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Abstract—In this paper, the theoretically achievable accuracy
of magnetic field-based localization in railway environments is
analyzed. The analysis is based on the Bayesian Cramér-Rao
lower bound (BCRLB) that bounds the mean squared error of an
estimator from below. The derivation of the BCRLB for magnetic
field-based localization is not straightforward because the mag-
netic field cannot be described by an analytical equation but must
be derived from measurements. In this paper we show how the
BCRLB can be calculated by fitting a Gaussian process (GP) to
magnetometer measurements to obtain an analytical expression
of the magnetic field along a railway line. The proposed GP-based
BCRLB is evaluated with the magnetic field of a 1 km long track
segment. Furthermore, a comparison between the bound and the
estimation error of a particle filter shows the sub-optimality of
the particle filter for magnetic railway localization.

I. INTRODUCTION

Localization using the magnetic field is based on distor-
tions in the Earth magnetic field introduced by ferromagnetic
material in the environment. In railway environments these
distortions are caused by track-side infrastructure, e.g., sig-
naling poles and rails but also by steel reinforced concrete in
buildings close to the track. When the ferromagnetic material
is at static positions also the distortions are static. A map of the
distorted magnetic field therefore enables the estimation of the
position of a magnetometer by comparing its measurements
to the magnetic map. The feasibility of magnetic field-based
localization has already been demonstrated in various environ-
ments such as interiors [1], roads [2] and the airspace [3]. For
railways we showed the feasibility, e.g. in [4], where we used a
particle filter and solely the measurements of a magnetometer.
While the particle filter achieved meter-level accuracy, it is
still unclear how well the filter performs w.r.t. an optimal filter.
In this paper, therefore this question is addressed by deriving
a Bayesian Cramér-Rao lower bound (BCRLB) for magnetic
localization in railway environments. The presented bound is
based on our prior work [5] in which we derived the BCRLB
for magnetic localization of a wheeled robot. The derived
BCRLB is a lower bound on the mean squared error (MSE)
that a filter can achieve. The bound therefore can be utilized
to check if a proposed filter is close to optimal with respect
to the MSE. Another use case for the BCRLB, when applied
to magnetic localization, is that it enables the investigation
of the localization accuracy achievable for a given magnetic
field without the need of actually implementing and evaluating
a specific filter algorithm. Therefore, it is possible to analyze
the potential localization accuracy of railway networks and
label parts of a network where the accuracy is expected to be

poor. Unfortunately, the derivation of the bound for magnetic
localization comes with a challenge. In the derivation of the
BCRLB it is assumed that an analytical expression of the
measurement model and the associated likelihood exists and
that derivatives w.r.t. the estimated variable can be calculated.
For magnetic localization the measurement model is defined
by the magnetic map. The map is a function that maps a
position on the track to the corresponding magnetic vector
field. Due to the high complexity of the interaction between
the Earth magnetic field and the ferromagnetic material close
to the track the map cannot be calculated from the laws of
physics. Hence, in practice the map is obtained from measure-
ments along the track. To derive the BCRLB it is therefore
crucial to find an analytical representation of the magnetic
map based on that measurements that can be incorporated
into the bound. As proposed first in [6], using a Gaussian
process (GP) to represent the measurement model nicely fits
into the Bayesian framework of the BCRLB because the GP
accounts for uncertainties in the measurements. In [5], we
further extended the bound proposed in [6] with the option to
incorporate a deterministic control input. Considering a control
input in the bound has the benefit that the trajectory of the
train on the track, for which the bound is calculated, becomes
controllable. In contrast, the standard formulation of the bound
assumes a pure stochastic motion model which potentially
results in trajectories that are not of interest in practice.

This paper contains a detailed derivation of the equations
required to implement the proposed BCRLB for magnetic train
localization. After introducing the derivation, the bound is
evaluated with a data set recorded in a real railway envi-
ronment. In addition, the performance of a particle filter is
compared to the bound.

II. BAYESIAN CRAMÉR-RAO LOWER BOUND

In this section the BCRLB is introduced and it is shown how
it can be applied to magnetic field-based train localization.
Here only a brief overview is given, for a more detailed
explanation we recommend to read [5] and [6].

