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Abstract— Despite significant advances in robot autonomy,
manual intervention by a human operator is necessary in many
situations. This usually requires qualified staff and some robot-
specific input device even for the comparatively simple case of
platform locomotion. For this reason, we propose a novel path
generation method for the teleoperation of car-like vehicles.
With this method, the operator “draws” a desired 2D path
by walking in a large-scale haptic interface while a guiding
force is exerted, which ensures that the generated path can
be accurately followed by a path tracking controller running
offline on a robot. We present a local optimization-based path
planner, a higher-level path generation algorithm utilizing the
aforementioned planner, and a force feedback law. Experiments
show an improved feasibility of the generated paths without
affecting the operator’s ability to make decisions independently.

I. INTRODUCTION

One of the aims of the ROBDEKON [1] research project
is the automatic decontamination in inhospitable environ-
ments by autonomous construction machines leveraging re-
cent developments in robotics. Despite the application of
state-of-the-art technology, most of the developed autonomy
functions are still suffering from certain limitations regard-
ing reliability, generalization under varying environmental
conditions, and dexterity. For this reason, a logical step in
the evolution of the involved robots is the application of
teleoperation principles to delegate difficult or unhandled
situations to a human operator that can then operate the
robot’s drive-train or manipulator manually.

Traditionally, a realistic copy of the driver’s cabin is cre-
ated for this purpose. The disadvantage of this method is that
the needed replica is costly and tailored to a single machine
type. Furthermore, this solution requires a permanent data
link to the robot and highly trained personal as the robot
is controlled on its lowest level of abstraction. To overcome
these issues, the methods of shared autonomy [2] can be
applied. As a result, only sub-tasks that cannot be handled
by the robot are delegated to the operator.

In this paper, we present such a shared autonomy approach
for an intuitive and precise way to move a car-like mobile
platform across a challenging planar construction site, as
illustrated in Fig. 1. We assume that the environment is
unstructured and that the robot is not able to obtain a map
that is suitable for path planning. In this case, the overall task
is split into the generation of a path performed by the human
operator, and the follow-up control of the path executed by
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Fig. 1. Example scenario with obstacles. The execution of the red path
might lead to collision with obstacles. The blue paths are feasible and can
be followed precisely.

the robot. In contrast to a holonomic platform, where a valid
path can be generated easily by selecting an arbitrary polyline
(red line in Fig. 1), the constrained kinematics of the car-like
platform must be taken into account. To achieve this, we
propose a path generation based on haptic force feedback,
in which the user’s hand position resembles the platform
position. As long as the user does not violate the kinematic
constraints of the platform and hence does not generate an
infeasible path, he or she can move around freely. However,
if these constraints are violated, a force guiding the user back
to a feasible path is applied. Since the resulting path (blue
lines in Fig. 1) is feasible, the actual execution of the path
can then be performed offline and with high accuracy.

The remainder of this paper is structured as follows: First,
we give a brief overview of related work in section II and
define the precise problem in section III. In section IV,
we introduce the proposed path generation algorithm and
associated components. Finally, we present our evaluation in
section V and conclude our work in section VI.

II. RELATED WORK

The field of path planning and generation under non-
holonomic constraints is a well-researched topic. Common
approaches like rapidly exploring random trees or lattice-
based path planning are sampling-based [3], [4]. By default,
these algorithms need a map of the environment and a pre-
defined goal whilst they are unable to interact with the user
during the planning phase. Taı̈x [5] mitigates the latter issue
by taking the position of the human operator as a clue during
exploration, but the need for a map remains.

On the other hand, existing haptic guidance systems usu-
ally assume that the path is already fully known and shall
be followed by a human [6], [7]. This can be generalized to
surfaces by applying the concept of virtual fixtures [8].



