehicle frame with 
respect to the road during mapping and localization can change more freely and, 
hence, the rotations will not cancel each other out. In such cases, it is necessary 
to estimate the rotation matrix alongside the position and calibration parameters. 
Furthermore, the map should be recorded with a calibrated sensor and with a 
known attitude to create a map of the true magnetic field. Otherwise, the resulting 
calibration parameters will depend on the sensor’s attitude during mapping and 
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localization. In our future research, we will investigate the feasibility of SLAC for 
other platforms than trains. 

2.4.2  SLAC With Rao-Blackwellized Particle Filter

So far, the train position sk  was assumed to be known. Since the primary goal 
of this paper is to estimate the train position based on measurements of an uncal-
ibrated magnetometer, this is not realistic. This means the problem we are fac-
ing is that, for position estimation, the magnetometer has to be calibrated and, 
to calibrate the magnetometer, the train position is required. This results in a 
chicken-or-the-egg problem. In Siebler et al. (2021b), we presented an approach to 
this problem that will be briefly introduced. The approach is based on the observa-
tion that the SLAC problem is related to the SLAM problem. In SLAM, the goal is to 
estimate the static positions of landmarks based only on the observations of a robot 
that, at the same time, uses the landmark positions to localize itself. In SLAC, we 
now replace the unknown static landmarks’ positions with the calibration parame-
ters. Therefore, we can employ the idea of FastSLAM (Montemerlo et al., 2002). In 
FastSLAM, the joint posterior of the robot and landmark positions is decomposed 
into two parts and, then, estimated with a Rao-Blackwellized particle filter. In the 
SLAC approach, we do the same and decompose the joint posterior of the dynamic 
train state d  from Equation (1) and the calibration vector θθ  from Equation (8) to 
obtain: 

 p pk k k
b b

k k k
b b( , | , ) ( | , , ): : : :d z d z0 1 0 1�� ��� � � �

�
� �m m�

Kalman filter
����� ���� � ��� ���

� � �p k k
b b( | , ): :d z0 1 m

particle filter

 (13)

The first term on the right side of Equation (13) is the posterior density of the 
parameter vector, θθk ,  given the history of the train state, the magnetometer mea-
surements up to the current time step k,  and the map. In the posterior of the 
parameter vector, the train state containing the position is assumed to be known, 
and the parameter vector is allowed to be time variant as indicated by the time 
index k.  According to Section 2.3, the posterior therefore is obtainable with a lin-
ear Kalman filter. The state space model for the Kalman filter assumes a random 
walk for the parameters: 

 �� ��k k k� �� �1 1u  (14)

with process noise u Ik u� ( , )0 � 2  and ��k �12 .  The process noise covariance 
is a tuning parameter and influences how fast the parameters can change. The 
measurement model is in the form of Equation (6), where zkb  is replaced with the 
values in the map at the current train position: 

  

z H nk
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k ks� �( )( )m ��  (15)

The second term in Equation (13) is the posterior of the train state given the mea-
surements and the map. Due to the nonlinear relation between the magnetic field 
and the train position here, a particle filter as described in Section 2.2 is utilized 
that approximates the posterior by a weighted set of particles: 
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In the particle filter update step in Equation (3), the old weight is multiplied with 
the likelihood of the measurement given the train position and the map: 

 w w pk
i

k
i

k
b

k
i

k
b� � �1 0 1 1( | , ): : z d z  (17)

where d0:k
i  is the state trajectory of particle i. After some thought, one might notice 

that the likelihood in the weight update is not conditioned on the parameters but, 
without them, the likelihood given by the measurement model in Equation (15) is 
not defined. Hence, we need a way to incorporate the parameters into the likeli-
hood without assuming them to be known. This can be achieved with marginaliza-
tion over the estimated calibration parameters: 
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p k k
i

k
b( | , ): :�� d z0 1 1 �  in the marginalization is the predicted Gaussian pdf of a Kalman 

filter conditioned on the trajectory d0:k
i  of particle i: 
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with the estimated posterior mean, ,
1

ˆ ,i
k
+
−θ  and covariance, ,

1
ˆ ,i

k
+
−P  at time step k −1.  

