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Abstract
In current state of the art sensor-based sorting systems, the length of the deflection 
windows, i.e., the period of nozzle activation and the number of nozzles to be 
activated, is commonly determined solely by the size of the particles. However, this 
comes at the cost of the sorting process not accounting for model discrepancies 
between actual and presumed particle motion, as well as for situations where the 
available information does not allow for precise determination of nozzle activations. 
To achieve a desired sorting accuracy, in practice, one is therefore usually forced to 
enlarge the deflection window to a certain degree, which increases the number of 
falsely co-deflected particles and compressed air consumption.
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In this paper, we propose incorporating the uncertainty of the prediction of particle 
motion of each individual particle into the determination of the deflection windows. 
The method is based on the predictive tracking approach for optical sorting, which 
tracks the particles while they move toward the nozzle array based on images of 
an area-scan camera. Given the extracted motion information from the tracking, 
we propose an approximation for the distribution of arrival time and location of the 
particle at the nozzle array assuming nearly constant-velocity or nearly constant-
acceleration particle motion behavior. By evaluating the quantile function of both 
distributions, we obtain a confidence interval for the arrival time and location based 
on prediction uncertainty, which we then combine with the particle size to form 
the final deflection window. We apply our method to a real sorting task using a 
pilot-scale chute sorter. Our results obtained from extensive sorting trials show 
that sorting accuracies can be remarkably improved compared with state-of-the-art 
industrial sorters and enhanced even further compared with predictive tracking while 
having the potential to reduce compressed air consumption.

1 Introduction
The aim of data processing in sensor-based sorters with pneumatic separation is 
essentially to determine a deflection window, i.e., to decide when, how long, and 
which nozzles to activate to eject a particle of an undesired class. Usually, the 
period of nozzle activation and the number of nozzles to be activated are determined 
based on the size of the respective particle (Maier et al., 2021). Therefore, although 
the location of the deflection window depends on the individual particle motion, its 
size does not. Hence, current algorithms for sensor-based sorting are unable to 
account for model discrepancies between actual and presumed particle motion, 
as well as for situations where the available information does not allow for precise 
determination of nozzle activations. For example, for a particle moving unusually 
slowly, the predicted deflection window may be too short to cover the period in which 
the particle passes the nozzle array, while for a particle moving strictly according 
to the assumed motion, it may be larger than required. This inability leads to the 
risk of both, particles not being ejected and falsely co-deflected particles, as well as 
unnecessarily high consumption of compressed air.

In practice, one is therefore usually forced to enlarge the deflection window by a 
fixed, often experimentally determined, amount. This amount can be viewed as an 
average deviation (w.r.t. all particles) or uncertainty within the forecast of particle 
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motion. Explicitly including such a margin is thus often essential for achieving a 
desired sorting accuracy. However, enlarging the deflection window comes with 
the drawback that in turn the number of falsely co-deflected particles as well as the 
compressed air consumption is increased. Given that around 70 % of the operating 
costs of a pneumatic sorter are attributable to compressed air generation (Gülcan 
& Gülsoy, 2018), larger deflection windows constitute a major cost factor, and their 
reduction bears enormous potential for improvement.

To address this problem, we propose incorporating the uncertainty of the prediction 
of particle motion of each individual particle into the determination of the deflection 
windows. The basic idea is that when the uncertainty for a particular particle is low, 
i.e., it is indicated that the prediction is accurate, the deflection window for that 
particle can be decreased, while it should be enlarged when the uncertainty is high.

Our proposed method for particle-specific deflection windows builds upon the 
predictive tracking (Maier et al., 2021; Pfaff, 2019; Pfaff et al., 2015) approach for 
optical sorting. While the current state of the art in the industry primarily relies on 
line-scan-camera-based prediction, i.e., the particles are captured by a line-scan 
camera shortly before they arrive at the nozzle ar-ray, predictive tracking shows 
significant improvements compared with line-scan-camera-based sorters (Maier, 
2022; Maier et al., 2021, 2023). This is mainly because line-scan-based approaches 
assume a constant velocity, common to all particles, along the transport direction 
and zero velocity per-pendicular to the transport direction to estimate a particle’s 
arrival time and location at the nozzle array. It therefore often fails to capture the 
individual particle movement correctly. Predictive tracking on the other hand uses 
an area-scan camera along with a multitarget tracking (MTT) algorithm to track the 
particles’ center points while the particles are moving. In its original ver-sion, it then 
predicts the center points’ time and location of arrival at the nozzle array based 
on the extracted particle-individual motion information. Since no uncertainties are 
considered in this step, the size of the final de-flection windows is still not dependent 
on the individual particle’s motion, although their location is typically estimated more 
accurately than using a line-scan-based approach.