One approach that combines haptic guidance and path
planning is made by Ladeveze [9]. The author suggests
a system for the teaching of industrial robots that allows
the incorporation of the user’s cognitive capabilities. How-
ever, the system still requires precise information about
the environment and non-holonomic movements are not
supported. In the work of Kuiper [10], a haptic guidance
algorithm for a steering task of a non-holonomic vehicle
is presented. The proposed system can work without pre-
defined trajectories by predicting future vehicle poses, but the
loop between the platform and the user must be permanently
closed and the user input is expected in the less intuitive
configuration space. Another approach, that combines haptic-
guidance, user interaction, and non-holonomic constraints, is
contributed by Rahal [11]. Similar to the previous approach,
a closed loop is required. Further drawbacks are the need
for rotational haptic feedback and constraints that do not
resemble physical kinematics.

To the best of our knowledge, no approach is known yet
that combines offline path generation with haptic feedback
under kinematic constraints.

III. PROBLEM STATEMENT

Given: According to [3], the kinematics of a forward
driving car-like vehicle can be stated as non-linear, time-
continuous dynamic system of the form

˙
¯
x =

ẋẏ
θ̇

 =
¯
f

xy
θ

 , [v
φ

] =

 v cos (θ)
v sin (θ)
v
L tan (φ)

 , (1)

where the system state
¯
x consists of the center position of

the rear axle [x, y]T and the heading angle θ. The control
inputs

¯
u = [v, φ]T are defined as longitudinal velocity v

and steering angle φ. L denotes the wheelbase. To keep
the vehicle within its feasible operating conditions, the
constraints

0 ≤v ≤ vmax , (2)
−φmax ≤φ ≤ φmax (3)

limit the steering angle and the velocity.
Goal: We aim to capture a path describing the movement

of the center position of the vehicle’s rear axle in a plane
that is approximated by a series of points

[
¯
p0, ...,

¯
pN
]
,

¯
pi = [xi, yi]

T ∈ R2. Note that no time information is given
since the speed of execution will be determined by the robot.
The resulting path shall be able to satisfy the kinematic
constraints (1)–(3).

This is achieved by recording the position of the operator’s
hand in the room-sized ISAS semi-mobile haptic interface
(SMHI) [12] and interpreting it as the vehicle position.
Simultaneously, an appropriate cartesian force

¯
F ∈ R2 is

displayed as guidance to the operator that keeps the input
path feasible. For example, the operator will feel a counter-
acting force when proceeding on a path that is incompatible
with the vehicle kinematics. Due to the nature of the SMHI,
torques as well as non-planar forces cannot be displayed and
therefore not be used for guiding the operator.

The generated path is then sent to the robot and executed
offline by the embedded controller. This implies that the
connection between the control station and the robot is not
mandatory after the path generation is completed.

IV. PROPOSED METHOD

The proposed method for the path generation with haptic
guidance consists of three linked modules:
A) A local path planner formulated as an optimization

problem predicts the vehicle path depending on the user
position relative to a vehicle state.

B) A higher-level path generation algorithm utilizes the
local path planner for creating arbitrarily long paths.

C) The planned path and the user position are used for the
generation of guiding force feedback.

A. Local Path Planner

Without loss of generality, assume that the vehicle is
located at [

x (0) y (0) θ (0)
]
T =

[
0 0 0

]
T (4)

as a starting point. The desired position of the vehicle is
supposed to be located at [x∗, y∗]T somewhere in the vicinity
of that starting point. A goal orientation θ∗ is not given.

The objective is then to find a direct state and input
trajectory, whose final state at time t∗ minimizes the error
to the desired position [x∗, y∗]T while satisfying the kine-
matic constraints. This can be formulated as a non-linear,
constrained optimization problem:

argmin

¯
x(t),

¯
u(t),t∗,

∥∥∥∥[x (t∗)
y (t∗)

]
−
[
x∗

y∗

]∥∥∥∥2

subject to equations (1) – (3) ,

¯
x (0) =

¯
0 ,

|θ (t)| < π

2
.

(5)

The last constraint ensures that no approaches from the
reverse direction are possible, because this would disregard
the locality of the planner.

The above problem can yield multiple solutions. One
option is to select the solution with the shortest path. This is
equivalent to selecting the solution with the smallest t∗ due to
constraint (2). An alternative way to remove the superfluous
solutions is the approximation of the original problem under
the following assumptions:
• The vehicle is driving with constant velocity v = v0.

