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Abstract— In this article, the problem of robot localiza-

tion based on relative bearing measurements is considered,

where unknown but bounded measurement uncertainties are

assumed. The standard approach is to linearize the non-

linear measurement equations and assume a simple shaped

bounding set for the exact resulting set of states. In the new

approach presented here, a nonlinear transformation of the

measurement equation into a higher dimensional space is

performed. This yields a tight closed–form nonlinear repre-

sentation of the bounding set which is superior to commonly

used bounding ellipsoids or box–shaped approximations.
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I. Introduction

Localization with respect to known features in the en-

vironment is one of the most important skills required for

mobile robot navigation [1], [2], [3]. Based on measure-

ments to these features, the so–called landmarks, the posi-

tion and orientation of a mobile robot is determined with

respect to a reference frame. We consider the relative bear-

ing problem, where angular measurements to landmarks

are available in simulations [4] or from omnidirectional vi-

sion sensors [5], [6]. Measurement errors due to sensor

noise, landmark misidentification or inaccurate world mod-

els are usually modelled in a statistical framework [7], [8],

[9]. Standard estimation tools like linear least squares [10],

Extended Kalman filtering [11], [12] or more robust filters

based on covariance intersection [13], [14] or particle fil-

tering [9] can then be applied. However, the underlying

statistical assumptions are often hard to verify [15] and

parameters of the noise models have to be tuned.

To achieve a localization result which guarantees to con-

tain all feasible values of the estimated robot pose con-

sistent with the given measurements and prior knowledge,

similar to [4], a bounded–error model is adopted. Within

this framework, the only assumption on the measurement

errors is, that they are bounded in amplitude [16], [17]. We

assume, that the matching between landmarks in the map

and measurements has been successfully performed, e. g.,

by tree search methods described in [18]. Furthermore,

it is reasonable to assume, that errors due to map inac-

curacies are small compared to the errors in the bearing

measurements [4]. The desired result of an optimal local-
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ization algorithm for this error model is the set X k of all

feasible robot positions compatible with all measurements.

X k is guaranteed to contain the true but unknown robot

position xR.

As the complexity of a straightforward geometric evalu-

ation of X k is dependent on the number of measurements,

a conservative approximation X
e
k of the exact set X k is

required to solve the localization problem. This approxi-

mation should be as tight as possible, suitable for recursive

filtering, and should be described by of a constant number

of parameters.

In [4], two approximation techniques have been proposed

based on previous research [19] in the set membership es-

timation area. These techniques are based on boxes and

parallelotopes and yield a conservative approximation X
e
k

of the exact set of feasible positions X k, which contains

the true position of the robot. This approximation is cal-

culated based on the relative bearing measurements and

their associated error bounds. These simple–shaped sets

can be computed with very little computational cost [4].

However, the drawback of this approach is, that the com-

plex shaped exact sets X k, which bound the position of

the robot, can only roughly be approximated. Recent ap-

proaches proposed in [20], [21] calculate tighter bounds

by set–inversion algorithms using interval analysis. The

desired set of all feasible robot positions is approximated

by inner and outer subpavings, each consisting of a list of

nonoverlapping boxes.

This paper presents a simple, closed–form solution for

the stated localization problem in the case of bounded er-

rors, applying a new nonlinear filter concept [22], [23], that

has been successfully applied to GSM mobile phone lo-

calization [24], and modified for the application presented

here. It extends a concept based on overparametrization

presented in [15] and has been applied to various nonlinear

measurement types like distance measurements and angu-

lar measurements, though only relative bearing measure-

ments are presented here as a special case. In this paper,

we only consider the measurement step which is equiva-

lent to localization of a static observer. A solution for the

prediction step required for dynamic setups also exists.

The proposed nonlinear filtering concept allows to deter-

mine a conservative approximation of the desired set X k,

which is close to optimal even for non–convex sets X k.

The key idea of the proposed new approach is to expand



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. XX, NO. Y, MONTH 2002 2

the nonlinear measurement equation resulting from the rel-

ative bearing measurements to a pseudo–linear form, i. e.,

a form that is linear in a higher dimensional space S∗ of

transformed state variables. To achieve a tight approxima-

tion of the exact set of states X k, a nonlinear transforma-

tion η
k
(.) is applied to the measurement equation. This

results in nonlinear constraints for the exact set of states

X k in the original space S.