To incorporate uncertainties in the prediction process of predictive tracking, the key 
concept that we are pursuing is to derive the distributions of the particle arrival time 
and location at the nozzle array. These distributions explicitly encode the uncertainty 
inherent in the prediction, which otherwise is invisible but still present. Based on 
these distributions, we then find the deflection windows as the confidence intervals 
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for a desired confidence level , that is, we determine the deflection windows such 
that with probability , the particle arrives within the respective confidence interval 
(see Fig. 1).

From a mathematical perspective, the problem of finding the arrival time distribution 
of the particle center at the nozzle array can be viewed as a first-passage time 
problem. Here, the particle motion is described by a stochastic process, and 
we are interested in the distribution in the time domain that describes when the 
particle arrives at the nozzle array for the first time. Although first-passage time 
problems constitute an old and challenging class of mathematical problems, feasible 
approximations can be derived under some additional assumptions, as we recently 
proposed in (Reith-Braun, Thumm, et al., 2023). Fortunately, these assumptions 
are usually fulfilled by models describing particle motion in sorting tasks. For 
the distribution of the location of the particle’s center at the nozzle array, in this 
paper, we propose a linearization approach for approximation of the distribution of 
the stochastic process describing the particle motion orthogonal to the transport 
direction at the first-passage time. Since it is known that incorporating particle 
extents into the determination of the deflection window yields better results (Maier 
et al., 2021; Udoudo, 2010), we then show how the above methods can be used to 
estimate the arrival time distributions of the particle front and back, as well as of the 
location of the upper and lower particle edge location during the particle’s passage 
of the nozzle array. Finally, we show how to obtain deflection windows from these 
distributions using some approximations for the corresponding confidence intervals.
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Fig. 1. Outline of our proposed method for the optical sorting problem. Particles are transported to 
a nozzle array (here illustrated by a conveyor belt) while being observed by an area-scan camera. 
We assume (nearly) constant-velocity motion behavior and track the particles with a Kalman filter. 

Using an estimated particle state (here the last state in the camera’s field of view), we aim to 
estimate the distribution of the arrival time  of the particle at the nozzle array (lower distribution, a 
distribution in the time  domain) and the distribution of the particle’s location  (upper distribution, a 

distribution along the -coordinate) when passing the array of nozzles. Based on these distributions, 
we then calculate confidence intervals (depicted by dashed lines) used as deflection windows.

Our contributions are: First, we propose a general methodology to obtain particle-
specific deflection windows based on the assumption of constant-velocity (CV) or 
constant-acceleration (CA) particle motion behavior. Second, we show how the 
distribution of the location of the particle center along the nozzle array can be 
approximated. Third, we propose a method to incorporate particle extents into the 
determination of particle-specific deflection windows and finally, we demonstrate 
how the parameters of the method can be determined. We evaluate our methods 
using numerical simulations and by applying them to a pilot-scale chute sorter in 
extensive sorting trials.
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2 Background and Related Work
2.1 Motion Models for Describing Particle Motion
Here, we briefly describe the stochastic processes for describing particle motion 
that we consider in this study.

2.1.1 Constant-Velocity Model
The continuous-time (nearly) constant-velocity model, also known as the white-
noise acceleration model (Bar-Shalom et al., 2001), is the Gaussian process with 
state x(t) = [x(t) ẋ(t)]T, where x(t) denotes the position (evolving with time t) and 
ẋ(t) the velocity component, mean function
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step 𝑘𝑘𝑘𝑘 =  1 and so on, i.e., 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘+1 = 𝒙𝒙𝒙𝒙(Δ𝑡𝑡𝑡𝑡) | 𝒙𝒙𝒙𝒙𝑡𝑡𝑡𝑡0 ≜ 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘 , 𝑘𝑘𝑘𝑘 ∈ ℕ0, with 𝒙𝒙𝒙𝒙0 = 𝒙𝒙𝒙𝒙𝑡𝑡𝑡𝑡0. 