This is reasonable since the set of feasible paths for an
ideal car-like vehicle does not depend on the velocity.

• Additionally, the steering angle is held constant within
the optimization horizon, which guarantees that only
one path exists for any given local endpoint. The re-
sulting approximation error is small due to the locality,
i.e., short time horizon, of the problem.

According to (1), the movement of a car-like vehicle
under these assumptions can be described using circular arcs.
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Fig. 2. Partitioning of the set of possible desired positions relative to the
vehicle, whose position is defined by the black dot at the center of the
rear axle. The red circular arcs indicate the paths with the smallest possible
turning radius.

As stated in [3], the relation between turning radius r and
steering angle φ is then given by

r =
L

tanφ
, φ 6= 0 . (6)

Now it is possible to derive a solution for the approxi-
mation of problem (5) analytically by partitioning the set of
feasible endpoints as depicted in Fig. 2.

1) Goal is reachable: If the goal is located within the set
of reachable points represented by the green area in Fig. 2,
it can be reached exactly by driving along an arc with the
specific radius r. Mathematically, the optimization problem
then reduces to the equation

x∗2 + (r − y∗)2
= r2, y∗ 6= 0 . (7)

Consequently, the solution for the desired radius is calculated
as

r =
x∗2 + y∗2

2y∗
, y∗ 6= 0 . (8)

Using (6), this can be rearranged to the required steering
angle

φ = arctan
2Ly∗

x∗2 + y∗2
. (9)

Note, that this equation also yields correct results for y∗ = 0
as long as x∗ 6= 0. The new vehicle heading at the final
position follows from trigonometry:

θ (t∗) = arcsin
x∗

r
= arcsin

2x∗y∗

x∗2 + y∗2
. (10)

With this information, the full state trajectory and the final
time t∗ can be determined by integrating (1).

2) Goal exceeds minimum turning radius: If the goal is
located in one of the blue areas of Fig. 2, it cannot be reached
exactly since the minimum turning radius

rmin =
L

tanφmax
(11)

with the corresponding steering angle φmax is exceeded. For
now, assume that y∗ > 0. If y∗ < 0, the assumption can be
restored by reflecting the problem on the x-axis. The curved
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Fig. 3. Illustration of the proposed path generation algorithm.

border of the upper blue area, that describes feasible vehicle
end positions, can be parameterized as

x = rmin sinα , (12)
y = rmin(1− cosα) . (13)

Thus, minimizing the objective in problem (5) yields the new
objective function

J = (rmin sinα− x∗)2
+ (rmin (1− cosα)− y∗)2

. (14)

By setting ∂J
∂α to zero, the solution

α∗ = arctan
x∗

rmin − y∗
(15)

is obtained. This determines the optimal vehicle position
[x (t∗) , y (t∗)]T after insertion into (12) and (13). The opti-
mal heading is given by θ (t∗) = α∗. The full state trajectory
is calculated analogous to the previous case.

3) Other regions: A desired endpoint in the purple region
of Fig. 2 is not reachable with the vehicle described by
equations (1)–(3), as reversing would be required. Endpoints
that meet

(|y∗| ≥ rmin ∧ x∗ < rmin) ∨ (|y∗| > x∗ ∧ x∗ ≥ rmin) (16)

are also not reachable due to the last constraint of optimiza-
tion problem (5).

B. Path Generation Algorithm

The presented path planning algorithm only provides a
local prediction of the vehicle path. To overcome this limita-
tion and to generate arbitrarily long paths, algorithm 1 was
designed. A new iteration is carried out whenever a new
measurement of the user position

¯
puser = [xuser, yuser]

T is
available. Based on Fig. 3, the key concepts of this algorithm
are briefly described in the following.

The pivot element
(
¯
ppivot, θpivot

)
(purple circle) describes

the pose that is used as the starting point for the lo-
cal planning algorithm in section IV-A. To meet assump-
tion (4), the current user position

¯
puser (red circle) is trans-

formed before the actual optimization problem is solved



Algorithm 1 Path generation under kinematic constraints.
1: L

¯
puser

.append(
¯
puser)

. Calculate how much the user moved forward/backward
w.r.t. reference pose.