The paper is structured as follows. In Section II, a brief

formulation of the problem of robot localization based on

angular measurements is given. Section III-A reviews the

standard bounding ellipsoidal filter and Section III-B intro-

duces the concept of nonlinear filtering based on pseudo–

ellipsoidal sets. Section IV describes the exact transforma-

tion of the given localization problem into a form, that is

amenable to the proposed framework of nonlinear filtering.

The new algorithm is applied to the localization problem

in Section V.

II. Localization based on relative bearing

measurements

We consider the localization problem for a vehicle nav-

igating a 2–D environment. The vehicle pose at discrete

time instant tk is given by

xk = [xk, yk]
T

, (1)

where xk, yk are the position coordinates of the vehicle with

respect to a given reference frame. The vehicle is equipped

with sensors, that provide relative angular measurements

γi,j(k) to pairs of landmarks Li, Lj , i, j = 1 . . . N in the en-

vironment. Each measurement is subject to additive noise

vi,j
k and related to the position xk according to

γ̂i,j(k) =atan2(yk − yLi, xk − xLi)−

atan2(yk − yLj , xk − xLj) + vi,j
k .

(2)

The measurement noise vi,j
k is assumed to be unknown but

bounded according to

|vi,j
k | ≤ ǫv

i,j,k, i = 1 . . . N . (3)

The coordinates xLi = [xLi, yLi]
T

of the N landmarks are

assumed to be known. The localization problem as stated

above is to determine the set X k of all robot positions xk

compatible with the relative angular measurements accord-

ing to (2).

Each relative angular measurement γi,j(k) to two land-

marks Li, Lj defines a circular arc C
i,j
k , which constrains

the position of the vehicle, provided that the measurements

are exact. The endpoints of the arc are the two given land-

marks. Given an uncertain relative angular measurement

γ̂i,j(k) = γi,j(k) + vi,j
k , the set of feasible vehicle positions

M
i,j
k under assumption (3) is given by

M
i,j = {x ∈ IR2 : γ̂i,j − ǫv

i,j ≤ γi,j ≤ γ̂i,j + ǫv
i,j} ,
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Fig. 1. Localization by two angle measurements with bounded un-

certainties. M
1,2

k
is the exact set solely defined by the two angle

measurements. The relative bearing angle is γ = 45o and the mea-

surement uncertainty was chosen as ǫv
1,2,k

= 4o.

where the time index k was omitted for clarity of notation.

As outlined in [4], M
i,j
k can be described as a “thickened

ring” from a geometric point of view. In Fig. 1, an example

for a resulting measurement set M
1,2
k is shown for two

landmarks L1 and L2 and a vehicle V at position xk =

[0, 0]
T
. The measured difference angle in this example is

γ1,2 = 45o and the upper bound for the measurement noise

was chosen as ǫv
1,2,k = 4o.

Given a set of relative angular measurements γi,j(k),

i, j = 1 . . . N , it is obvious, that the measurement set of

feasible vehicle poses X
M
k is defined by the intersection of

all sets M
i,j
k

X
M
k =

N
⋂

i,j=1

M
i,j
k .

Because X
M
k is in general a complex shaped set, a con-

servative, approximative description X̃
M

k of X
M
k with

X̃
M

k ⊃ X
M
k is required, which can be used in a recursive es-

timation scheme. This approximation should be described

by a finite set of parameters and should degrade gracefully

with a decreasing number of parameters. In Fig. 8, an ex-

ample for a resulting measurement set X
M
k is shown for

the case of N = 3 relative bearing measurements to three

landmarks L1, L2 and L3. It can be seen, that the gray–

shaded set X
M
k results from the intersection of three sets

M
i,j
k . Note that this non–convex set cannot be represented

by polytopes. To find an approximation X̃
M

k of X
M
k is in

general not a trivial task.

In the proposed approach for localization in the case

of relative bearing measurements, the problem stated in
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this Section is reformulated as a filtering problem in a sys-

tem theoretic framework. Application of a recursive non-

linear filtering algorithm allows to sequentially fuse mea-

surements with constant computational complexity, yield-

ing an estimated set X k that is guaranteed to contain the

true state xk under the given assumptions. The algorithm

yields estimates with small remaining approximation errors

even for complex–shaped, non–convex sets, only depending

on the approximation order.

