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Abstract—In this paper a train localization method is proposed
that uses local variations of the earth magnetic field to determine
the topological position of a train in a track network. The
approach requires a magnetometer triad, an accelerometer, and
a map of the magnetic field along the railway tracks. The
estimated topological position comprises the along-track position
that defines the position of the train within a certain track and
the track ID that specifies the track the train is driving on. The
along-track position is estimated by a recursive Bayesian filter
and the track ID is found from a hypothesis test. In particular
the use of multiple particle filter, each estimating the position on
different track hypothesis, is proposed. Whenever the estimated
train position crosses a switch, a particle filter for each possible
track is created. With the position estimates of the different
filters, the likelihood for each track hypothesis is calculated from
the measured magnetic field and the expected magnetic field in
the map. A comparison of the likelihoods is subsequently used to
decide which track is the most likely. After a decision for a track
is made, the unnecessary filters are deleted. The feasibility of the
proposed localization method is evaluated with measurement data
recorded on a regional train. In the evaluation, the localization
method was running in real time and overall an RMSE below five
meter could be achieved and all tracks were correctly identified.

I. INTRODUCTION

The lack of automation in train traffic leads to large safety
distances between consecutives trains and a resulting low
density of trains in the track network. Furthermore, current
railway systems are not capable to handle flexible and demand
driven schedules. This limits the amount of trains on the
same track and therefore the passenger and cargo capacity.
Especially in urban areas, where the number of passengers
constantly grows, this has become a problem that is not easily
solved by building new track infrastructure due to substantial
costs and limited space. Therefore, automation is one of the
best options to increase the traffic density and to make a more
flexible use of existing track networks. To enable automation
in the future, accurate and continuously available train local-
ization is crucial. In particular, the topological position of
each train in the track network is required. The topological
position has two components: the along-track position that
defines the position of the train within a certain track and
the track number that specifies the track the train is driving
on. An estimate of the topological position requires some sort
of map containing information about the topology of the track
network. If the map contains the track geometry in a global
coordinate system, e.g., the geocentric earth-centered earth-
fixed system (ECEF), the topological position can be obtained
easily with global navigation satellite system (GNSS) signals

by map matching. While in most scenarios, GNSS is sufficient
for automated train operation, there are also environments that
have a negative effect on the GNSS signals. In tunnels or below
roofs in train stations the signals are blocked and in urban areas
it is expected that at least severe multipath is encountered. In
addition, due to the low signal power at the receiver, GNSS is
vulnerable to jamming. Therefore, the detection, the handling
and the investigation of possible errors is an important research
topic. A survey on GNSS in the railway environment can be
found in [1].

Due to the shortcomings of GNSS, we propose to use the
magnetic field as an independent source of position informa-
tion for areas where GNSS signals are degraded or blocked.
The use of the magnetic field for localization is based on the
observation that ferromagnetic infrastructure components in
the vicinity of the track introduces distortions in the earth
magnetic field that are persistent over time and characteristic
for a certain part of the track. Magnetic field distortions or
variations for localization were first considered for indoor
localization [2], [3], [4] and have been applied to road vehicles
[5] and airplanes [6].

Utilizing magnetic field variations requires a map of the
magnetic field along the railway track. The map relates each
topological position to the corresponding magnetic field value.
For train localization, the measurements of a magnetometer
mounted on the train are continuously compared with the
map to identify the most likely position. One difficulty in
the position estimation is the nonlinear relation between the
magnetic field, represented by the map, and the train posi-
tion. The estimation of the train position therefore requires
nonlinear estimators. A simple extended Kalman filter would
not work because even position errors of a few meters lead
to a wrong linearization of the measurement model. In our
prior work [7], we therefore proposed a particle filter that
is capable of handling the nonlinearities and we showed that
the estimation of the train position only with a magnetometer
and motion model is possible with a root mean square error
(RMSE) below four meters. Thus far, the correct track ID
was assumed to be known in advance. This assumption is
not unrealistic in practice, but implies prior knowledge about
the whole series of tracks the train traverses. Being able to
estimate the track number jointly with the along-track position
relaxes this requirement and allows a more flexible use of the
magnetic field based localization system. When the series of
tracks is already known, the proposed method can serve as
detector for faulty switch directions.
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Fig. 1. Magnetic vector field along a 1000m long track segment measured
during two different runs. Until 500m, the train was running on the same
track during both runs and then a switch was passed and different tracks are
traversed. The red and the blue lines show the measurements for the first and
second run.