A. BCRLB for Analytical Likelihood Models

The BCRLB is a lower bound on the MSE matrix M of an
estimator x̂(z) that estimate the state vector x based on some
observations z. The bound fulfills the inequality

M = Ex,z

[
(x̂(z)− x)(x̂(z)− x)T

]
≥ J−1. (1)



In (1) the bound is the given by the inverse of the matrix J
which is commonly called Bayesian information matrix (BIM)
[7]. The BIM is obtained from the joined probability density
function (pdf) of x and z

J = −Ex,z [∆
x
x ln (p(z,x))] (2)

with the differential operator ∆a
b = ∇b∇T

a . The BIM is
closely related to the FIM F(x)

J = Ex

[
Ez|x [−∆x

x ln p(z|x)]
]
+ Ex [−∆x

x ln p(x)]

= Ex [F(x)] + Ex [−∆x
x ln p(x)] . (3)

Relation (3) is easily obtained when the joint pdf in (2) is
decomposed using the definition of conditional densities. Due
to (3) the BIM is the sum of the expected FIM and the
information about x obtained from its prior density p(x).
From (3) we also see that the calculation of the BIM requires
us to calculate derivatives of the likelihood p(z|x) w.r.t.
x. Unfortunately, in the case of magnetic localization the
likelihood contains the map of the magnetic field which is only
known from measurements. The likelihood and its derivatives
are therefore analytically unknown but in the next section an
approach is introduced that enables the differentiation of the
likelihood in such cases.

B. BCRLB for Data-based Models

As proposed in [6] the FIM and the BIM can be also
calculated when the likelihood contains parts which are known
only from a set of observations. In the following measurement
models of the form

zk = h̃ (xk) + nk (4)

with additive white Gaussian measurement noise are con-
sidered. Where h̃ (xk) is the true but unknown measure-
ment function and nk ∼ N (0, σ2

n) Gaussian noise. Note,
for now the measurement zk is a scalar, the extension to
vector measurements depends on the application. For magnetic
train localization the extension is straightforward and will be
introduced in Section II-D. For models that can be described
in the form of (4) the likelihood is

p(zk|xk) = N (zk; h̃ (xk) , σ
2
n). (5)

Since the true function h̃ (xk) is unknown and only (noisy)
observations of its values are available it has to be replaced
with an approximation h (xk). In principle many possible
function approximation schemes exist. Here the approximation
should be chosen such that the derivative of the likelihood
exists. As we will see later, this implies that the function
approximation h (xk) has to be smooth in the domain of
interest. Furthermore, the approximation should account for
uncertainty in the observations and should fit nicely into the
Bayesian nature of the BCRLB. As first proposed in [6],
GPs fulfill these requirements and are therefore used in the
following.

Since the approximation of the measurement function de-
pends on the observations, the BCRLB has to be modified to
account for this dependency. In the following the observations
z and the values of x for which they were observed are

combined into a training data set D = {xi, zi}ND
i . Thus, the

set contains ND pairs of input values xi and measured output
values zi of the true measurement function h̃ (x).

In addition, also a set of deterministic control inputs U is
assumed to be given that forms together with the training data
the set Du = {D,U}. As shown in [5] this results in the
conditional BIM

J = −Ex,z|Du
[∆x

x ln (p(z,x|Du))] . (6)

The comparison of (2) and (6) shows that accounting for this
dependency is simply achieved by replacing the joint pdf in
(2) with the joint pdf conditioned on the training and input
set. As before in (3) the BIM can be decomposed into a data
dependent part and a part that depends on the prior knowledge
about x

J = Ex|Du
[F(x)] + Ex|Du

[−∆x
x ln p(x|Du)] . (7)

where the FIM is now

F(x) = Ez|Du,x [−∆x
x ln p(z|x,Du)] . (8)

The FIM is also conditioned on the set Du and therefore will
vary depending on the given training data. Thus, changes in
the training data would also change the value of the bound.
Fortunately, if the training data contains a “sufficient” amount
of observations to accurately approximate the true function in
(4) it is to be expected that the bound is consistent across
different data sets.

1) Short Introduction to Gaussian Processes: When the
true measurement function h̃ (xk) at a certain input xk is
approximated with an GP the output of the approximated func-
tion h (xk) itself is a Gaussian distributed random variable.
The prior of the GP, before any observations are available,
is fully specified by its mean function m(x) and covariance
function k (x,x′) [8]

m(x) = E [h (x)]

k (x,x′) = E [(h (x)−m(x))(h (x′)−m(x′))] . (9)

For a GP performing regression at a certain input xk amounts
to calculating the posterior Gaussian distribution of the func-
tion value conditioned on the input and the training data

p(h (xk) |xk,Du)=N (h (xk) ;µ(xk,Du), r(xk,Du)) , (10)

where the posterior mean and variance are given by

µ(xk,D)=m (xk)