The proposed new approach consists of two key

ideas:The first key idea is to apply a new concept for non-

linear filtering, where a complicated uncertainty set X k

in the N–dimensional original space S is represented by

a simpler shaped uncertainty set X
∗

k in an L–dimensional

hyperspace S∗ with L > N . Similar to [15], the concept

is based on overparametrization, but generalizes this idea

in a system theoretic framework, which yields a simple,

intuitive description of the nonlinear filtering problem.

The second key idea is to transform the given localization

problem exactly into a form amenable to application of a

general framework for nonlinear filtering, which is derived

in Section IV. Equivalent transformations have been found

for other types of nonlinear measurement equations, like

bearing measurements or distance measurements [24].

III. Framework for Nonlinear Filtering

To apply the proposed framework for nonlinear filtering

in the case of bounded error models, the measurement up-

date equations of the standard bounding ellipsoid filter are

used in a hyperspace S∗ of transformed state variables to

calculate a set X
e,∗
k in S∗ that defines the complex–shaped

estimated set of states X
e
k in the original space S.

The equations of the standard bounding ellipsoid filter

resemble the well–known Kalman filter equations. They

were first derived in [17] with extensions from [25] for min-

imum volume ellipsoids and will be briefly reviewed in Sec-

tion III-A. Section III-B derives the concept for nonlinear

filtering using the standard bounding ellipsoid filter as a

basic building block. This basic building block may be ex-

changed by, e. g., stochastic filtering algorithms [26] when

uncertainties are modelled in a stochastic framework.

A. Standard Bounding Ellipsoidal Filter

At time step k, a prior estimate of the state xk ∈ IRN

described by the ellipsoidal set

X
p
k = {xk : (xk − x̂p

k)T (Cp
k)−1(xk − x̂p

k) ≤ 1} , (4)

where C
p
k is a positive, symmetric matrix and x̂p

k is the

midpoint vector, and a linear time varying measurement

equation with uncertain measurement ẑk ∈ IRM according

to

ẑk = Hkxk + vk , (5)

with M ×N–dimensional measurement matrix Hk and ad-

ditive, bounded measurement noise vk are given. Then

an ellipsoidal conservative approximation for the set of all

states compatible with the measurement and the prior es-

timated set is obtained as

X
e
k = {xk : (xk − x̂e

k)T (Ce
k)−1(xk − x̂e

k) ≤ 1} , (6)

where midpoint vector x̂e
k of the bounding ellipsoid X

e
k is

given by

x̂e
k = x̂p

k + λkC
p
k(Hk)T

{

V k + λkHkC
p
k(Hk)T

}−1
(ẑk − Hkx̂p

k)

and the matrix C
e
k by

C
e
k = skP k ,

P k = C
p
k − λkC

p
k(Hk)T

{

V k + λkHkC
p
k(Hk)T

}−1
HkC

p
k ,

where

sk = 1 + λk − λk(ẑk − Hkx̂p
k)T

{

V k + λkHkC
p
k(Hk)T

}−1
(ẑk − Hkx̂p

k) . (7)

The only assumption on the measurement uncertainties is

that they are bounded according to vk ∈ Vk with ellip-

soidal sets Vk given by

Vk = {vk : vT
k (V k)−1vk ≤ 1} . (8)

V k is the definition matrix of the set of all possible mea-

surements according to (5), λk is a fusion parameter with

λk ∈ [0,∞), and is chosen such that the volume of the

bounding set X
e
k is minimized. The calculation of the

matrix C
e
k is very similar to the well–known Kalmanfilter

equations. The additional parameter sk according to (7)

modifies the intermediate matrix P k such that the result-

ing size of the bounding ellipsoidal set X
e
k depends upon

the actual measurement ẑk, which is not the case for the

Kalmanfilter.

B. Nonlinear Filtering Algorithm

In the proposed framework for nonlinear filtering, a stan-

dard linear filtering algorithm is applied in a higher dimen-

sional space S∗. A transformed state x∗

k at time k in the

L–dimensional space S∗ is related to the state xk in the

original N–dimensional space S via a nonlinear transfor-

mation T (.) according to

x∗

k = T (xk) =
[

T 1(xk) T 2(xk) · · · TL(xk)
]T

.