Note that both the estimated parameters and state covariance matrix depend 
on the particle trajectory due to the measurement matrix H( )⋅ .  The integral in 
Equation (18) is again Gaussian because both pdfs are Gaussian and the relation 
between zb  and θθk  is linear, thus, the likelihood becomes: 

 ( ), ,2
0: 1: 1( | , ) ; , ( )ˆ ˆi ib i b b i i i T

k k k k k n k k kp σ− −
− = +z d z z H I H P H   θ  (20)

with H H dk
i b

k
i= ( )( )

m .  The marginalization adds the uncertainty of the calibra-
tion parameters to the uncertainty due to measurement noise. The likelihood, 
therefore, becomes narrower when the parameters are estimated with a high cer-
tainty and wider otherwise. The marginalization of the likelihood in the update 
step is done also in FastSLAM, but for SLAM, the marginalization is with regard to 
the estimated landmark positions rather than the calibration parameters.

From an implementation point of view for each particle, a separate 12-dimensional 
Kalman filter is required that tracks the corresponding mean and covariance of 
the parameters required in the particles’ weight update. To reduce computational 
complexity, we exploit that the state vector of the Kalman filter can be decomposed 
into three independent substates with dimension four due to the chosen state space 
model of the parameters. Each substate is associated with only one element of 
the measured magnetic vector, zb,  and contains four parameters: one row of the 
calibration matrix C,  and one element of the bias vector b.  For each substate, a 
separate Kalman filter per particle is required. Due to the quadratic complexity of 
the Kalman filter with respect to the state dimension, three separate filters lead to 
a reduced overall complexity. 

Algorithm 1 shows the high-level pseudocode of SLAC where the Kalman gain 
matrix, Kk ,  is given by , 1(ˆ )i i T

k k k k
− −=K P H S  and ,2 ˆ ( )ii i T

k n k k kσ −= +S I H P H  is the 
innovation covariance.
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2.4.3  Reduced SLAC

Further complexity reduction can be achieved by reducing the numbers of esti-
mated parameters. When the soft-iron effects and misalignment errors are small 
compared to the scale and bias errors, one can only estimate a scale and bias for 
each axis during calibration. Hence, the estimated state vector becomes: 

 ��red � �� ��c b c b c b
T

11 1 22 2 33 3  (21)

and the measurement matrix reduces to: 
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with the i-th element of the true magnetic field in the body frame, zk ib, ,  and the 
diagonal elements of the calibration matrix, cii .  When soft-iron and misalignment 
effects are negligible, this implies a diagonal structure of C  and C.  In the SLAC 
approach, this is not yet helpful because the matrix C  is estimated, which is a 
product of the calibration matrices of two different magnetometers and their rel-
ative attitudes. Therefore, we need to have a closer look at the conditions under 
which C  also becomes diagonal. The simplest example is when the different sen-
sors are mounted with the same orientation so that R

b
v  and Rv

b  cancel each other 
out. If this is not the case, one can try to rotate zkb  into the body frame of the 
map by left-multiplying Equation (12) with the inverse of R R R

 b
b

v
b

b
v=  to obtain the 

rotated measurement vector: 

 R z R CR C R CR C b b nb
b

k
b

b
b

b
b b

k b
b

b
b

ks 



 










� � � �� �1 1m ( ) ( )  (23)

Because C  and C  are assumed to be diagonal, C  is diagonal when the similar-
ity transform R CRb

b
b
b



 preserves the diagonal structure of C.  This is fulfilled only 
for some rotation matrices and, hence, it is recommended to mount the different 
magnetometers in the same orientation. Due to the small size of low-cost magne-
tometers, this should not be a problem.

Fortunately, in the example data set presented in the next section, the rotation 
between the two body frames was given by the rotation matrix: 

ALGORITHM 1
SLAC

Input: 0: 0 1: 0 0, { } , ˆ ˆ,
p

b
K N θ + +z d P

 
 for k = 1  to K  do
    for i = 1  to Np  do 
     Predict particle filter d d dk

i
k
i

k
ip� �( | )1  

     Predict Kalman filter , , 2
1

ˆ ˆi i
k k uσ
− +

−= +P P I  
     Update particle filter w w pk

i
k
i

k
b

k
i

k
b� � �1 0 1 1( | , ): : z d z  

     Update Kalman filter: 
       , , ,

1 1
ˆ ˆ ˆ( )i i ib i
k k k k k kθ θ θ+ + +

− −= + −K z H  
       , ,ˆ ;ˆ i i T

k k k k k
+ −= −P P K S K  

    end for
 end for
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For this rotation, the similarity transform preserves the diagonal structure of C:  

 
R CR R Rb
b

b
b

b
b

b
bc c c

c c c









=
=

diag
diag

([ , , ])
([ , , ]).