2.2 Algorithms for Optical Sorting 
While the current industrial state of the art is line-scan-camera-based predic-

tion, in our previous works (Pfaff, 2019; Pfaff et al., 2015), we showed that 

sorting accuracy can be improved with the help of the predictive tracking par-

adigm. In predictive tracking, an MTT algorithm is employed on the center 

coordinates of the particles while they are moving. For this, an area-scan 

camera observes typically the last 15 to 30 cm in front of the nozzle array. In 

a second step, the extracted motion information is then used to precisely ac-

tivate the nozzles (referred to as the prediction phase). For estimating the 

particle states during the MTT, multiple Kalman filters, one for each particle, 

using CV or CA motion models are deployed. For this, independent motion 

models in the transport direction, in the following referred to as the 𝑥𝑥𝑥𝑥-direc-

tion, and orthogonal to the transport direction, referred to as the 𝑦𝑦𝑦𝑦-direction, 

are used. At the end of the MTT, we are thus provided with precise estima-

tions of the individuals particles’ positions, velocities, and possibly accelera-

tions (if a CA model is used) in the form of their expectations and covariances. 

The prediction of the estimated particles’ time of arrival and location at the 

nozzle array is then again accomplished with motion models inspired by phys-

and the state and covariance function remain the same as for the CV model. Here, 
ac has the interpretation of a known, constant acceleration acting on the particle in 
addition to zero-mean white-noise random forces. For instance, ac can model the 
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influence of gravity g in free fall (ac =g) or on an inclined plane (ac =g sin α, with α 
being the slope angle).

The discrete-time counterparts of both motion models can be obtained from the 
continuous-time models by fixing ∆t=t-t0 to the time difference  between two 
consecutive time steps and treating x(Δt) as initial state for time step  k = 1 and so 
on, i.e. xk=1= x(Δt) | xt0 =Δ  xk, k ϵ ℕ0, with x0=xt0.

2.2 Algorithms for Optical Sorting
While the current industrial state of the art is line-scan-camera-based prediction, 
in our previous works (Pfaff, 2019; Pfaff et al., 2015), we showed that sorting 
accuracy can be improved with the help of the predictive tracking paradigm. In 
predictive tracking, an MTT algorithm is employed on the center coordinates of the 
particles while they are moving. For this, an area-scan camera observes typically 
the last 15 to 30 cm in front of the nozzle array. In a second step, the extracted 
motion information is then used to precisely activate the nozzles (referred to as the 
prediction phase). For estimating the particle states during the MTT, multiple Kalman 
filters, one for each particle, using CV or CA motion models are deployed. For this, 
independent motion models in the transport direction, in the following referred to as 
the -direction, and orthogonal to the transport direction, referred to as the -direction, 
are used. At the end of the MTT, we are thus provided with precise estimations of the 
individuals particles’ positions, velocities, and possibly accelerations (if a CA model 
is used) in the form of their expectations and covariances.

The prediction of the estimated particles’ time of arrival and location at the nozzle 
array is then again accomplished with motion models inspired by physics, such 
as CV or CA models. To this end, the motion models use the expectation of the 
estimated particle states from the Kalman filters at the last time step before the 
beginning of the prediction phase. An important difference is that while in MTT, time-
discrete versions of the CV or CA models are used, in the prediction of particles’ 
time of arrival and location at the nozzle array, predictive tracking uses their time-
continuous counterparts. In addition, all uncertainties are ignored, i.e., only the 
mean function of the time-continuous CV or CA model is used. Here, using time-
continuous models allows for being independent of the camera frequency and thus 
being able to provide more precise nozzle activations.
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Extensions to predictive tracking include incorporating orientation estimation in the 
MTT (Pfaff, 2019), and the use of more accurate, physically-inspired (Pfaff, 2019; 
Pfaff et al., 2020) and data-driven models. Latter includes the use of recurrent 
neural networks and multilayer perceptrons that replace the Kalman filters and 
the motion models as well as combinations of physically-inspired and data-driven 
models (Pollithy et al., 2020; Thumm et al., 2022). An experimental evaluation of 
some of these ideas using a lab-scale optical sorter can be found in (Maier et al., 
2023). An image-based rather than a midpoint-based approach was persuaded by 
(Reith-Braun, Bauer, et al., 2023). Here, the sorting problem was framed as a video-
forecasting task and solved using a convolutional long short-term memory network. 
As the approach can be trained in an unsupervised fashion, it allows sorting with a 
minimum of operator setup and supervision.