(9)

Hence, the transformation T (.) defines an N–dimensional

manifold in the transformed space S∗, the so–called univer-

sal manifold U∗. The exact set of states X k in the original
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space S is then represented by an N–dimensional subman-

ifold of U∗. This submanifold can now be bounded by the

intersection of a simple shaped L–dimensional set and the

universal manifold U∗. We define pseudo–ellipsoidal sets

X
∗ as sets, that are ellipsoidal in the transformed variables

x∗. An L–dimensional pseudo–ellipsoidal set according to

X
e,∗
k = {x∗

k : (x∗

k − x̂e,∗
k )T (Ce,∗

k )−1(x∗

k − x̂e,∗
k ) ≤ 1} (10)

defines the resulting non–ellipsoidal set X
e
k in the original,

N–dimensional space S, that is used to bound the true set

X k. x̂e,∗
k is the midpoint of the pseudo–ellipsoid and C

e,∗
k

is a symmetric, positive matrix. The advantage of this con-

cept is, that it yields a simple description for complicated

uncertainties X
e
k in S and allows nonlinear recursive filter-

ing in a system theoretic framework with little additional

complexity compared to a linear filtering problem. The

most complicated problem within this framework is to cal-

culate characteristic values of the uncertainty set X
e
k in S

from X
e,∗
k via an inverse transformation.

In state estimation problems with unknown but bounded

errors, a set of feasible states X
e
k is determined based on

observations ẑk, that are related to the state xk via a mea-

surement equation

ẑk = hk(xk) + vk , (11)

which is in general nonlinear. Similar to the linear case

(5), vk denotes additive, bounded measurement noise. To

obtain the nonlinear transformation T (.) that defines the

hyperspace S∗ according to (9), a transformation η
k
(.) is

applied to both sides of the measurement equation (11),

which results in

η
k
(ẑk − vk) = η

k
(hk(xk)) . (12)

This transformation yields nonlinear constraints for the fil-

tering result X
e
k, which are exploited to generate a tight

approximation of the exact set X k. In order to generate

these constraints, the left hand side of equation (12) is ex-

actly converted into

η
k
(ẑk − vk) = ẑ∗k − v∗k , (13)

where ẑ∗k represents the expected value of the transformed

measurements in the transformed L–dimensional space S∗.

v∗

k ∈ V
∗

k accounts for the respective transformed measure-

ment uncertainties. The right hand side of equation (12)

can be expanded in the transformed space S∗ into

η
k
(hk(xk)) = H

∗

kx∗

k . (14)

(13) and (14) yield a pseudo–linear form of the measure-

ment equation (11) transformed by η
k
(.) resulting in

ẑ∗k = H
∗

kx∗

k + v∗k , (15)

-0.5 0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

5

Fig. 2. Example for the application of a nonlinear transformation

η
k
(z) =

[

z, z2
]T

to generate additional nonlinear constraints for the

estimated set of states Xe
k. The transformed, uncertain measurement

ẑ∗k =
[

ẑk, ẑ2

k

]T
is constrained to lie on a parabola V∗

k, that can be

bounded by the ellipsoidal measurement uncertainty set Ṽ
∗

k.

where H
∗

k relates the transformed state vector linear to

the measurements in the transformed space S∗.

Example: Consider the distance measurement equation

ẑk = x2
k + y2

k + vk

with the two–dimensional state vector xk = [xk, yk]
T
,

bounded measurement noise vk ∈ [0, 2] and true system

state xk = yk = 0 . Applying the nonlinear transformation

η
k
(z) =

[

z, z2
]T

yields two nonlinear measurement equa-

tions

ẑk − vk = x2
k + y2

k

(ẑk − vk)
2

= x4
k + 2x2

ky2
k + y4

k .