11 22 33

33 22 11
 

(25)

Considering Equations (12) and (25) as well as a diagonal C,  it follows that also 
C  is diagonal, and only six parameters have to be estimated in the Kalman filter 
of the Rao-Blackwellized particle filter. As before, the state is split into three parts: 
one for each axis. This results in three Kalman filters with dimension two per par-
ticle. For reduced SLAC, the pseudocode in Algorithm 1 needs only two changes. 
The reduced measurement matrix in Equation (22) is used instead of Equation (7), 
and when the new measurement is obtained, it is immediately rotated into the map 
frame by left-multiplication with the matrix Rb

b .

2.4.4  Applicability of the Approach

For SLAC to be applicable, it has to be ensured that the assumption R I
v
v ≈  is 

fulfilled and that the sensors are mounted roughly at the same height. This ensures 
that the different trains measure the magnetic field at the same localization. When 
it comes to the train type, we would expect that SLAC works for different engines 
types. For electrical engines, one might have to be careful when it comes to the 
sensor mounting positions. The sensor should be mounted at a position at which 
it is not affected by the power electronics of the engine. In addition, in our prior 
work, Siebler et al. (2020), we saw that magnetometers measure a changing mag-
netic field due to the current in the overhead lines. Fortunately, these currents have 
known frequencies that can be filtered out. It should be noted that some trains are 
powered over a DC power line. In such cases, the current induced magnetic fields 
are not so easy to filter out, rendering it problematic to perform SLAC. Besides 
different engine types, trains can also have largely different dimensions but it is 
expected that this has no big effect as the calibration parameters are affected only 
by materials in the vicinity of the sensor. 

3  EVALUATION

In this section, the proposed algorithms are evaluated with measurements from 
two rural trains. The results of SLAC and reduced SLAC are also compared against 
a simple particle filter that ignores the calibration and a particle filter that uses a 
fixed set of calibration parameters.

3.1  Measurement Campaign

The data for the evaluation was collected in a measurement campaign performed 
on the track network of the Harzer Schmalspurbahnen. During the campaign, 
magnetic measurements were recorded with the trains shown in Figure 2. Both 
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trains were equipped with a single-frequency u-blox LEA-M8T GNSS receiver 
and a magnetometer triad contained in an Xsens MTi-G700 inertial measurement 
unit (IMU). The magnetometer on the steam locomotive was mounted on the back 
in a steel cabinet. In the railcar, the magnetometer was mounted on the floor. The 
sensors were placed in the center of the track and had a height above the rails of 
roughly 1.5 m in the steam locomotive and 1 m in the railcar. The relative attitude 
between the body frames of the sensors during the steam locomotive and railcar 
measurements are given by Equation (24), which corresponds to a pitch angle of 
90° (in the steam locomotive, the sensor is hanging on the back of the train and, in 
the railcar, the same sensor is placed flat on the floor). The railcar and the steam 
locomotive traveled at speeds ≤ 50 kmh−1. The evaluation is based on a 7.2 km 
long track segment between Quedlinburg and Gernrode. A satellite image of the 
track is shown in Figure 3. During the recording of the localization data, the railcar 
was accelerating to a speed of ≈ 40 kmh−1. The different filters were started the 
moment the train started driving. This is important for SLAC because, in standstill, 
the parameters are not observable and, due to the system model in the Kalman 
filter of Equation (14), their uncertainty keeps growing in standstill which could 

FIGURE 2 (top) steam locomotive with magnetometer mounted on the backside inside a 
steel cabinet, as shown in the right part of the picture; (bottom) diesel railcar

FIGURE 3 The track in the evaluation is ≈7.2-km long and runs through a rural area between 
Quedlinburg and Gernrode with a mostly open-sky view (Map data: Google Earth, GeoBasis-DE/
BKG).
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potentially lead to a divergence of the filter. The same happens when the train 
comes to a stop. The simplest approach to avoid this issue is to start and stop the 
filter in such situations.

