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Abstract Sensor-based sorting provides state-of-the-art solu-
tions for sorting of cohesive, granular materials. Systems are
tailored to a task at hand, for instance by means of sensors and
implementation of data analysis. Conventional systems utilize
scanning sensors which do not allow for extraction of motion-
related information of objects contained in a material feed. Re-
cently, usage of area-scan cameras to overcome this disadvan-
tage has been proposed. Multitarget tracking can then be used
in order to accurately estimate the point in time and position
at which any object will reach the separation stage. In this
paper, utilizing motion information of objects which can be re-
trieved from multitarget tracking for the purpose of classifica-
tion is proposed. Results show that corresponding features can
significantly increase classification performance and eventually
decrease the detection error of a sorting system.

Keywords: Optical inspection, sensor-based sorting, multitarget track-
ing, classification.
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1 Introduction

Sensor-based sorting technology enables the separation of a material feed
into different classes. Typically, systems are used to remove low-quality
or potentially dangerous entities from a feed. Applications are found in
food processing [1], waste management [2], as well as sorting of industrial
minerals [3]. The sorting process is commonly subdivided into the stages
feeding, presentation, data analysis, and physical separation. Systems
further differ in regard to the applied transport mechanism, sensors, and
separation mechanism. A widespread setup regarding these components
consists of a conveyor belt, line-scan cameras operating in the visible
spectrum, and compressed air nozzles. Whenever an object is to be re-
moved from the feed, it is deflected during a flight phase by activating
corresponding nozzles. Hence, errors in sorting occur whenever an ob-
ject to be accepted is falsely deflected and contrariwise. Which of these
two errors is of higher importance depends on the sorting task at hand.
However, both result from various errors that may occur, such as sensor
errors, detection errors, or errors in physical separation.

For conventional systems utilizing scanning sensors, it is desired to
achieve perfect flow control, i.e. the material moves with a defined, con-
stant velocity. This is due to a delay between presentation and physical
separation. Between these two points in time, no further information
about an object can be obtained. Therefore, all objects are required to
reach an expected velocity in order to be able to reliably predict the
point in time as well as the position when the particles reach the array
of air nozzles and hence minimize the error in physical separation. For
certain products, this is a very hard task. In order to be able to also sort
products for which perfect flow control is infeasible to achieve, replacing
line-scan sensors by area-scan sensors has recently been proposed [4]. A
sufficiently high frame-rate provided, objects can be observed at multi-
ple points in time. By applying multitarget tracking, the velocity of the
object can be determined. This way imperfection in flow control can be
compensated and potential errors in physical separation can be reduced.

In this paper, it is demonstrated that information derived from track-
ing of the objects can also increase detection performance. More pre-
cisely, integral features such as the velocity are derived from the tracks.
These features can then be used to characterize objects contained in the
feed. Therefore, classification can be performed on the basis of phys-
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ical motion behavior and hence non-optical properties. To our best
knowledge, this is the first time such an approach has been proposed
for sensor-based sorting. Results show the approach can significantly
increase classification performance for certain products.

2 Related Work

Sensor-based sorting is a field of growing importance with widespread ap-
plicability. Corresponding systems can be used stand-alone, e.g. to clean
a feed from impurities, or as a step of more complex sorting processes [2].
In many cases, systems are tailored to a specific task at hand and hence
exploit knowledge about the material to be processed. This includes the
selection of appropriate sensors [5] and possibly illumination [6]. State
of the art systems employ scanning sensors such as line-scan cameras.
Consequently, the material is required to be in motion, which is achieved
by a corresponding transport mechanism. For instance, systems include
a conveyor belt or the material is running down a slide or chutes. Deriva-
tion of the sorting decision, which typically can be regarded as an accept
or reject task, is performed via data analysis. For cohesive, granular ma-
terials, arrays of compressed air nozzles are used for the task of physical
separation. In optical sorting, sensor data can be interpreted as an im-
age, hence image processing is performed. This includes segmentation of
the image data, detecting regions containing objects, and classification
of those [7]. For the latter, color related properties are often used [8].