+KxkD
[
KDD + σ2

DI
]−1

(ZD −m(XD))

r(xk,D)=Kxk,xk
−KxkD

[
KDD + σ2

DI
]−1

KDxk
. (11)

XD is here a column vector in which all training inputs are
stacked on top of each other, m(XD) is the mean function
evaluated at all training inputs, and ZD is a vector of the
corresponding stacked observations. The matrices KDD and
KxkD in (11) are the short form for KDD = K(XD,XD)



and KxkD = K(xk,XD) where K(A,B) for two sets A
and B of input points has the form

K(A,B)=

 k ({A}1, {B}1) · · · k
(
{A}1, {B}|B|

)
...

. . .
...

k
(
{A}|A|, {B}1

)
· · · k

(
{A}|A|, {B}|B|

)
 .

Since k(·, ·) describes the covariance of two inputs, the
matrix KDD is the covariance between the training inputs
with themselves and KxkD is a row vector of the covariances
between the input xk, at which the GP posterior is evaluated,
with the training inputs. Note, here the GP is evaluated for
one input value and hence the output is scalar.

Throughout this paper the covariance function is the well
known squared exponential kernel

k (a,b) = σ2
k exp

(
− (a− b)T (a− b)

2l2

)
(12)

that was shown to be suitable for the approximation of the
magnetic field in [9] and [10]. The mean function is set to a
constant

m(xk) = m̄. (13)

2) FIM for GP-based Measurement Models: From the
posterior distribution of the GP and the measurement model
(4) the likelihood p(zk|xk,Du) becomes

p(zk|Du,xk) = N
(
zk;µ(xk,D), r(xk,D) + σ2

n

)
= N (zk;µ(xk,D), rC(xk,D)) . (14)

With the FIM for general Gaussian likelihoods given in [11]
and using the notation from (14) the element in the i-th row
and j-th column of the FIM (8) becomes

[F(xk)]ij =
∂µ(xk,D)

∂[xk]i
r−1

C (xk,D)
∂µ(xk,D)

∂[xk]j

+
1

2
r−2

C (xk,D)
∂rC(xk,D)

∂[xk]i

∂rC(xk,D)

∂[xk]j
. (15)

This shows that for the FIM and hence for the BCRLB the
derivative of the posterior mean and covariance of the GP is
required. Fortunately, these derivatives exist as long as the
chosen mean and covariance functions are smooth.

C. BCRLB for Nonlinear Filtering

In the previous sections the BCRLB was introduced and
it was shown how the FIM can be calculated when the true
measurement model is approximated with a GP. In this section
the bound is now extended to dynamic estimation problems
in which a motion model is available to describe how the
state vector x that is to be estimated evolves over time. In
particular the BCRLB for nonlinear filtering is investigated.
The filtering bound is of interest because it is the lower bound
for all localization filters and therefore constitutes a benchmark
for them.

To obtain the filtering BCRLB the naive approach would
be to calculate the BIM over the complete state sequence
X0:k+1 =

[
xT
0 · · ·xT

k+1

]T
. For short sequences and low

dimensional state spaces this might work but becomes quickly

computational complex since the dimensions of the involved
matrices keep growing with the length of the sequence. This
increase in the complexity is avoided with the recursive formu-
lation of the bound introduced in [12]. In the next paragraph
we only present the recursive equations without derivations.
A detailed derivation of the generic recursive bound can be
found in [12]. Additional information about the derivation for
GP-based measurement models can be found in [5] and [6].

In the recursive formulation the BIM Jk+1 for the state
xk+1 at time step k + 1 is calculated based on the BIM of
time step k

Jk+1 = D22
k − (D12

k )T
(
D11

k + Jk

)−1
D12

k (16)

where Jk+1 is a square matrix with the dimension of the state
vector x. The remaining matrices in (16) are

D11
k = −EXk:k+1|Du

[
∆xk

xk
ln p(xk+1|Du,xk)

]
D12

k = −EXk:k+1|Du

[
∆

xk+1
xk ln p(xk+1|Du,xk)

]
D22

k = −Exk+1,zk+1|Du

[
∆

xk+1
xk+1 ln p(zk+1|Du,xk+1)

]
− EXk:k+1|Du

[
∆

xk+1
xk+1 ln p(xk+1|Du,xk)

]
. (17)

D. BCRLB Implementation for Train Localization
With the BCRLB equations (16) and (17) for nonlinear

filtering all parts are in place to implement the bound for mag-
netic field-based localization systems. For the implementation
we have to define the state space model consisting of a motion
model that describes the evolution of the state over time and
a measurement model that links the observations to the state
variables (or at least some of the variables).