3.2  Magnetic Field Map

The magnetic vector field in the map is based on the magnetometer data from 
the steam locomotive. During the map creation, the ground truth was obtained 
from the GNSS receiver. In the map creation, the GNSS speed was integrated to 
transform the magnetometer measurement time series into a series which each 
element was a 1D along-track position on the track assigned to it. This assignment 
transforms the measurement series from the time into the spatial domain. Based 
on the transformed time series, noise was removed by fitting a linear combination 
of Gaussian basis functions to it. The basis functions are placed equidistant along 
the track with a fixed bandwidth. This procedure ensures a smooth map and gets 
rid of small-scale spatial fluctuations in the measurement series.

Quick access to the map is critical for the overall performance because, in every 
update step, the magnetic field at all particle positions is required. Instead of access-
ing the continuous map function defined by the basis functions, the map is discret-
ized at an equidistant grid with a spacing of �s � 10 cm.  The discretization results 
in an array that contains the magnetic vector for each (discrete) along-track posi-
tion on the track. Access to the map is performed by indexing. The index, Ik ,  for 
a certain position, sk ,  is easily calculated by I s sk k� �round( / )� 1,  assuming the 
first array index is one. For the evaluation, the map additionally contains the cor-
responding Earth-centered, Earth-fixed (ECEF) position from the GNSS receiver. 

3.3  State Space Model and Parametrization

The train state is modeled as a discrete Wiener process acceleration movement 
model: 
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where w Qk k∼ ( , )0  is white Gaussian noise with covariance matrix: 
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The parameter σw  is set to approximately the maximum acceleration change 
within sampling period T,  as suggested in Bar-Shalom et al. (2002). For a train, 
the jerk s  (change of acceleration) is usually limited to a value of 1 ms−3. The 
maximum change in the acceleration during one sampling period, therefore, is 
�w T� � �1ms .3  For the system model of the parameters in Equation (14), the 
covariance matrix is a tuning parameter and was set experimentally to �u � 0 005. ,  
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where the dimension of the identity matrix I  depends on the number of estimated 
parameters.

The particles for all filters are randomly initialized. The samples for the different 
particles and state components are drawn independently from uniform distribu-
tions centered at the corresponding true state. For the position, the width of the 
uniform distribution is 20 m for a speed of 1 ms–1 and an acceleration of 0.5 ms–2. 
The Kalman filter initial state covariance for the parameters is set to one for all 
states. In the initial Kalman filter state, all biases are set to zero, and the calibration 
matrix is set to the identity matrix. Note that the estimated calibration parameters 
have no unit since the magnetometer output values are normalized by the manu-
facturer. All filters use 3,000 particles and are updated at a rate of 10 Hz. The aver-
age processing time of all filters is well below the length of the data set. Therefore, 
the implementation is capable to run in real time. 

3.4  Attitude Errors

During the derivation of the filter equations in Section 2.4, the assumption was 
made that the train frames of the Diesel railcar and the steam locomotive coincide 
R I
v
v ≈  and that the calibration parameters can be modeled independently from 

the attitude of the trains. To show that this is the case for the presented measure-
ments, the attitudes for both trains were estimated with a loosely coupled INS/
GNSS algorithm. In particular, the measurements of a KVH 1750 IMU were com-
bined in an error-state Kalman filter with the position and velocity measurements 
of a u-blox LEA-M8T GNSS receiver. Figure 4 shows the difference in the roll and 
the pitch angles in degrees over the along-track position. The shown differences are 
the Euler angles derived from the rotation matrix, R

v
v ,  between the two frames. In 

the figure, it is clearly visible that both trains have a comparable attitude along the 
whole track with errors below 0.5° for most parts.

FIGURE 4 Difference between the roll and pitch angles between the railcar and the steam 
locomotive
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�50 �T sin Roll .( )�  The magnetic variations are obtained by subtracting the mov-
ing average over the last 50 m of the corresponding axis from the magnetic map.
The comparison in Figure 5 shows that, compared to the error, the variations are
significantly larger for many parts of the track, leading us to the conclusion that
neglecting the misalignment seems reasonable.