All algorithms eventually need to transform the information about the estimated 
particle arrival time and location at the nozzle array into a deflection window. 
This is either accomplished by targeting the particle center or, more commonly, 
by incorporating information about the particle extent, usually in the form of a 
bounding box (Maier, 2022; Maier et al., 2021; Udoudo, 2010). If the bounding box 
is extracted from a line-scan camera image, i.e., is in the temporal-spatial domain, 
it can be directly used as a deflection pattern after only minor post-processing. If the 
bounding box is extracted from an area-scan camera image, such as in predictive 
tracking, the length along the transport direction must be additionally converted to 
a time span by dividing by an estimated, potentially particle-dependent velocity. It 
is also common to use a modified version of the bounding box, e.g., by adding an 
offset or by multiplication with a factor. For example, an offset in -direction may 
account for the spatial resolution of the nozzle array (Maier et al., 2021). In general, 
larger deflection windows considerably improve the reliable deflection of unwanted 
particles. However, they also increase compressed air consumption and the number 
of falsely co-deflected particles. The parameters therefore need to be tuned carefully, 
e.g., be preliminary experiments, and a proper choice may additionally depend on 
the particle type (Maier, 2022; Maier et al., 2021). A scheme for determining proper 
parameters based on recorded particle tracks and their deviations was proposed 
in (Maier, 2022).
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2.3 First-Passage Time Problems
The first-passage time is defined as the event Ta=inf{t > t0 : x(t)=a}, i.e., the first 
time t > t0, a particle moving according to a stochastic process x(t) reaches a fixed 
boundary a ϵ ℝ. In general, solving this problem, known as a first-passage time 
problem, is a challenging task, with solutions only known for very few process–
boundary pairs (Blake & Lindsey, 1973; Nobile et al., 1985). An important general 
observation is that the event Ta<    t is equivalent to the event that the maximum of 
the process within the time range [t0, t), mt=supt0 ≤ s < t x(s) is greater than or equal to 
a, i.e., Ta<    t ⟺ mt ≥ a. Furthermore, it holds that

transport direction must be additionally converted to a time span by dividing 

by an estimated, potentially particle-dependent velocity. It is also common to 

use a modified version of the bounding box, e.g., by adding an offset or by 

multiplication with a factor. For example, an offset in 𝑦𝑦𝑦𝑦-direction may account 

for the spatial resolution of the nozzle array (Maier et al., 2021). In general, 

larger deflection windows considerably improve the reliable deflection of un-

wanted particles. However, they also increase compressed air consumption 

and the number of falsely co-deflected particles. The parameters therefore 

need to be tuned carefully, e.g., be preliminary experiments, and a proper 

choice may additionally depend on the particle type (Maier, 2022; Maier et 

al., 2021). A scheme for determining proper parameters based on recorded 

particle tracks and their deviations was proposed in (Maier, 2022). 

2.3 First-Passage Time Problems 
The first-passage time is defined as the event 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 = inf{𝑡𝑡𝑡𝑡 > 𝑡𝑡𝑡𝑡0: 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) = 𝑎𝑎𝑎𝑎}, i.e., 

the first time 𝑡𝑡𝑡𝑡 > 𝑡𝑡𝑡𝑡0, a particle moving according to a stochastic process 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) 

reaches a fixed boundary 𝑎𝑎𝑎𝑎 ∈ ℝ . In general, solving this problem, known as 

a first-passage time problem, is a challenging task, with solutions only known 

for very few process–boundary pairs (Blake & Lindsey, 1973; Nobile et al., 

1985). An important general observation is that the event 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡 is equivalent 

to the event that the maximum of the process within the time range [𝑡𝑡𝑡𝑡0, 𝑡𝑡𝑡𝑡), 

𝒎𝒎𝒎𝒎𝑡𝑡𝑡𝑡 = sup𝑡𝑡𝑡𝑡0≤𝑠𝑠𝑠𝑠<𝑡𝑡𝑡𝑡 𝒙𝒙𝒙𝒙(𝒔𝒔𝒔𝒔) is greater than or equal to 𝑎𝑎𝑎𝑎 , i.e., 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡 ⟺  𝒎𝒎𝒎𝒎𝑡𝑡𝑡𝑡  ≥ 𝑎𝑎𝑎𝑎 . 