II. MAGNETIC FIELD IN THE RAILWAY ENVIRONMENT

The proposed localization system is based on local varia-
tions in the earth magnetic field. The variations in the magnetic
field are caused by ferromagnetic material that influences
the earth magnetic field. In the railway environment, ferro-
magnetic material is found in the track, the poles holding
the overhead line, but also in the substructure of the track
and steel reinforced concrete in sound barriers and platforms.
Overall, this causes position specific variations that are per-
sistent in time. An example of such variations is shown in
Fig. 1. The figure shows the measured components of the
magnetic vector field on a 1000 m long track of the Bayerische
Regiobahn (BRB), a local train operator in Augsburg. During
the measurements, the x- and y-axis of the magnetometer
were measuring the field in the horizontal plane and the z-
axis in the down direction. The x-axis was facing into the
driving direction and the y-axis to the right. The values of
the magnetic field are normalized by the magnetometer inside
the Xsens MTi-G-700 inertial measurement unit (IMU) used
during the measurements. The data sheet does not precisely
specify the value of the normalization constant but states that
it is ≈ 40 µT. Since the main interest here is the magnetic
field and its suitability for localization, not the exact magnetic
field strength, this is not an issue.

In Fig. 1, the train was driving on the same track during
both runs until 500 m and than a switch was passed. Before
the switch, the magnetic field is very similar for both runs
and it can be seen that the value of the magnetic field varies
over the along-track position. After the switch is passed, the
magnetic field start to differ for the different runs. Fig. 1
shows that in principle the magnetic field contains information
about the along-track position as well as the track ID and
therefore looks promising in respect to the estimation of
the topological position. Besides the position specific and
time-invariant variations, the magnetometer also measures a
magnetic field caused by the current in the overhead line.

The current, and therefore the magnetic field, alternates with a
known frequency of 16.67 Hz and has a changing amplitude.
Even though the train used in the measurements had a Diesel
engine, the periodic magnetic field was strongly pronounced
in the measurements due to other electric trains in the vicinity.

In this paper, this issue is addressed with a band stop filter
that damps this frequency in the measurements. Another, more
severe problem is when the magnetic field changes due to
changes in the environment. This can happen temporarily, e.g.,
when another train is passing by or permanently, e.g., due to
construction work. This causes outliers in the measurements
that have to be handled in the filter to avoid divergence. This
issue will be discussed and addressed in the next section when
the particle filter is introduced. More details on the magnetic
field in the railway domain can be found in [8].

III. IMPLEMENTATION

A. Topological Position
In contrast to the positions of road vehicles, the positions

of railway vehicles are limited to a track. Therefore, the
train position can be described in relation to topology of the
track network. The topological position of a train is uniquely
described with the set

p = {s, I} (1)

where s is the along-track position, describing the position on
the current track, and I ∈ N0 is the ID of the current track.
The along-track position is the distance the train has to drive
from the start of the current track I to its current position. The
domain of s on track I therefore is {s ∈ R+ | 0 ≤ s ≤ LI}
where LI is the length of the track. The definition of p leads
to discontinuities in s whenever the borders of the track are
reached. Handling these discontinuities requires the topology
of the track network, that means the information how the tracks
are interconnected to each other, and the ID of the current
track. When a track changes at a switch, the position must
be recalculated in respect to the new track and track ID. In
the rest of the paper, the topology of the track network is
assumed to be known. This assumption is reasonable, since
the topology can only change during constructions and is then
again constant. The topology information is easily obtained
from different sources like OpenStreetMap or aerial pictures.

B. Track Map
For localization, the topology is stored in a track map. The

map is a list of tracks, where each track contains the magnetic
field vector measured at the different along-track positions,
the corresponding ECEF position, and the information how
the track is linked to the others. For the magnetic field, it is
important to define how the magnetometer triad is oriented
during the measurements of the map. In this paper, the x-
axis of the sensor frame is aligned with the direction of the
track. More precisely, the magnetometer x-axis is facing into
driving direction of a train that drives from the end of a track
at s = LI to the start of the track s = 0. This definition is
arbitrary, but must be maintained during the mapping to ensure
that the magnetic field in the map is consistent in respect to
the magnetometer orientation. In the particle filter, the map is



considered to be a function that maps the topological position
p to the magnetic field vector at that position

m : p 7→m ∈ R3. (2)