2:
¯
tref ← [cos θref , sin θref ]

T

3: d‖ref ←
(
¯
puser −

¯
pref

)
T

¯
tref

4: bbehindref ←
(
d‖ref < 0

)
. Calculate how much the user moved forward/backward
w.r.t. pivot pose.

5: d‖pivot ←
(
¯
puser −

¯
ppivot

)
T [cos θpivot, sin θpivot]

T

6: bbehindpivot ←
(
d‖pivot < 0

)
. User is behind pivot pose: Problem (5) is infeasible.

7: if bbehindpivot then
8:

¯
npivot ← [− sin θpivot, cos θpivot]

T

9: d⊥pivot ←
(
¯
puser −

¯
ppivot

)
T

¯
npivot

10: return
11: end if

. Call the local path planner from section IV-A.
12:
(
¯
pveh,pred, θveh,pred, φpred

)
←

localPlanner
(
¯
ppivot, θpivot,

¯
puser

)
13: if

(
¯
pveh,pred, θveh,pred, φpred

)
= ∅ then

14: return
15: end if
16:
(
L

¯
pveh,pred

,Lθveh,pred

)
←

samplePrediction
(
¯
ppivot, θpivot,

¯
pveh,pred, φpred

)
. Update reference pose.

17: if ¬bbehindref then
18:

(
¯
pref , θref

)
←
(
¯
pveh,pred, θveh,pred

)
19: end if

. Update pivot pose.
20: while ¬bbehindref ∧ d‖pivot > dth do
21: L

¯
pveh,pred

.pop(),Lθveh,pred
.pop()

22:
(
¯
ppivot, θpivot

)
←
(
L

¯
pveh,pred

[0],Lθveh,pred
[0]
)

23: L
¯
pveh,past

.append
(
L

¯
pveh,pred

[0]
)

24: d‖pivot ←
(
¯
puser −

¯
ppivot

)
T [cos θpivot, sin θpivot]

T

25: end while

in localPlanner(). The solution of the local planner is
then transformed back to match the real pivot pose and
yields

(
¯
pveh,pred, θveh,pred, φpred

)
. Subsequently, the local

prediction is discretized in samplePrediction() by numerical
integration of (1). The sampling interval, i.e., the distance be-
tween two subsequent sample points on the path, is denoted
as dsample. The result is stored in

(
L

¯
pveh,pred

,Lθveh,pred

)
afterwards (orange path).

To detect the direction of the user motion, the reference
pose

(
¯
pref , θref

)
(orange dot) is used. An update of this pose

based on the last prediction occurs whenever the user moves
“forward” (bbehindref = 0).

If the user has not moved backward relative to the refer-
ence pose and the forward movement d‖pivot with respect to
the pivot pose exceeds a threshold dth, the pivot element is
updated. To accomplish that, the first element of the predicted
path is iteratively set as pivot pose until dth is no longer
exceeded. In parallel, all superseded pivot poses as well as

the current one are stored in the past and immutable vehicle
path Lpveh,past

(purple line).
In theory, it is sufficient when the parameters of the

algorithm satisfy the condition dsample ≤ dth. However, to
achieve the best possible performance, it is recommended
to choose the parameters according to dsample � rmin and
5 dsample ≤ dth ≤ rmin

2 . In doing so, the first condition
ensures that the errors of the numerical integration are kept
small. The latter one makes the algorithm robust towards
noisy input positions and prevents the prediction from getting
unnecessarily long.

For the initialization, the pivot pose has to be set to a
feasible vehicle pose that is behind the initial vehicle position
coinciding with the initial user position

¯
puser,0. Moreover, the

first reference pose is assigned to the initial vehicle pose.
Mathematically, this can be written as

¯
ppivot =

¯
puser,0 −

1

2
dth

[
cos θ0

sin θ0

]
, (17)

¯
pref =

¯
puser,0 , (18)

θpivot = θref = θveh,0 , (19)

where θveh,0 is the initial heading of the vehicle.