3.5  Results

In this section, the results of the position and parameter estimation are pre-
sented. For better comparability, the full and reduced SLAC approaches are com-
pared to a particle filter with fixed calibration parameters and a particle filter that 
uses no calibration at all. For the filter with fixed parameters, first, the magnetic 
field values from the map are obtained with the GNSS position and, second, the 
parameters are estimated with a least-squares estimator. The estimated parame-
ters are then considered constant and known to the particle filter. The calibra-
tion is performed with the magnetometer measurements the train recorded on the 
first 500 m of the track. For the reduced SLAC algorithm and the particle filter 
without calibration, the magnetometer data of the railcar was only rotated with 
Equation (24) into the same body frame in which the map was also recorded. The 
full SLAC approach directly uses the raw magnetometer measurement without 
prior rotation. Due to the probabilistic nature of particle filters, all filters are eval-
uated over 100 Monte-Carlo runs. 

FIGURE 5 Magnetic variations (blue) recorded with the steam engine after removal of the 
mean and the attitude error �50 �T sin �( )Roll  (red)

The potential error the misalignment introduces into the measurements is com-
pared to the measured magnetic variations of the steam engine in Figure 5. The 
error is the value that one would measure when considering a sensor axis to be 
orthogonal to the measured magnetic vector while, in reality, it is misaligned. For a 
magnetic magnitude of 50 µT, the error due to a roll angle difference, therefore, is 
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3.5.1  Position Error

For error calculation, the minimum mean square error estimate (MMSEE), ˆ ,ks  
of the along-track position: 
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k k
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s w s
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=∑  (28)

is calculated from the posterior Dirac mixture density where ski  is the along-track 
position of particle i. The ground truth of the along-track position sk  is the value 
for which the distance between the ECEF position associated with it in the map and 
the GNSS ECEF position at time step k  is minimal. Hence, the along-track error is 
simply the difference between the ground truth and that MMSEE, s k kk

s s� � .ˆ  The 
resulting along-track error of the four different filters is shown in Figure 6.

The shown errors for the two SLAC approaches are those resulting from the 
Monte-Carlo run with the highest root-mean-square error (RMSE), although the 
error showed similar behavior for all runs. For the remaining two filters, the error 
for the run with the smallest RMSE was chosen. From Figure 6, it becomes clear 
that, even for the best runs, both filters diverge and the position error increases 
up to kilometers. To not clutter the figure, the error is shown only until the time it 
reaches a magnitude of 30 m for the first time. Beyond that, the error is no longer 
shown. The particle filter without calibration immediately diverges after the start 
and is not able to track the train position. The pre-calibrated filter is able to per-
form localization for � �260 275 s,  depending on the run, but then loses track. At 
the beginning, the filter position error is smaller than for SLAC due to its known 
calibration parameters. After the parameters are estimated by SLAC and before 
the pre-calibrated filter diverges, the errors are almost identical. This shows that, 
after an initial phase with larger errors, the performance of SLAC is close to a fil-
ter that uses a calibrated sensor. While we expected that the particle filter with 
uncalibrated data would diverge, the divergence of the pre-calibrated filter was 
not expected. We suppose that this was caused by changes in the parameters and 
violations of the linear assumption for the calibration model. This will be discussed 
in more detail in the next section.

The SLAC algorithms have a comparable performance, but overall, the reduced 
SLAC shows a faster convergence in the beginning, also reducing the magnitude 
of the error. This is also reflected in the RMSE. For SLAC, the average RMSE over 

FIGURE 6 Along-track position error for the four different filters; for the pre-calibrated and 
the pre-rotated particle filter, the errors are shown only until the time instant at which the error 
reaches a magnitude of 30 m.
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3.5.2  Calibration Parameters

The calibration parameters estimated by the full and reduced SLAC are depicted 
in Figure 8 and Figure 9. The estimated parameters applied to the map data are 
shown in Figure 10 and Figure 11. Note, in contrast to Figure 10, in Figure 11, the 
rotated railcar magnetometer data is plotted, which is also the input to the reduced 
SLAC algorithm. From Figure 10 and Figure 11, it can be seen that, after an initial 
phase of larger errors, both algorithms are able to closely fit the map data to the 
measured data.