1) Motion Model: For train localization the state vector is

xk =
[
sk ṡk

]T
(18)

where s is the 1D along-track position of the train and ṡ
its time derivative, i.e, the train speed. The motion model
is a continuous white noise acceleration model [13] with an
additional deterministic acceleration input ak

xk =

[
1 T
0 1

]
xk−1 +

[
1
2T

2

T

]
ak−1 +wk−1

xk = Fxk−1 +Bak−1 +wk−1 (19)

where T is the sampling period. The process noise is Gaussian
wk−1 ∼ N (0,Q) and the covariance matrix is

Q =

[
1
3T

3 1
2T

2

1
2T

2 T

]
σ2
w. (20)

The process noise accounts for imperfections in the actuators,
e.g., the drive chain of the train, that cannot perfectly translate
the deterministic input into motion.

2) Measurement Model: The measurement model for the
magnetometer used in the bound is given by

zk = h (sk,D) + nk, (21)

with the magnetic map

h (sk,D) =
[
hx(sk,D) hy(sk,D) hz(sk,D)

]T
. (22)

The map has three components hi(sk,D), i ∈ {x, y, z}
which are the GPs describing the magnetic vector field



along the track. The measurement noise is considered Gaus-
sian nk ∼ N (0,Σn) with the diagonal convariance ma-
trix Σn = diag(

[
σ2
nx

σ2
ny

σ2
nz

]
). Note, the measurements

depend only on the position state sk and the training data
set but not the train speed. In the measurement model we
assume that the magnetometer is calibrated and its axes are
aligned with the map. For details about sensor calibration and
the sensor alignment for train mounted magnetometers we
recommend reading our prior work [14]. From (21) we see
that the likelihood of the measurement zk is

p(zk|Du,xk) = N (zk;µz(sk,D),Σz(sk,D) +Σn).

The mean of the likelihood is a vector containing the posterior
GP means

µz(sk,D) =
[
µx(sk,D) µy(sk,D) µz(sk,D)

]T
. (23)

Thus, the covariance matrix Σz is a diagonal matrix where
the elements are the posterior GP variances

Σz(sk,D) =

rx(sk,D) 0 0
0 ry(sk,D) 0
0 0 rz(sk,D)

 . (24)

Due to the diagonal structure of the matrices Σz and Σc the
likelihood can be written as the product of the likelihoods of
the single magnetometer axes

p(zk|Du,xk) =
∏

i∈{x,y,z}

N (zi,k;µi(sk,D), ri(sk,D) + σ2
ni︸ ︷︷ ︸

ri,c(sk,D)

).

(25)

With the likelihood (25) the concrete equations for the FIM
can be found by observing that due to the logarithm in (8)
the FIM is just the sum over the FIM of the individual sensor
axes. From (15) we get the FIM of sensor axis i

[Fi(xk)]11 =
∂µi(sk,D)

∂sk
r−1
i,C(sk,D)

∂µi(sk,D)

∂sk

+
1

2
r−2
i,C(sk,D)

∂ri,C(sk,D)

∂sk

∂ri,C(sk,D)

∂sk
[Fi(xk)]12 = [Fi(xk)]21 = [Fi(xk)]22 = 0. (26)

Therefore, the overall FIM becomes

F(xk) =
∑

i∈{x,y,z}

Fi(xk). (27)

To obtain the concrete equations for the implementation the
posterior mean and variance from (11) has to be differentiated
w.r.t. the components [xk]i of the state vector x

∂µ(xk,D)

∂[xk]i
=

∂

∂[xk]i
m(xk) +

M∑
l=1

[S−1z̃]l
∂k (xk, {XD}l)

∂[xk]i

∂rC(xk,D)

∂[xk]i
=

∂

∂[xk]i
k (xk,xk)−

2

(
∂

∂[xk]i
KxkD

)
S−1KDxk

, (28)

where we used in the derivative of the posterior variance
that the covariance matrix S is symmetric and that the

squared exponential kernel is a radial basis function for which
k (a,b) = k (b,a). The derivative of the squared exponential
kernel w.r.t. the i-th component [xk]i of the state is

∂k (xk,a)

∂[xk]i
=

∂

∂[xk]i
σ2
k exp

(
− (xk − a)T (xk − a)

2l2

)
= − k (xk,a)