C. Joint Position Estimation and Track Identification

1) State Space Model: This section is based on the particle
filter from our prior work in [7]. The state space model of the
particle filter is extended with an input from an accelerometer
that is aligned with the x-axis of the magnetometer. This
assures that the sign of the acceleration measurements can be
corrected with the train orientation which is estimated from
the magnetometer measurements and the magnetic map of
the track network. In addition, multiple observation models
to cope with false measurements due to passing trains, out-
dated map information or noise from the overhead line are
introduced to the filter. For the derivation of the particle filter,
the trajectory, containing all track IDs the train traverses, is
assumed to be known. Switches and therefore the identification
of the correct new track ID and the discontinuities in the along-
position are handled in a second step based on the particle filter
position estimate as will be described in the next sections.
Since the track ID is known, the state vector x contains only
the position s, the train speed ṡ, and the orientation of the
accelerometer and the magnetometer O

x =
[
s ṡ O

]T
. (3)

The orientation is binary O ∈ {−1, 1} and indicates if the
magnetometer and accelerometer x-axes are pointing towards
the end (O = −1) or beginning (O = 1) of the current track.
The orientation ensures that the acceleration is integrated with
the correct sign, which is also reflected in the discrete-time
system model

xk =

1 T 0
0 1 0
0 0 1

xk-1 +

 0
−OT

0

 ak-1 +

0
1
0

wk-1 (4)

with sampling time T , time step k, the measured acceler-
ation ak-1, and the accelerometer measurement noise wk-1.
The acceleration is multiplied with −O because of how the
magnetometer was oriented during mapping and therefore how
the orientation is defined. The orientation is assumed to be
constant without any noise. So once the value is set it cannot
change anymore. This was done because the orientation is
fixed and usually does not change during operation. In the
concrete particle filter implementation, half of the particles
are initialized with (O = −1) and half with (O = 1). After
processing a few magnetic field measurements and resampling
steps, only particles with the correct orientation remain. The
bias of the accelerometer and the attitude of the train is
not estimated because it was not necessary. The slope of an
adhesion railway track is always close to zero, estimating the
slope with an accuracy that is beneficial for the localization
therefore requires gyroscopes with a very high quality. For the
accelerometer bias, a fixed value was set at the initialization
of the filter. If required, including the accelerometer bias
into the state space model and the particle filter would be

straightforward. With the definition of the state vector, the
magnetometer measurement model can be described by

zk = diag(
[
O O 1

]
) ·m(sk, Ik) + nk, (5)

where diag(v) is a diagonal matrix with v as its main diagonal
entries and nk is the magnetometer measurement noise vector.
In addition to the actual sensor noise, which is small and
can be assumed Gaussian, the measurements are contaminated
with periodic noise introduced by currents in the overhead line
and distortions caused by passing trains or outdated values
in the map. In particular, passing trains and changes in the
magnetic field can cause issues in the filter because it is not
easy to predict or to remove them by filtering in the frequency
domain. Therefore multiple noise models, as proposed in [9],
are used in the weight calculation of the filter. The main idea
is to have a noise model for the nominal case when the map
is up-to-date and the measurements are only contaminated
with the sensor noise and a second model for all the error
cases. The multiple noise models are integrated into a sampling
importance resampling (SIR) particle filter as described e.g. in
[10].

2) SIR Particle Filter: The SIR filter tries to estimate the
posterior density of the state trajectory x0:k from time step
0 to k conditioned on the measurement history z0:k. The
posterior is approximated with a set of Np weighted particles
{xi0:k, wik}. The weighted particles can be interpreted as a
Dirac mixture density that approximates the posterior

p(x0:k|z0:k, a0:k−1) ≈
Np∑
i=1

wikδxi
0:k

(x0:k) (6)

with the Dirac distribution δxi
0:k

(x0:k) centered at the i-th
particle position in the state space. The SIR particle filter
processes the measurement data sequentially and utilizes a
simple predict and update scheme. In each time step, first the
prediction is performed by sampling, i.e., by drawing a new set
of particle, from an importance density q(xik|xik−1, zk, ak−1)
and second the weights of the predicted particles are adjusted
with the equation

w̃ik = wik−1
p(zk|xik)p(xik|xik−1, ak−1)

q(xik|xik−1, zk, ak−1)
. (7)