To our surprise, in Figure 8 and Figure 9, instead of converging to a constant 
value, the calibration parameters kept changing while the railcar drove along the 
track. This is in contrast to what we saw from earlier experiments with a model 
train presented in Siebler et al. (2021b) where the parameters converged towards 
a constant value. For the majority of the time, the parameters were slowly drift-
ing but also a few more sudden changes were observed. Unfortunately, it was not 
possible to identify a single cause for this behavior. As for the model train exper-
iments in Siebler et al. (2021b), the same sensor type was used, so the changes 

FIGURE 7 Measured magnetic field variations: The railcar measurements are rotated to 
the body frame of the steam engine. The shown data is the output of the Xsens sensor which is 
normalized to 40 µT. 

all runs is 2.44 m and, for reduced SLAC, is 1.85 m. In comparison, the two particle 
filters without simultaneous calibration diverged in every run and achieved RMSE 
values above one kilometer. At around 330–350 s in Figure 6, the error grows up to 
≈ 30 m and is then reduced again to a few meters. The larger error occurs at a part 
of the track where only small variations in the magnetic field are observed as can 
be seen from the magnetic data in Figure 7. Since the filter uses only magnetometer 
measurements and a motion model for localization, the lack of sufficient or unique 
magnetic variations is problematic (i.e., in such scenarios, the filter could diverge). 
For applications that require high reliability, it is therefore strongly recommended 
to consider an odometer to aid the estimation. Due to the generic nature of the 
particle filter, incorporating additional sensors is straightforward. 
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observed in Figure 8 and Figure 9 most likely were not caused by internal sensor 
parameters. We suspect that the changes were caused by a combination of vio-
lated model assumptions, unavoidable imperfections, and possible changes in the 
measurement setup. For the linear model assumption to hold, the surroundings 
of the sensor that influences the measurements must be completely static (e.g., no 
moving ferromagnetic material or power lines with slowly changing DC currents). 
This is hardly fulfilled for a train due to its steel wheels, gearboxes, and electrical 
systems. In addition, as the sensors in the steam locomotive and the railcar were 
not mounted at the exact same height and did not have the same exact roll and 
pitch angles, this could result in a nonlinear or time-variable relation between both 
sensor measurements. Another possible source of error is the map. The map most 
likely contains errors caused by the GNSS measurements providing the ground 

FIGURE 9 Estimated parameters by the reduced SLAC approach

FIGURE 8 Estimated parameters by the full SLAC approach



SIEBLER et al.

truth during map creation. For example, when the magnetic field in the map has 
a sudden shift compared to the true magnetic field, the calibration parameters are 
adapted by the Kalman filter to partially compensate for this error at the moment 
a particle reaches this position. Comparing Figure 8 and Figure 9 with the data in 
Figure 7, we see that the sudden parameter changes occur when the measurements 
have strong variations. Between two strong variations, the parameters are drifting, 
indicating that the parameter estimation is not accurately possible due to a low 

FIGURE 10 First 200 s of measurement data and calibrated map data for the SLAC 
algorithms; the calibrated map data is obtained with the MMSEE of the train position and 
calibration parameters.

FIGURE 11 First 200 s of measurement data and calibrated map data for the reduced 
SLAC algorithms; the calibrated map data is obtained with the MMSEE of the train position and 
calibration parameters.
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signal-to-noise ratio. When the particle cloud reaches a position with strong varia-
tions, smaller errors in the parameters lead to bigger residuals in the Kalman filter 
and the parameters are quickly corrected to reduce the residuals again.

The combination of model mismatch and the errors in the map could explain 
why a constant set of calibration is not sufficient to accurately calibrate the mag-
netometer for the whole data set and why the pre-calibrated particle filter diverged 
in all Monte-Carlo runs. 

4  CONCLUSION

For magnetic field-based localization, magnetometer calibration plays an essen-
tial role. Therefore, we proposed in Siebler et al. (2021a, 2021b) a simultaneous 
localization and calibration (SLAC) algorithm based on a Rao-Blackwellized parti-
cle filter that exploits the conditional linearity of the calibration parameters. This 
reduces the number of required particles and lowers the overall complexity. To fur-
ther lower the complexity, in this paper, a reduced version of the SLAC algorithm 
was introduced that only estimates a subset of parameters. In the reduced SLAC 
algorithm, the dimension of the Kalman filter was reduced and only one scale fac-
tor and bias per sensor axis was estimated. The old and new SLAC algorithms were 
evaluated with a data set recorded with a Diesel-powered railcar and a magnetic 
map recorded with a steam locomotive. Overall, an average RMSE position error 
below 2.5 m could be achieved for both SLAC versions. Due to faster convergence, 
the reduced SLAC algorithm achieved a lower RMSE, but the overall performance 
of both algorithms was similar. The results clearly show that SLAC also enables 
magnetic localization for trains that use uncalibrated sensors and are different to 
the train that was used to create the magnetic map. 