C. Force Feedback

In order to close the loop and limit possible deviations
from a feasible path, appropriate force feedback in each
iteration is required. For this reason, two force components
as drawn in Fig. 2 (green arrows) were designed:

1) The lateral guidance force

¯
F⊥=−D⊥

{
d⊥pivot

¯
npivot if bbehindpivot

¯
puser−

¯
pveh,pred otherwise

(20)

with scaling factor D⊥ ensures that the user does not
plan a path that requires the vehicle to move sideways.

2) The longitudinal guidance force

¯
F‖ =

{
−D‖ d‖ref ¯

tref if bbehindref

0 otherwise
(21)

with scaling factor D‖ prevents the user from moving
backwards as this would violate constraint (2). This
force is inactive if the user moves forward.

Finally, the haptic interface renders the superposition
¯
F =

¯
F⊥ +

¯
F‖ of both forces for the user.

V. EVALUATION

The proposed algorithm was implemented as a node within
the Robot Operating System (ROS) framework [13] and an
experimental study was conducted. For all trials, the SMHI
described in [6], [12], [14] and depicted in Fig. 4 was used.
This large-scale haptic interface utilizes admittance control
to render planar forces with a magnitude of up to 100 N. In
contrast to other haptic interfaces, the SMHI is able to cover
a workspace of about 5× 5 m2, which facilitates the natural
locomotion of its users.

A total of 18 subjects participated in the experiments. Six
of them reported to be familiar with the haptic interface,
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Fig. 4. Experimental setup with SMHI handle, goals, start, and end point.

but no candidate has used the proposed algorithm before.
Four of the participants had little experience with vehicle
operation, eight had average experience, while six were
highly experienced.

A. Experimental Setup and Procedure

The experimental setup within the SMHI is depicted in
Fig. 4. The task for each subject is to move the handle
of the haptic interface along a self-chosen path for a car-
like vehicle, that moves through the goals 1–4 in ascending
order and then returns to the starting point. Reversing is not
allowed. In order to utilize the workspace effectively, the
desired scenario including the vehicle is scaled down. To
provide the user with a visual cue about the position of the
virtual vehicle, the current handle positions is projected onto
the floor using a laser pointer.

At the beginning of each experiment, the subjects are
made familiar with the basic operation principles of the
SMHI. The participants are then verbally informed about the
initial heading and the precise minimum turning radius of
the assumed vehicle kinematics. After that, the subjects are
asked to execute the given task twice by “walking” a path,
that satisfies the given kinematic constraints of the vehicle.
During the first run, no haptic guidance is active and the
SMHI is in a zero force control mode. For the immediately
following second run, the proposed guidance algorithm is
activated.

The parameters of the car-like kinematics were chosen as
L = 0.5 m and φmax = 35◦. According to (6), this yields a
minimum turning radius of rmin = 0.71 m. The parameters
of the guidance algorithm were determined empirically to
dsample = 0.02 m, dth = 0.1 m and D⊥ = D‖ =
500 N m−1.
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Fig. 5. Statistical evaluation of the deviation between the desired path and
the closest feasible path.

B. Performance Measure

The planned vehicle path L
¯
pveh,past

cannot be used di-
rectly for the evaluation since there is no equivalent for the
unguided run. However, it is possible to compare both runs
by evaluating the feasibility of the user path L

¯
puser . To get a

quantitative measurement of the feasibility, the user path can
be used as the setpoint for a path tracking controller and the
deviation between the desired and the executed path can be
calculated. However, the result highly depends on the type
of controller being used [15] and hence, is not objective.