Here, the importance density is set to the transition model
p(xik|xik-1, ak−1) from (4) and therefore the weight update re-
duces to a multiplication of the weight from the previous time
step with the likelihood p(zk|xik) of the newest measurement.
When all weights are updated, a renormalization is performed
to ensure

∑
i

wik = 1

wik =
w̃ik

Np∑
i=1

w̃ik

. (8)

The particle filter is inherently unstable and degeneracy of
the point cloud is unavoidable without appropriate counter
measures. Degeneracy means that after a couple of update
steps all but one particle have weights close to zero and
therefore the point cloud is only a poor approximation of



the true posterior. The problem is caused by a lack of a
feedback mechanism that forces particles back to areas where
the posterior is not close to zero. In the SIR filter, resampling
therefore is performed whenever the particle weights become
too unevenly distributed. A common measure for deciding
when a resampling is necessary is the effective sampling size

Neff =
1

Np∑
i=1

wik
2

≤ Np. (9)

If Neff falls below a defined threshold a new set of Np particles
is drawn. The probability for each particle to be resampled is
proportional to its weight.

D. SIR with Multiple Noise Models

The integration of multiple noise models follows the algo-
rithm proposed in [9]. The idea is to calculate the posterior as
the weighted sum of the posteriors resulting from the different
noise models M ∈ {Mj}NNoise

j=1

p(x0:k|z0:k, a0:k−1) =

NNoise∑
j=1

µjk · p(x0:k|z0:k, a0:k−1,Mj)

(10)

with the probability µjk that model Mj is correct at time
step k given the measurements. Inserting the Dirac Mixture
approximation (6) of the different noise models into (10) the
posterior becomes

p(x0:k|z0:k, a0:k−1) =

NNoise∑
j=1

µjk

Np∑
i=1

wi,jk δxi
0:k

(x0:k)

=

Np∑
i=1

wikδxi
0:k

(x0:k). (11)

The weights wik of the averaged posterior are the weighted
average of the weights wi,jk of the different models

wik =

NNoise∑
j=1

µjkw
i,j
k . (12)

The weights of the different models wi,jk are derived based on
the weight update (7), the model specific likelihood and the
weight of the mixture from the previous step

wi,jk ∝ wik−1p(zk|xik,Mj). (13)

Note, in (11) the particles are the same for each component
of the mixture. Only the weight calculation is carried out for
each model, the prediction step is only performed once. In
the next time step therefore particles can be considered as
they have been drawn from the averaged posterior. The model
probabilities from the previous time step µk-1 are predicted
with a simple model adopted from [9]

µ̃jk =
(µjk-1)α

NNoise∑
j=1

(µjk-1)α
(14)

with forgetting factor α ∈ (0, 1). The predicted model proba-
bilities are then updated with the following equation

µjk =
p(zk|z0:k-1,Mj)µ̃

j
k

NNoise∑
j=1

p(zk|z0:k-1,Mj)µ̃
j
k

. (15)

The marginal model likelihood p(zk|z0:k-1,Mj) is obtained
from the marginalization over the state vector trajectory

p(zk|z0:k-1,Mj) =

∫
p(zk|x0:k,Mj)p(x0:k|z0:k, a0:k-1)dx0:k.

(16)

Inserting (11) in (16) results in the approximation of the
marginal likelihood

p(zk|z0:k-1,Mj) ≈
Np∑
i=1

wikp(zk|xi0:k,Mj). (17)

E. Point Estimate Calculation

For localization, a point estimate of the train position must
be derived from the posterior in (11). Here the estimate
minimizing the Bayesian mean square error (MMSE) is chosen

x̂0:k = E[x0:k|z0:k, a0:k-1]

=

∫
x0:kp(x0:k|z0:k, a0:k-1)dx0:k, (18)

which can be approximated with the particle set

x̂0:k ≈
∫

x0:k

Np∑
i=1

wikδxi
0:k

(x0:k)dx0:k =

Np∑
i=1

wikx
i
0:k. (19)

The MMSE therefore is the weighted sum of the particles.