These can be expanded according to (15) in a L = 5 di-

mensional space S∗ with x∗

k =
[

x2
k, y2

k, x2
ky2

k, x4
k, y4

k

]T
, two–

dimensional measurement vector ẑ∗k =
[

ẑk, ẑ2
k

]T
and re-

lated additive noise vector v∗k =
[

vk, 2ẑkvk − v2
k

]T
. The

exact measurement uncertainty V
∗

k is a one–dimensional

set, more precisely a segment of a parabola, in a two–

dimensional measurement space. Figure 2 shows the

parabola η
k
(z) =

[

z, z2
]T

and the measurement uncer-

tainty V
∗

k, marked by a thick line. In order to apply

the proposed nonlinear filter in the hyperspace S∗, a con-

servative ellipsoidal approximation Ṽ
∗

k for V
∗

k has to be

found, that is depicted in Fig. 2. Note that there exist in-

finitely many valid, conservative approximations Ṽ
∗

k with

V
∗

k ⊃ Ṽ
∗

k, the optimal one is the one for which the state

estimate X
e
k becomes least conservative.

The effect of the additional, nonlinear measurement

equation, that generates a tighter estimated conservative
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approximation X
e
k for the exact set of states X k is demon-

strated in the example for localization in the case of relative

bearing measurements presented in Section V.

✷

Using (15), the measurement update equations of the

standard bounding ellipsoid filter (7) can directly be ap-

plied in the hyperspace S∗ to calculate a bound for the

complicated shaped estimated set of states X
e
k in the orig-

inal space S. This results in

x̂e,∗
k = x̂p,∗

k + λ∗

kC
p,∗
k (H∗

k)T

{

V
∗

k + λ∗

kH
∗

kC
p,∗
k (H∗

k)T
}−1

(ẑ∗k − H
∗

kx̂p,∗
k )

and

C
e,∗
k = skP

∗

k , (16)

P
∗

k = C
p,∗
k − λ∗

kC
p,∗
k (H∗

k)T

{

V
∗

k + λ∗

kH
∗

kC
p,∗
k (H∗

k)T
}−1

H
∗

kC
p,∗
k ,

where

sk = 1 + λ∗

k − λ∗

k(ẑ∗k − H
∗

kx̂p,∗
k )T

{

V
∗

k + λ∗

kH
∗

kC
p,∗
k (H∗

k)T
}−1

(ẑ∗k − H
∗

kx̂p,∗
k ) .

The fusion parameter λ∗

k is selected such that the volume

of the bounding set in the original space S is minimized.

The resulting pseudo–ellipsoidal set X
e,∗
k is completely de-

fined by its midpoint vector x̂e,∗
k and the matrix C

e,∗
k , as

introduced in (10).

Using this form to calculate the bounding pseudo–

ellipsoidal set in the original space S possesses the following

appealing properties:

• No additional uncertainty. The resulting set X
e
k is a

subset of the union of the predicted set X
P
k and the mea-

surement set X
M
k .

• Conservativeness. If the true set X k is contained in X
P
k ,

the resulting set X
e
k is a conservative approximation for

X k.

• Tighter bound. The resulting nonlinear, implicit polyno-

mial bounding set is a better approximation for the exact

set of states X k than a standard ellipsoidal bounding set

obtained by linearization of the original, nonlinear problem

or a box–shaped set. This means, it is a conservative bound

with a volume smaller than the volume of the ellipsoidal

bounding set or box–shaped sets.

IV. Transformation of the localization problem

To apply the described framework for nonlinear filter-

ing to the problem of localization in the case of relative

bearing measurements, each measurement equation (2) for

two landmarks Li, Lj is first transformed into a nonlinear

measurement equation according to

(xk − xM (γ̂i,j))
2

+ (yk − yM (γ̂i,j))
2

= r2(γ̂i,j) , (17)

where γ̂i,j = γi,j + vi,j is the observed uncertain differ-

ence angle and time index k has been omitted for brevity.