For this reason, the path tracking control is replaced
by a global optimization problem, that finds the realizable
path with the smallest possible deviation to the desired
path. As a preparation for this, the user path L

¯
puser is

resampled equidistantly resulting in the desired points
¯
p∗i ,

i ∈ {0, 1, ..., N}. These points are then fed into

J = min
¯
u0,...,

¯
uN−1

¯
p0,...,

¯
pN

θ0,...,θN

(
1

N + 1

N∑
i=0

∥∥
¯
pi −

¯
p∗i
∥∥2

) 1
2

subject to discretization of equations (1) – (3) ,

¯
p0 =

¯
p∗0 ,

θ0 = θveh,0 ,

(22)

which is numerically solved by CasADi [16]. Here, the points

¯
pi, i ∈ {0, ..., N} correspond to the optimal, realizable path.
J quantifies the RMS deviation between the desired and the
closest realizable path. In addition, a measure for the maxi-
mum deviation can be obtained using max

i

∥∥
¯
pi −

¯
p∗i
∥∥. Due to

the global nature of the optimization, these quantities can be
interpreted as a lower bound for the control performance of
any path tracking controller, that follows a quadratic distance
measurement.

C. Results

The RMS and maximal deviation as defined in the pre-
vious section were evaluated for both runs. A statistical
analysis of the results for all subjects is depicted in Fig. 5.
It can be seen that the deviation between the desired and
the closest feasible path is reduced significantly when the
guidance is active: For the RMS deviation, the median value
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is reduced from 0.087 m to 0.003 m, while the maximal value
is reduced from 0.199 m to 0.011 m. Similarly, the median
and the maximum of the highest achieved deviation from
the desired path were decreased from 0.298 m to 0.015 m
and 0.609 m to 0.063 m, respectively. This implies that the
desired paths become more feasible in case of activated
guidance, which in turn allows to use them directly as an
input for a path tracking controller.

At the same time, the ability of the user to contribute their
situation awareness by selecting goals and paths indepen-
dently is largely unaffected: The average distance between
the demanded goals and the user paths is 0.039 m with and
0.038 m without guidance across all subjects. Furthermore,
Fig. 6 demonstrates that individual solutions of the task
are possible and that the proposed guidance imposes no
constraints beyond the vehicle kinematics.

As shown in Fig. 7, there is a correlation between per-
ceived force feedback and driver skill: A driver that already
performs well (i.e., low deviation) during the run without
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Fig. 8. Detailed comparison between the guided and the unguided run of
the same subject.

guidance, tends to report little to no force during the run
with guidance. This indicates that the proposed guidance has
neither a significant effect on the performance nor on the user
experience of a skilled operator.

The comparison in Fig. 8 depicts both runs of a less skilled
subject to get a better understanding of how the guidance
affects a user. The path without guidance in Fig. 8(a) exhibits



sharp turns and large deviations to its closest feasible path,
while the path with guidance has very small deviations. This
is also reflected in Fig. 8(b), where the curvature of the
guided user path is effectively limited to a value close to
the vehicle’s maximum. Fig. 8(a) and Fig. 8(c) show, that
the guiding force is only exerted when the user starts to
violate the kinematic constraints of the vehicle. This matches
the expected behavior of a guidance algorithm that does not
undermine the user’s choice.

VI. CONCLUSIONS

In this paper, a new path generation method for the
teleoperation of car-like robotic platforms was presented.
Haptic feedback was introduced to ensure the feasibility of
the path pursued by the user. This was achieved by the
combination of an optimization-based local path planner, that
predicts a feasible vehicle path from a given pivot pose to
the current user position, and a higher level path generation
algorithm that allows the creation of arbitrary long paths
through iterative updates of this pivot pose. To close the loop
between the user and the algorithm, appropriate guidance
forces were defined.

Experiments showed the effectiveness of the proposed
method: Compared to an unguided path generation, the
guidance algorithm significantly increased the feasibility of
the path that is pursued by the user, which means that the
generated paths can be used in scenarios requiring high
precision. Despite the guidance, users were still fully capable
of contributing their experience and their understanding of
the situation. Furthermore, it was found that skilled operators
are only slightly affected by the guidance algorithm, whereas
less skilled operators get appropriate force feedback, that can
be useful for learning the vehicle characteristics.

Future work will focus on extending the proposed method
to additional kinematic structures. In addition, the application
to dynamic instead of kinematic vehicle models will be
investigated.
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