Recently, replacing line-scan sensors by area-scan sensors has been pro-
posed [9]. By obtaining sensor data for multiple points in time for each
object contained in the feed, multitarget tracking can be utilized to gain
insight into the trajectory of an object [4]. This eventually allows de-
creasing the error in physical separation since more accurate assumptions
regarding the point in time as well as the position when an object reaches
the separation stage can be employed. This paper extends these works
by also utilizing motion information for the discrimination of objects.

3 Motion-Based Discrimination of Products

The proposed approach aims at increasing detection performance by in-
corporating motion-related characteristics of individual objects of the
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feed. In the following, the methodology for deriving such features as well
as the evaluation setup considered in this paper are presented.

3.1 Methods

In sensor-based sorting, the main direction in which objects are moving
is defined by the system setup. For instance, using a conveyor belt,
objects mainly move with the running direction of the belt. In order
to obtain data that can be used for characterisation of objects based on
their movement, it is required that each individual object is observed by
the camera multiple times. Considering an area-scan sensor, this can be
achieved by a sufficiently high frame rate.

From the image data, the position of objects, e.g. the centroid of the
2D projection, can be determined. This results in a set of points for each
obtained frame. By applying multitarget tracking, information about the
same object in successive frames can be combined into a track. Briefly,
a standard Kalman filter is used for state estimation including the 2D
position as well as velocity for both direction components as state vari-
ables. Also, an algorithm solving the Linear Assignment Problem is used
for the association between retrieved measurements and existing tracks.
A detailed description of the system is provided in [4,9]. Eventually, the
path of each individual object can hence be described by a list of cen-
troid measurements. However, these may vary in length due to different
number of observation time points for the objects.

In the course of this work, basic motion-related key figures based on
velocity and acceleration are manually selected. With respect to velocity,
one temporally global as well as several temporally local features are con-
sidered. In this context, a global feature refers to information obtained
for the entire observation sequence of an object. Local features are based
upon 2 successive measurements for velocity related features and 3 for
acceleration related features. The final feature vector is of dimensionality
14 and is a composite of the following numerical values:

• The number of measurements obtained.

• The global velocity of the object.

• The local minimal, average, and maximum velocity individually for
the x and y component.
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• The local minimal, average, and maximum acceleration individu-
ally for the x and y component.

It should be noted that local features, which are in the majority, can
be computed in-line to the observations, while global features require
identifying that an object left the observable area.

3.2 Evaluation Framework

The described approach was validated experimentally. For this purpose,
4 products were identified for which similar, yet not equal motion char-
acteristics may be expected. An illustration of the products is provided
in Figure 1.1 (l.t.r): wooden hemispheres, wooden spheres, wax beads,
and cotton balls. All objects have a diameter of 10 mm and only dif-
fer in terms of surface friction and weight. In addition to the different
materials, the wax beads and cotton balls have a tiny hole through them.

(a) Wooden hemi-
spheres, ∼0.26 g

(b) Wooden
spheres, ∼0.4 g

(c) Wax beads with
hole, ∼0.47 g

(d) Cotton balls
with hole, ∼0.24 g

Figure 1.1: Products used for experiments.

For these products, image data using a miniature optical belt sorter
was recorded. A detailed presentation of the system with the purpose of
a simulation thereof is provided in [10]. The objects were fed into the
system by a vibrating feeder, passing down a slide on to a conveyor belt
running at 1.1 m/s. Frames were recorded at ∼192 Hz using a camera
of the type Bonito CL-400. An example frame is provided in Figure 1.2.

The conveyor belt has a total length of 60 cm. A crucial parameter for
flow control is the length of the belt. Therefore, different lengths were
imitated by mounting the camera at different positions along the belt
at a fixed distance. More precisely, data was collected for 3 locations
which are described in the following. The first section, hereafter referred
to as feeding, is located right after objects enter the belt from the slide
and covers the first ∼11 cm. Hence, this location simulates the shortest
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(a) Wooden spheres (b) Wooden hemispheres

Figure 1.2: Frames captured on the conveyor belt. The red, arrowed lines
illustrate the resulting tracks in terms of associated measurements.

belt considered in this evaluation. The second section is located at the
middle of the belt, covering the area reaching from ∼23 cm to ∼34 cm,
and is referred to as center in the remainder. Lastly, the third section
called edge covers the last ∼8 cm of the belt.