F. Track Identification

Assuming the particle filter introduced above is working
properly, the track identification procedure is straightforward.
Every time when a particle is predicted over the starting point
of an switch, a copy of the particle filter for each possible
track hypothesis is created. Each track hypothesis therefore
has its own filter that assumes the tracks to be known. On the
basis of the MMSE position estimate of each filter and the
magnetometer measurements, a test statistic is calculated. In
particular, the likelihood ratio between two track hypothesis
H0 = ”left switchway” and H1 = ”right switchway” is used

Λ(zksplit:k) = log
p(zksplit:k|sH0

ksplit:k
)

p(zksplit:k |sH1

ksplit:k
)
. (20)

The likelihood ratio considers all measurements starting with
time step ksplit when the switch was first crossed. The measure-
ments are assumed to be independent from each other, which
enables recursive updates for Λ every time a new measurement
becomes available. In a likelihood ratio test the decision is
made based on the inequality

Λ(zksplit:k)
H0

≷
H1

T (21)



with some threshold T that depends on which metric is to
be optimized, e.g., false alarm rate or number of missed
detections [11]. Setting a theoretical threshold for the ap-
plication considered in this paper is difficult, since the true
distributions of the likelihoods are unknown. For simplicity,
the likelihoods are assumed Gaussian and the threshold is set
empirically. Also a dead band is added, the decision for one of
the hypotheses therefore is made only if Λ ≤ −T or Λ ≥ T is
fulfilled. This helps to avoid false decisions that were observed
when the map has discontinuities at the border between two
tracks. The discontinuities are caused by the mapping based
on GNSS positions and are systematic errors in the map that
are hard to avoid due to the limited accuracy of the positioning
during mapping. Introducing a dead band solved this issue in
a simple way and added robustness to the track identification.
When there are more than two particle filter, e.g., when the
train already passes the next switch before the last switch
way is identified, a hypothesis is selected when its likelihood
compared to all others is larger than the threshold.

G. Joint Train Localization and Track Identification

In this section, the particle filter for known tracks and
the track identification are combined to a joint estimation
algorithm. The joint algorithm extends each particle state (3)
with the track ID I . In addition, for each particle filter the
history H of tracks that are traversed during the run are
stored. The pseudo code of one iteration of the proposed joint
estimator is shown in Algorithm 1. In the MMSE calculation
of the along-track position in line 23, an additional step is
required that accounts for the case when not all particles are on
the same track. In this case, an averaging over the along-track
positions makes no sense, because the along-track position is
discontinuous at the end and beginning of tracks. To enable
averaging, first a virtual track is constructed by concatenating
all tracks in the history. Secondly, the along-track position
and the track ID of each particle is translated to an along-
track position on the virtual track. All particle are now on
the same track and the along-track position is continuously
defined. After the MMSE is calculated, it is mapped back to a
track ID Î and an along-track position ŝ. This is the estimated
topological position and the output of the filter.

IV. MEASUREMENT CAMPAIGN

A. Track network

For the evaluation of the proposed algorithm ten runs
between Augsburg main station and Friedberg station are
considered. The same data was already used in our prior work
[12] to evaluate the performance of a GNSS and IMU based
localization approach and in [8] to analyze the suitability of
the magnetic field for localization. The track network topology
is shown in Fig. 2. The network contains six switches. Actually
there are more switches in the main station at Augsburg, but
only six switches are relevant. The rest had always been passed
on the same switch way and therefore no measurements of
the alternative switch ways are available. Overall, the network
has a length of roughly 14.30 km. Out of the ten runs, four
were used to create the magnetic field map and six to evaluate
the proposed localization algorithm. The trajectories through

Algorithm 1: Joint Localization and Track Identification

//Predict particles with movement model and create
//particle filter if new tracks hypothesis is detected.

1: for all Particle filter f in F do
2: for all particles xik-1 of filter f do
3: Predict particle with (4) on the current track I .
4: end for
5: if a particle crosses a new switch then
6: Add copy of f to F .
7: Extend filter history H with new Track IDs.
8: end if
9: end for

//Handle the discontinuities of the along-track position if
//a particle moved on a new track and update the track ID

10: for all Particle filter f in F do
11: for all particles xik of filter f do
12: if xik crossed switch then
13: Set new track ID Iik ∈ H .
14: Set position sik on Iik.
15: end if
16: Get magnetic field z̃k at position sik and Iik (5).
17: Update model weights wi,jk for all noise models

with z̃k, the measurement zk and (13).
18: end for
19: Predict model probabilities µjk-1 with (14).
20: Update and normalize µjk-1 with (15) and (17).
21: Normalize model weights wi,jk .
22: Update mixture weights wik (12).
23: Calculate MMSE position estimate ŝk with (19) and

the corresponding track ID Îk.
24: Update the likelihood p(zksplit:k|ŝ, Îksplit:k) of f .