([xk]i − [a]i)

l2
=

∂k (a,xk)

∂[xk]i
. (29)

The derivative of the constant mean function is simply zero
everywhere. For the BIM in addition to FIM also the remaining
terms of the recursive bound in (16) have to be derived. The
remaining terms all require the pdf p(xk+1|Du,xk) which is
obtained from the motion model (19)

p(xk+1|Du,xk) = N (xk+1;Fxk +Bak,Q). (30)

Inserting (30) into (17) results in

D11
k = FTQ−1F

D12
k = −FTQ−1 = (D21

k )T

D22
k = Exk+1|Du

[F(xk+1)] +Q−1. (31)

For the term D22
k the expected FIM w.r.t. the pdf p(xk+1|Du)

is required. In most cases the involved integral cannot be
solved analytically and requires a numerical approximation.
Since it is easy to obtain samples from p(xk+1|Du), by prop-
agating the prior state pdf p(x0) with the motion model, the
expected FIM can be obtained by evaluating the FIM for the
different samples and then take the mean. To start the recursion
in (16) the prior distribution is set to p(x0) = N (x0,Σx,0)
which gives the initial BIM J0 = Σ−1

x,0.

III. EVALUATION

A. Measurement Setup
The evaluation is based on the magnetic field along a 1 km

long track segment near the city of Augsburg. The sensors
were mounted inside the driver’s cabin of a Alstom Coradia
LINT 41 diesel train from the Bayerische Regiobahn. The
measurements were performed during normal service hours.

The magnetic field was measured with the magnetometer
inside a Xsens MTi IMU at a rate of 200Hz. During the
measurements the train speed and position were recorded using
a u-blox LEA-6T single frequency GPS receiver.

IV. GP TRAINING

The data set used in the GP to approximate the magnetic
map are the along track position s and the corresponding three
components of the magnetic vector field of the 1 km long track
segment. For the bound only the spatial relation between the
magnetometer measurements is of interest, the absolute along
track position therefore is not important. Hence, to generate
the training data for the GP it was sufficient to integrate the
train speed to obtain the along track position for each of the
magnetometer measurements. Furthermore, as described in our
prior work [15], the magnetometer data has to be filtered with a
band-stop filter at 16.67Hz to remove the alternating magnetic
fields introduced by the overhead power line currents. In the
GP the data of four runs on the same track is considered to
avoid overfitting the GP to temporary disturbances present



TABLE I
HYPERPARAMETERS OF THE GP

Axis Sensor noise Length Scale Kernel Variance Mean
σn / a.u. l / m σk / a.u. m̄/a.u.

x 2.98 · 10−3 3.18 1.04 · 10−2 1.58 · 10−4

y 3.73 · 10−3 4.92 1.67 · 10−2 1.77 · 10−3

z 4.26 · 10−3 3.69 1.99 · 10−2 1.77 · 10−3

only in one run and to get a more realistic estimate of the
measurement noise. The four data sets are slighlty biased
relative to each other. The bias is removed by removing the
mean from the measurements since a constant bias can be
removed in practice by magnetometer calibration and will not
bring additional information into the bound.

Using the whole data sets of the four runs would lead to
large covariance matrices in the GP and unpractical high com-
putational complexity. Therefore, a two-step data compression
is performed. First, a equidistant grid is placed along the
track segment with a spacing of 0.5m. At each grid point
then the closest point in each of the data sets is stored. This
already reduces the amount of data significantly and ensures a
minimum spatial density of data points. In the second step, for
each grid point one of the associated points of the four data
sets is selected randomly such that in average the different
runs are included equally in the GP.

Based on the compressed data set hyperparameter optimiza-
tion is performed with the GPML toolbox [16] using the
squared exponential covariance function and a constant mean
function. The optimization is done for each magnetic sensor
axis separately. The resulting hyperparameters are listed in
Table I and the resulting GP and the training data are shown
in Fig. 1.