Each of the following processing steps were performed offline subse-
quent to image recording. First, basic image processing routines are re-
quired to extract the midpoints of potentially contained objects in each
frame. For this purpose, the fact that a stable background as well as illu-
mination exists in the scene is exploited. Utilizing a background subtrac-
tion approach, regions of the frame containing objects can be extracted
and their midpoints calculated. This centroid’s information is then fed
into the multitarget tracking system, which outputs a list of tracks and
the associated measurements for each data set. From this data, the fea-
ture vectors as described in the previous section are calculated.

Since manual feature selection was performed, Principal Component
Analysis (PCA) is used to validate the selection. An example of the
outcome is provided in Figure 1.3. As can be seen, visualising the first
and second component shows that clusters form for all of the 4 classes.

4 Experimental Results

In order to demonstrate the success of the method, a random forest clas-
sifier consisting of 10 estimators was trained on the data. As a measure of
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Figure 1.3: Visualisation of the feature space using the first and second
component obtained via PCA for position edge.

quality, Matthews correlation coefficient (MCC) [11] is used. Firstly, the
entire data was used both for training and testing in order to estimate an
upper bound of the performance. For all observation areas and classes,
excellent values ranging between 0.98 and 1.0 were obtained. This clearly
indicates that classes can be discriminated on basis of the data.

Secondly, training and testing via cross validation was performed. For
this purpose, 60% of the data was used for training. Obtained results as
shown in Figure 1.4 (b) allow for several conclusions. In general, wooden
spheres and hemispheres can be detected the most accurately for all con-
sidered camera positions. It also becomes clear that classification perfor-
mance increases with the length of the belt used for transportation. The
latter is especially noteworthy since it leads to the conclusion that the
differences in the adaption to belt velocity reveals properties which allow
discrimination of the different products. A possible explanation, which
is yet to be confirmed, is that at the beginning of the belt, the motion of
objects is rather random due to the feeding process. In summary, results
show that motion-based features are expressive key figures which can al-
low discrimination of products. Therefore, it is assumed that combining
traditional features, such as color-based and geometric, with motion re-
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lated ones results in a significant increase in classification performance
and therefore minimization of the detection error in sensor-based sorting.
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Figure 1.4: Classifier performance for cross validation (testing size 40%).

Furthermore, Figure 1.5 provides insights regarding the errors made
during classification. For instance, from the confusion matrices, it can be
seen that for the position feeding many wax beads are falsely classified as
wooden hemispheres, while this error almost disappears for the position
edge. However, the number of cotton balls mistakenly hold as wooden
hemispheres can be observed to be almost equal for both positions.

5 Conclusion

In this paper, it was shown that motion-based features provide a powerful
tool to discriminate certain products in sensor-based sorting. Therefore,
the presented approach contributes towards minimizing the detection
error. The approach was validated experimentally on the basis of real
world data obtained using a miniature sorting system. Results indicate
that the difference in adaption to the velocity of the conveyor belt reveals
the most insightful properties that allow discrimination of the products.

Due to the success of the method, it is intended to explore more com-
plex motion-based features in the future. For instance, information re-
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Figure 1.5: Confusion matrices for cross validation.

garding changes in direction and spin may lead to even better results.
Also, for application in an industrial setting, further potential challenges,
such as required computation time, need to be taken into consideration
and addressed appropriately. Lastly, insights from this paper can be
taken into account for system design. Instead of aiming at perfect flow
control, it might be beneficial to use setups which support revelation
of object characteristics by not suppressing their motion characteristics.
This in turn requires precise predictions for physical separation. Hence, a
potential conflict between quality of classification and separation exists.
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