a c k n o w l e d g m e n t s
We thank the HSB for their support during the measurements.
This work is partially carried out in the Ubiquitous Spatio-Temporal Learning 

for Future Mobility (ULearn4Mobility) project funded by the Helmholtz AI 
Cooperation Unit under the grant ZT-I-PF-5-49 and the Intelligent Magnetic 
Positioning for Avoiding Collisions of Trains (IMPACT) project funded by the 
Bavarian Ministry of Economic Affairs, Regional Development and Energy under 
the grant DIK-2002-0016 / DIK0175/01.

r e f e r e n c e s
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters 

for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 
50(2), 174–188. https://doi.org/10.1109/78.978374

Bar-Shalom, Y., Li, X. -R., & Kirubarajan, T. (2002). Estimation with applications to tracking 
and navigation: theory, algorithms and software. John Wiley & Sons, Ltd. https://doi.
org/10.1002/0471221279

Canciani, A., & Raquet, J. (2017). Airborne magnetic anomaly navigation. IEEE Transactions on 
Aerospace and Electronic Systems, 53(1), 67–80. https://doi.org/10.1109/TAES.2017.2649238

Frassl, M., Angermann, M., Lichtenstern, M., Robertson, P., Julian, B. J., & Doniec, M. (2013). 
Magnetic maps of indoor environments for precise localization of legged and non-legged 
locomotion. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, 
Japan. https://doi.org/10.1109/IROS.2013.6696459

Haverinen, J., & Kemppainen, A. (2009). Global indoor self-localization based on the ambient 
magnetic field. Robotics and Autonomous Systems, 57(10), 1028–1035. https://doi.org/10.1016/j.
robot.2009.07.018

Heirich, O., Siebler, B., & Hedberg, E. (2017). Study of train-side passive magnetic measurements 
with applications to train localization. Journal of Sensors. https://doi.org/10.1155/2017/8073982

https://doi.org/10.1109/78.978374
https://doi.org/10.1002/0471221279
https://doi.org/10.1002/0471221279
https://doi.org/10.1109/TAES.2017.2649238
https://doi.org/10.1109/IROS.2013.6696459
https://doi.org/10.1016/j.robot.2009.07.018
https://doi.org/10.1016/j.robot.2009.07.018
https://doi.org/10.1155/2017/8073982


SIEBLER et al.

Jung, J., Lee, S. -M., & Myung, H. (2015, July). Indoor mobile robot localization and mapping based 
on ambient magnetic fields and aiding radio sources. IEEE Transactions on Instrumentation 
and Measurement, 64(7), 1922–1934. https://doi.org/10.1109/TIM.2014.2366273

Kok, M., & Schön, T. B. (2016). Magnetometer calibration using inertial sensors. IEEE Sensors 
Journal, 16(14), 5679–5689. https://doi.org/10.1109/JSEN.2016.2569160

Kok, M., & Solin, A. (2018, July). Scalable magnetic field SLAM in 3D using Gaussian process 
maps. 2018 21st International Conference on Information Fusion (FUSION), Cambridge, United 
Kingdom. https://doi.org/10.23919/ICIF.2018.8455789

Li, B., Gallagher, T., Dempster, A. G., & Rizos, C. (2012). How feasible is the use of magnetic field 
alone for indoor positioning? 2012 International Conference on Indoor Positioning and Indoor 
Navigation (IPIN), Sydney, Australia. https://doi.org/10.1109/IPIN.2012.6418880

Marais, J., Beugin, J., & Berbineau, M. (2017). A survey of GNSS-based research and developments 
for the European railway signaling. IEEE Transactions on Intelligent Transportation Systems, 
18(10), 2602–2618. https://doi.org/10.1109/TITS.2017.2658179

Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: a factored solution to 
the simultaneous localization and mapping problem. Proc. of the 18th National Conference on 
Artificial Intelligence, 593–598. https://dl.acm.org/doi/10.5555/777092.777184