(17) can be derived from (2) exploiting the fact, that all

robot positions, from which a constant difference angle is

observed, lie on a circular arc C
i,j
k [4], [10]. Hence, (17) is

the definition of the circle C̄
i,j

k corresponding to C
i,j
k whose

midpoint M(γ̂i,j) = [xM , yM ]
T

and radius r(γ̂i,j) are a

function of the observed difference angle γ̂i,j given by

M(γ̂i,j) = xLMi
+

1

2

(

xLMj
− xLMi

)

−
1

2
cot(γ̂i,j)∆

⊥

i,j (18)

and

r(γ̂i,j) =
‖xLMj

− xLMi
‖

|2 sin(γ̂i,j)|
, (19)

where xLMi
is the position vector of landmark i and ∆⊥

i,j

is the vector orthogonal to xLMj
− xLMi

with ‖∆⊥

i,j‖ =

‖xLMj
−xLMi

‖. The example given in Fig. 1 shows the set

M
1,2
k resulting from the union of all circular arcs C

i,j
k with

γ̂1,2 ∈
[

γ1,2(k) − ǫv
1,2,k, γ1,2(k) + ǫv

1,2,k

]

. Note that the ad-

ditional linear constraint yk < 1 is required to select the

subset of points of the circles C̄
1,2

k (17) that are part of the

circular arcs C
1,2
k . The nonlinear measurement equation

(17) can now be transformed into two nonlinear measure-

ment equations. Each of the two measurement equations

describes a distance measurement. This transformation is

possible for the assumed bounded error model because the

intersection of the sets defined by the two measurements

yields exactly the original, crescent shaped measurement

set M
i,j
k resulting from the uncertain relative bearing mea-

surement (17). The measurement equations can be written

in state–space form according to (11) where

hk(xk) =

[

(xk − xM1
)2 + (yk − yM1

)2

(xk − xM2
)2 + (yk − yM2

)2

]

(20)

and

ẑk =

[

(r1 + d
2
)2

(r2 −
d
2
)2

]

. (21)

M l = [xMl
, yMl

]
T
, l = 1, 2 are the midpoints of the outer

ring R1 and the inner ring R2 containing the exact mea-

surement set M
i,j
k , and rl = rk

l are the related radii at

time step k, calculated from (18), (19) when the bounds

of the admissible interval for γ̂i,j are inserted. The param-

eter d corresponds to the uncertainty of the transformed

distance measurements, and can be directly obtained from

M l and rl, l = 1, 2. For the example given in Fig. 1, a

transformation into two distance measurement equations

according to (11) is graphically illustrated in Fig. 3. Each

transformed measurement equations corresponds to a ring

with midpoint M1 respectively M2 and radius r1 + d
2

and

r2 − d
2
. It can be seen, that the intersection of the two

rings is equivalent to the original measurement set M
1,2
k

depicted in Fig. 1.



IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. XX, NO. Y, MONTH 2002 6

d

-0.25 0.5 1 1.25

-0.25

0.5

1

1.25

Landmark 1

M
1

M
2

Landmark 2

R1

R2

L1 L2
d
2

d
2

r1

r2

Vehicle
M

1,2
k

Fig. 3. Localization by two angle measurements with bounded uncertainties. Graphical illustration of the transformation of the measurement

equation. Each grey shaded ring R1 and R2 corresponds to a transformed, pseudo–linear measurement equation. The intersection of R1 and

R2 is equivalent to the desired set of circular arcs M
i,j

k
.

Expanding these equations into an intermediate pseudo–

linear form in an L = 4 dimensional hyperspace S̄∗ yields

¯̂z∗k = H̄
∗

kx̄∗

k + v̄∗k , (22)

with the new state vector x̄∗

k = T̄ (xk), measurement matrix

H̄
∗

k, and measurement vector ¯̂z∗k according to

x̄∗

k = T̄ (xk) =
[

xk, yk, x2
k, y2

k

]T

H̄
∗

k =

[

−2xM1
,−2yM1

, 1, 1

−2xM2
,−2yM2

, 1, 1

]

¯̂z∗k =

[

(r1 + d
2
)2 − (x2

M1
+ y2

M1
)

(r2 −
d
2
)2 − (x2

M2
+ y2

M2
)

]

,

where the bar denotes variables related to the intermediate,

pseudo–linear form. The corresponding bounded measure-

ment noise v̄∗k =
[

v̄∗,1
k , v̄∗,2

k

]T

is constrained by the intervals

v̄∗,1
k ∈

[

−((d/2)2 + d r1), 3/4 d2 + d r1

]

,

v̄∗,2
k ∈

[

−((d/2)2 + d r2), 3/4 d2 + d r2

]

,

where d = di,j
k corresponds to the ”thickness” of the rings

belonging to X
M
k (see Fig 3). The pseudo–linear mea-

surement equation (22) can directly be used for filtering

with the described pseudo–ellipsoidal approach, as will be

demonstrated in an example in Section V.