A. Particle Filter Implementation

To perform a sanity check for the derived BCRLB we
implemented a particle filter and performed Monte Carlo
simulation to compare its MSE to the bound. The filter uses
the same motion model and measurement model as the bound.
Unfortunately, incorporating the GP directly into the filter
would lead to a high computational complexity that would
make the Monte Carlo simulations very time consuming.
Furthermore, the filter should be able to run in real time
when used as localization system in a real train. We therefore
decided to not include the full GP into the filter but instead
use a offline calculated discretized map derived from the GP.
The discretized map contains the mean and variance of the
GP evaluated with a resolution of the along track position of
δs = 5mm. The value for δs was chosen such that it is well
below the localization accuracy of the bound to avoid that
the map resolution limits the accuracy of the particle filter.
With the discretized map the GP regression is replaced with a
look up table which considerably speeds up the filters weight
update. Besides the discretized map the implemented filter is
a basic particle filter where resampling is triggered when the
effective number of particles falls below the threshold 0.8 ·Np

where the number of particles is set to the value Np = 15000.
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Fig. 1. The three components of the magnetic flux density B. The blue
solid line is the mean of the GP and the colored area around it is three
times the sum of the GP posterior standard deviation and measurement noise
standard deviation ±3 · ri,c(sk,D). The shown flux density is dimension
less (arbitrary units a.u.) because the sensor used during the measurements
performs an internal normalization. According to the sensor manufacturer
1 a.u. is ≈ 40 µT. The red stars show the data used in the GP regression.

B. Parameter Setup for Monte Carlo Simulation
The numerical approximation of D22

k in (31) and the eval-
uation of the filter MSE requires a Monte Carlo simulation.
In the simulation the expected FIM is obtained by averaging
over 1000 state trajectories with a length of 30 s that are
randomly generated from the motion model. For each of the
generated trajectories then additionally 50 realizations of the
measurements are generated to calculate the MSE of the filter.
Hence, in total the filter is evaluated fifty thousand times.

The acceleration input for the generation of the trajectories
is set to ak = 2m/s2 for the first ten seconds, then to
ak = 0m/s2 for the next ten seconds, and finally the train
decelerates with ak = −2m/s2 for the last ten seconds.
Overall 300 time steps are simulated with a sampling period of
T = 0.1 s. The noise of the motion model is 0.25m/

√
s3. The
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position RMSE is zoomed in to better see the difference between the bound
and the filter. The initial value of the position error is 5m as defined by the
value of Σx,0.

initial state is set to x0 =
[
100m 5m/s

]T
and its covariance

matrix to diag(
[
25m2 1m2/s2

]
). The distribution of the

simulated trajectories are shown in Fig. 2.

V. RESULTS

The results for the BCRLB and the root mean squared error
(RMSE) of the particle filter are shown in Fig. 3. The bound
starts at the value defined by covariance matrix Σx,0 of the
prior distribution of the state vector. The error is then quickly
reduced to values in the range of roughly ≈ 0.15 − 0.41m
due to the information obtained from the magnetic field mea-
surements. From the bound no clear relation between the train
speed and the achievable position error can be seen, indicating
that magnetic localization can achieve high accuracies also
at low speeds. The bound for the speed shows that also the
speed error is quickly reduced from its initial value to values

in the range of roughly ≈ 0.24 − 0.33m/s. This shows that
even though the FIM (26) for the speed is zero, the speed is
observable due to the motion model that links the speed to the
position. While in this particular example the observability of
the speed is obvious, for more involved state space models the
BCRLB is a good way to analyze the observability of state
variables.

In comparison to the bound the particle filter has a larger
RMSE for both state variables. The difference after 5 s is
roughly ≈ 0.1m for the position and ≈ 0.03m/s for the
speed. Similar to the bound, after an initial larger position
error the RMSE is quickly reduced to sub meter accuracy.
In general, the filter RMSE nicely follows the shape of the
bound but never attains it. A comparable behavior is observed
for the estimated speed. This shows that even under the ideal
conditions of a simulation where the motion and measurement
model are exactly known to the filter the filter is not optimal in
the MSE sense. But this does not necessarily mean that a better
filter exists for this particular estimation problem because the
bound might be too optimistic.

VI. CONCLUSION

In this paper the BCRLB for magnetic field-based train
localization was derived. The issue in the derivation is that the
measurement model that describes the magnetic field and that
relates the magnetometer measurements to the train position
is known only from measurements and does not have an
analytical, differentiable form that is required by the bound. To
address this issue, we showed how the unknown measurement
model can be approximated with a GP based on observations
of the magnetic field.

An evaluation of the derived bound with measurement data
showed that in theory position errors below 1m are possible.
Since in the bound some optimistic assumptions are used, e.g.,
perfectly calibrated sensors, this accuracy most likely will not
be attainable in practice. Furthermore, a comparison of the
bound with the RMSE of a particle filter resulted in a gap
between the two, showing that even under ideal conditions the
filter cannot attain the bound. Nevertheless, the bound gives
an indication of what is possible and it serves as benchmark
during filter development.
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