Renaudin, V., Afzal, M. H., & Lachapelle, G. (2010). Complete triaxis magnetometer calibration in 
the magnetic domain. Journal of Sensors. https://doi.org/10.1155/2010/967245

Shao, W., Zhao, F., Wang, C., Luo, H., Zahid, T. M., Wang, Q., & Li, D. (2016). Location fingerprint 
extraction for magnetic field magnitude based indoor positioning. Journal of Sensors. https://
doi.org/10.1155/2016/1945695

Shockley, J. A., & Raquet, J. F. (2014). Navigation of ground vehicles using magnetic field 
variations. NAVIGATION, 61(4), 237–252. https://doi.org/10.1002/navi.70

Siebler, B., Heirich, O., Sand, S., & Hanebeck, U. D. (2020, April). Joint train localization and 
track identification based on Earth magnetic field distortions. 2020 IEEE/ION Position, 
Location and Navigation Symposium (PLANS), Portland, OR, 941–948. https://doi.org/10.1109/
PLANS46316.2020.9110149

Siebler, B., Lehner, A., Sand, S., & Hanebeck, U. D. (2021a). Evaluation of simultaneous 
localization and calibration of a train mounted magnetometer. Proc. of the 34th International 
Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. 
Louis, MO, 2285–2293. https://doi.org/10.33012/2021.17900

Siebler, B., Sand, S., & Hanebeck, U. D. (2021b). Localization with magnetic field distortions and 
simultaneous magnetometer calibration. IEEE Sensors Journal, 21(3), 3388–3397. https://doi.
org/10.1109/JSEN.2020.3024073

Vasconcelos, J. F., Elkaim, G., Silvestre, C., Oliveira, P., & Cardeira, B. (2011, April). Geometric 
approach to strapdown magnetometer calibration in sensor frame. IEEE Transactions on 
Aerospace and Electronic Systems, 47(2), 1293–1306. https://doi.org/10.1109/TAES.2011.5751259

Wahdan, A., Georgy, J., & Noureldin, A. (2015). Three-dimensional magnetometer calibration 
with small space coverage for pedestrians. IEEE Sensors Journal, 15(1), 598–609. https://doi.
org/10.1109/JSEN.2014.2348552

How to cite this article: Siebler, B., Lehner, A., Sand, S., & Hanebeck, U. D. (2023). 
Simultaneous localization and calibration (SLAC) methods for a train-mounted 
magnetometer. NAVIGATION, 70(1). https://doi.org/10.33012/navi.557

https://doi.org/10.1109/TIM.2014.2366273
https://doi.org/10.1109/JSEN.2016.2569160
https://doi.org/10.23919/ICIF.2018.8455789
https://doi.org/10.1109/IPIN.2012.6418880
https://doi.org/10.1109/TITS.2017.2658179
https://dl.acm.org/doi/10.5555/777092.777184
https://doi.org/10.1155/2010/967245
https://doi.org/10.1155/2016/1945695
https://doi.org/10.1155/2016/1945695
https://doi.org/10.1002/navi.70
https://doi.org/10.1109/PLANS46316.2020.9110149
https://doi.org/10.1109/PLANS46316.2020.9110149
https://doi.org/10.33012/2021.17900
https://doi.org/10.1109/JSEN.2020.3024073
https://doi.org/10.1109/JSEN.2020.3024073
https://doi.org/10.1109/TAES.2011.5751259
https://doi.org/10.1109/JSEN.2014.2348552
https://doi.org/10.1109/JSEN.2014.2348552
https://doi.org/10.33012/navi.557

	Simultaneous Localization and Calibration (SLAC) Methods for a Train-Mounted Magnetometer
	Summary
	Keywords
	1  Introduction
	2  Methodology
	2.1  Frame Definitions
	2.2  Localization Particle Filter
	2.3  Magnetometer Calibration
	2.4  Simultaneous Localization and Calibration (SLAC)
	2.4.1  Mapping and Calibration
	2.4.2  SLAC With Rao-Blackwellized Particle Filter
	2.4.3  Reduced SLAC
	2.4.4  Applicability of the Approach


	3  Evaluation
	3.1  Measurement Campaign
	3.2  Magnetic Field Map
	3.3  State Space Model and Parametrization
	3.4  Attitude Errors
	3.5  Results
	3.5.1  Position Error
	3.5.2  Calibration Parameters


	4  Conclusion
	Acknowledgments
	References