Application of the nonlinear transformation η
k
(.) ac-

cording to (12) generates an even tighter approximation

of the exact measurement set X
M
k . Here the transforma-

tion η
k
(z) =

[

z, z2
]T

is chosen to obtain the final pseudo–

linear measurement equation. Transformations of higher

order yield increasingly tighter approximations, but require

higher computational effort. This transformation is applied

to each row of (22) separately, which results in two mea-

surement equations with the new state vector x∗

k given by

x∗

k = [ xk, yk, xkyk, x2
k, y2

k,

x3
k + xky2

k, x2
kyk + y3

k, x4
k + 2x2

ky2
k + y4

k ]
T

(23)

and measurement matrices i
H

∗

k with

i
H

∗

k =



























−2xMi
−4x3

Mi
− 4xMi

y2
Mi

−2yMi
−4y3

Mi
− 4x2

Mi
yMi

0 8xMi
yMi

1 6x2
Mi

+ 2y2
Mi

1 2x2
Mi

+ 6y2
Mi

0 −4xMi

0 −4yMi

0 1



























T

i = 1, 2 (24)

in the L = 8 dimensional space S∗. The associated mea-

surement vectors iẑ∗k are given by

1ẑ∗k =

[

(r1 + d
2
)2 − (x2

M1
+ y2

M1
)

(r1 + d
2
)4 − (x4

M1
+ 2x2

M1
y2

M1
+ y4

M1
)

]

(25)

and

2ẑ∗k =

[

(r2 −
d
2
)2 − (x2

M2
+ y2

M2
)

(r2 −
d
2
)4 − (x4

M2
+ 2x2

M2
y2

M2
+ y4

M2
)

]

. (26)

The measurement uncertainty sets iṼ
∗

k, i = 1, 2 with asso-

ciated definition matrices i
V

∗

k are given by

i
Ṽ

∗

k = {v∗

k : [v∗

k − iv̂
∗

k]T (i
V

∗

k)−1[v∗k − iv̂
∗

k] ≤ 1}
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for the transformed measurement equations (15). Similar

to the example in Section III-B, their parameters given by

the midpoint vectors iv̂∗ and the matrices i
V

∗

k are calcu-

lated such that iẑ∗k −
i
H

∗

kx∗

k ∈ iṼ
∗

k for all possible v∗

k. The

calculation of an arbitrary conservative pseudo–ellipsoidal

set iṼ
∗

k is simple, yet to find the minimum volume ellip-

soidal set iṼ
∗

k is in general not a trivial task. A closed–form

solution is available and has been used for the transforma-

tion η
k
(z) =

[

z, z2
]T

, as demonstrated in the example in

Section III-B. For application of the filtering algorithm

(16) v̂∗

k is subtracted from ẑ∗k to obtain zero mean mea-

surement noise.

V. Solution of the Localization problem using

nonlinear filtering

To demonstrate the performance of the proposed ap-

proach for relative bearing localization, consider the typ-

ical scenario depicted in Fig. 4. A vehicle V at position

xk = [0, 0]
T

conducts bearing measurements to N = 3

landmarks located at L1 = [0, 1]
T
, L2 = [1, 1]

T
and

L3 = [−1, 0]
T
. According to the notation presented in

the problem statement, these measurements define 3 circu-

lar arcs C
i,j
k and associated measurement sets M

i,j
k . Note,

that the true position of the vehicle is contained in the

intersection of all 3 measurement sets.

To solve the given localization problem shown in Fig. 4, a

noninformative prior X
P
k is assumed, i. e., no prior knowl-

edge about the initial position of the robot is given, and

X
P
k ∩X

M
k = X

M
k . This means, that position estimation is

based on the measurements only. Consecutive application

of the update equations (7) for each pair (i, j) of land-

marks Li, Lj yields the desired estimates x̂e
k of the vehicle

position together with the associated sets X
e
k of all vehi-

cle positions compatible with the given measurements. To

calculate these desired quantities, the pseudo–ellipsoidal

bounding set X
e,∗
k according to (10) is evaluated on the

two–dimensional manifold U∗ defined in an 8–dimensional

space by the nonlinear transformation T (.) given by (23).