25: Neff = 1/
Np∑
i=1

wik
2
.

26: if Neff < NT then
27: Resample and assign equal mixture weights.
28: end if
29: end for
30: Remove any filter from F if its likelihood ratio Λ(zksplit:k)

to another filter crosses threshold.
31: if Switch way is identified then
32: Output: Topological position p̂ = {ŝ, Î}.
33: else
34: Output: Unique topological position does not exist.
35: end if
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Fig. 2. Schematic drawing of the track network topology between Augsburg
and Friedberg. All switches S1 - S6 and all tracks T1-T61 are passed multiple
times during the measurements.

TABLE I
TRAJECTORIES OF THE DIFFERENT RUNS AND DRIVING DIRECTION

Run Trajectory Direction

1 T02, T23, T34, T45, T56, T60 Forward
2 T02, T23, T34, T45, T56, T60 Forward
3 T60, T56, T35, T23, T12, T01 Backward
4 T01, T14, T45, T56, T61 Forward
5 T60, T56, T35, T23, T02 Backward
6 T60, T56, T35, T23, T12, T01 Backward

the network of the six runs for the evaluation are listed in
Table I. Besides S4, all switches are passed at least once from
the direction from which it splits into two tracks and track
identification became necessary. In total S1 was passed once,
S3 twice and S2, S5 and S6 were passed three times. The
maximum speed during the measurements was 120 km/s.

B. Hardware Setup

The magnetic field and the acceleration was measured with
an Xsens MTi at a rate of 200 Hz. The sensor were build
into a rack in the drivers cabin of an Alstom Coradia LINT
41. For mapping and getting the ground truth position and
speed a u-blox LEA-6T low-cost single frequency receiver
with a measurement rate of 1 Hz was used. Due to safety
regulations, the GNSS antenna had to be mounted inside the
train underneath a fiberglass roof.

C. Map Creation

To create the map, four of the ten runs were required to
cover all possible tracks and switch ways. The positions of
the switches were determined form aerial pictures and based
on the switch positions and the GNSS positions the data
sets were cut into tracks. For each track, the magnetic field
measurement taken at a rate of 200 Hz was assigned to an
along-track position s by integrating the GNSS speed. This
resulted in an unequally sampled map due the speed variations
during measurements that was subsequently interpolated on
a equidistant grid with a 10 cm spacing of the along-track
position. Additionally to the magnetic field, the map also
contains the ECEF positions to allow a comparison between
the estimated topological position and the GNSS ground truth.

V. RESULTS

The proposed algorithm was evaluated with the six runs
from Table I. Each run lasted between 10 min and 15 min in
which a distance of ≈ 7 km was traveled. The evaluation is
split into two parts. First, the position accuracy is evaluated

TABLE II
POSITION AND SPEED RMSE

RMSE
Run Position [m] Speed [m/s]

1 4.46 0.28
2 3.99 0.31
3 5.03 0.22
4 5.17 0.21
5 6.45 0.22
6 4.10 0.19

Overall 4.90 0.23

and second, the result of the track identification is analyzed.
For each data set, 100 Monte Carlo runs of the particle filter
were performed to show that it works consistently. For the
evaluation, we simply picked the result of the Monte Carlo
run with the highest RMSE because the average accuracy was
close for all runs.

During the evaluation, 3000 particles are used and the
filter is updated with 10 Hz. With these parameters the filter,
implemented in MATLAB, was running in real time. Theoret-
ically, the different particle filters could also run in parallel if
higher update rates are required. To handle outliers, two noise
models were used. The first model is Gaussian N (0,Σnom)
for the nominal case with an covariance matrix Σnom of
1.3× 10−3 I3×3 and the second model is a multivariate t-
distribution t(0,Σerr, ν) for the error case. The t-distribution
has one degree of freedom ν = 1 and is much wider with
Σerr = 4.5× 10−2 I3×3.

A. Position and Speed Accuracy

The position and speed accuracy shown in this section is
calculated from the results of the particle filters that were
following the correct track hypothesis. Showing the result for
the particle filters on the wrong track is neglected here because
they only existed for a few seconds, until they were deleted
and the correct track was identified. In addition the position
estimate on the wrong track has no meaning, since it is always
wrong due to the wrong track assumption.