This yields a higher order implicit polynomial description

of the uncertainty set X
e
k in the original space S. From this

implicit description, characteristic values of X
e
k like the

boundary of the set are calculated numerically by means

of the inverse transformation.

First, the intermediate measurement equations in

pseudo–linear form according to (22) are directly used with

the proposed new filter algorithm, which is equivalent to

choosing η
k
(.) as the identity transformation η

k
(z) = z.

This means, an L = 4 dimensional hyperspace S∗ is used

to describe the N = 2 dimensional uncertainty set X
M
k

in the original space S. The resulting exact measurement

set M
3,1 after including the first relative bearing measure-

ment between landmark L3 and L1 is shown in Fig. 4 as

a shaded crescent shaped area. The related approxima-

tion M̃
3,1

calculated with the proposed filter algorithm is

marked by a thick black line in Fig. 6b).

Then, the additional transformation η
k
(z) =

[

z, z2
]T

is

applied yielding measurement equation (16) with x∗

k, H
∗

k

and ẑ∗k given by (23), (24) and (25),(26) in an L = 8 di-

mensional space. Fig. 5 and the zoomed clipping depicted

in Fig. 6a) show the result obtained after including the

first relative bearing measurement between landmark L3

and L1. It can clearly be seen, that the shaded exact mea-

surement set M
3,1 in Fig. 4 is very tightly approximated

by the proposed, implicit polynomial bound resulting from

the nonlinear pseudo–ellipsoidal filter, which is marked by

a thick black line in Fig. 5. Note that this approximation

obtained with the additional transformation η
k
(.) is even

better than the result obtained by straightforward applica-

tion of the expanded measurement equation (22), which is

depicted in Fig. 6b). Figure 7 shows the final result after all

measurements have been included. From the zoomed clip-

ping shown in Fig. 8 it can be appreciated, that all N = 3

measurement sets M
i,j
k have been taken into account and

a tight upper bound for the exact set has been achieved.

For reference purposes, the tightest possible axis aligned

box–shaped set X
M,B
k is also shown, which is obviously a

much more conservative approximation.

VI. Conclusion and Future Work

In this article a new approach for localization of a mo-

bile robot for the case of relative bearing measurements

has been described. The key idea of the new approach

is to transform the given problem to a form amenable to

the application of a system theoretic filtering framework

for nonlinear bounded error estimation. For that purpose,

an existing approach for nonlinear filtering based on over-

parametrization was generalized and yields a simple, in-

tuitive description of the nonlinear filtering problem. A

complicated uncertainty X k in the original space S = IR2

is represented by a simpler shaped uncertainty X
∗

k and an

associated transformation T (.) in a higher dimensional hy-

perspace S∗. This approach allows to apply well–known,

linear ellipsoidal bounding filters in the higher dimensional

space S∗ to obtain a tight approximation of the desired

uncertainty X k, that describes the position of the robot.

Nonlinear constraints for the estimated position in the

original space S are generated by a nonlinear transforma-

tion η
k
(.), which is applied to the measurement equation.

The most challenging problem in terms of computational

complexity is the determination of characteristic values of

the complicated uncertainty X k by means of an inverse

transformation, which in general requires numerical calcu-

lations. In a practical localization example, it was shown,

that a second order transformation with η
k
(z) =

[

z, z2
]T

yields an approximation X
e
k, that is very close to optimal

and outperforms simple, approximation schemes based on
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Fig. 4. Three angle measurements with bounded uncertainties: The shaded set is the resulting, exact measurement set M3,1 after the first

filtering step.
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Fig. 5. Three angle measurements with bounded uncertainties: The shaded resulting, exact measurement set M3,1 and the implicit

polynomial approximation M̃
3,1

(thick black line) after the first filtering step with the new nonlinear Pseudo–Ellipsoidal Filter. The

nonlinear transformation η
k
(z) =

[

z, z2
]T

was applied to generate additional constraints.

axis–aligned boxes. Increasing the order of the polynomial

transformation η
k
(z) results in even better approximations,

but requires additional computational effort.

Future research on localization using nonlinear filtering

will focus on the question, how to include nonlinear predic-

tion of the resulting feasible set of states and how system

noise can be incorporated in the proposed approach.
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