The position error is calculated from the GNSS ECEF
position pECEF and the ECEF position p̂ECEF stored in the
track map at the current MMSE estimate of the topological
train position p̂ = {ŝ, Î}

εpos = pECEF − p̂ECEF =
[
εx εy εz

]T
. (22)

The root mean square error (RMSE) is

RMSEpos =

√√√√ 1

K

K∑
k=1

εTk,posεk,pos, (23)

where K is the number of measurements. For the speed error
εspeed, simply the GNSS speed ṡGNSS is subtracted from the
MMSE speed estimate of the particle filter. The resulting
RMSE value for position and speed is shown in Table II.
In Fig. 3 and Fig. 4, in addition the cumulative distribution
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Fig. 3. CDF of the absolute position error.
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Fig. 4. CDF of the absolute speed error.

function (cdf) of the absolute errors is shown. The RMSE for
the different runs are close to each other and below 7 m. The
overall RMSE calculated with the errors of all six runs is below
5 m. Considering that the GNSS ground truth also contains
errors in this order of magnitude, the positing accuracy looks
promising. Here it should be noted that the map of track
45 had a systematic error that was most likely caused by
a train passing by during the measurements for mapping.
Nevertheless, the filter was able to estimate the position also
for the runs which are driving over track 45, proving the
robustness of the filter against outdated and therefore false
map data. The same holds for the speed estimation. The speed
was estimated with an high accuracy throughout the whole
evaluation. The larger errors in Fig. 4 are partially caused by
the GNSS ground truth, which had sporadic speed errors up
to 2.5 m/s.

TABLE III
TIME DISTANCE UNTIL SWITCH WAY IS DETECTED

Switch Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

S1 Time / s - - - 4.22 - -
Dist. / m - - - 67.00 - -

S2 Time / s - - 6.20 - 6.60 4.59
Dist. / m - - 37.14 - 36.54 26.28

S3 Time / s 2.62 2.71 - - - -
Dist. / m 37.72 41.08 - - - -

S4 Time / s - - - - - -
Dist. / m - - - - - -

S5 Time / s - - 2.61 - 2.60 2.61
Dist. / m - - 39.26 - 39.88 39.81

S6 Time / s 6.19 6.48 - 2.76 - -
Dist. / m 111.64 103.76 - 41.74 - -

B. Track Identification

The track identification was able to detect the correct switch
way for all runs. In Table III the duration and distances
required to decide for the correct switch way is shown. The
values in the table are the average over all Monte Carlo runs.
The switch detection requires a few seconds and above ≈ 26 m
to decide for the correct track. Before that the magnetic
field for both tracks seems to be close to each other, which
leads only to small differences between the likelihoods of the
different hypothesis. A bigger spread in the detection times
was observed for S2 and switch S6. For switch S6 the time is
more than doubled. A look at the trajectories in Table I shows
that the train was taking the same way in run 1 and run 2 and
a different route for run 4, what could explain the difference.
But for S2 this effect is not observed, here the time is similar
for run 3 and 5 which have different switch ways. Therefore
and due to the small number of passes over each switch, no
clear pattern could be found.

VI. CONCLUSIONS

In this paper, we proposed a method that enables the joint
estimation of the along-track position and track ID in real
time, resulting in an estimate of the topological position. The
method requires only a triad of magnetometers mounted inside
the train, a single accelerometer pointing into the driving
direction, and a map of the magnetic field along the railway
track. The particle filter used for along-track localization was
extended to contain multiple noise models, which introduced
robustness against outliers caused by outdated map informa-
tion, passing trains, and periodic noise form the overhead
line. The track identification relies on multiple copies of
the particle filter. Each copy of the filter follows another
track hypothesis. With the estimated positions of the different
filters and the magnetometer measurements, the likelihood
ratio of the different hypotheses was calculated. A decision
for one track is made when the ratio crosses a threshold. In a
evaluation with over 60 min of data, measured on a 14.30 km
long track network, it was shown that the correct track could be
successfully identified in all cases. The identification required



only a few seconds in which the train traveled approximately
between 26 m–112 m. The along-track localization showed
also promising results and was able to continuously track
the position even in the presence of measurement errors. The
overall RMSE was below five meters and therefore close to
the expected value from the single frequency GNSS receiver
used as ground truth.
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