Furthermore, it holds that 

 ℙ(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡) = ℙ(𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) > 𝑎𝑎𝑎𝑎) + ℙ(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡, 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) ≤ 𝑎𝑎𝑎𝑎) , (1) 

that is, to have a first-passage time smaller than 𝑡𝑡𝑡𝑡, a particle must be either 

located above 𝑎𝑎𝑎𝑎 at time 𝑡𝑡𝑡𝑡 or, if not, must have crossed the boundary at some 

time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎  <  𝑡𝑡𝑡𝑡. However, ℙ(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎 < 𝑡𝑡𝑡𝑡, 𝒙𝒙𝒙𝒙(𝑡𝑡𝑡𝑡) ≤ 𝑎𝑎𝑎𝑎) in general is intractable. 

In (Reith-Braun, Thumm, et al., 2023), we proposed two methods to approxi-

mate the distribution of 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎, the first-passage time distribution (FPTD), under 

some additional assumptions on the process-boundary pair, such as that 

that is, to have a first-passage time smaller than t, a particle must be either located 
above a at time t or, if not, must have crossed the boundary at some time Ta < t. 
However, ℙ(Ta < t, x(t) ≤ a) in general is intractable.

In (Reith-Braun, Thumm, et al., 2023), we proposed two methods to approximate the 
distribution of Ta, the first-passage time distribution (FPTD), under some additional 
assumptions on the process-boundary pair, such as that there is a dominant drift 
that causes a first-passage almost surely. These assumptions are usually fulfilled by 
motion models that, e.g., describe technical transport processes. The best proven 
method, referred to as no-return approximation, uses the relation (1) and additionally 
assumes that once a particle has crossed the boundary, it cannot return to a position 
smaller than a (hence, the name) – a condition that is usually satisfied in technical 
transport processes. Consequently, ℙ(Ta < t, x(t) ≤ a) = 0 and ℙ(Ta < t)=ℙ(x(t) > a) 
(for a mathematical more rigorous treatment of the above assumption and the 
domain in which the approximation is valid, we refer to (Reith-Braun, Thumm, et al., 
2023)). Note that x(t) represents the first component of the state vector x(), and 
we are thus interested w.l.o.g. in the first-passage of the first state component w.r.t. 
a. An approximation of the FPTD can then be derived by differentiating the above 
relation w.r.t. t. Moreover, it is possible to find an expression for the quantile function 
analytically and to compute the moments numerically. The no-return approximation 
shows good alignment with Monte Carlo simulation for small and medium noise 
levels, i.e., high and medium signal-to-noise ratios.
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3 Methodology
We now present how the required distributions for obtaining deflection windows 
can be approximated. The first part of the section focuses on the distribution of 
the particle’s location at the nozzle array, whereas the second part shows how the 
particle extent can be included in the determination of the deflection windows.

3.1 The Distribution of the Particle Location at the Nozzle Array at 
the First Passage

For the distribution of the particle’s center location along the nozzle array, we require 
the distribution of the process orthogonal to the transport direction at the time of 
the first passage. Therefore, we define the random variable ya= {y(t) : t = Ta}, i.e., 
the -location at the first passage. Note that in addition to the uncertainties inherent 
to the process y(t), an additional source of uncertainty is that time itself is random, 
with distribution given by the FPTD.

We propose a linearization approach to approximate the distribution of ya that is 
valid for linear Gaussian state space models, such as the CV or CA model and 
their variants, referred to as Gauß-Taylor approximation (a similar method for 
approximation of the FPTD was proposed in (Reith-Braun, Thumm, et al., 2023)). 
For this, we first set up the motion equation y(Ta) in y-direction at Ta, using y(T̂a) 
with T̂a = E{Ta} as initial state and neglecting additional noise (here, E{⸳} denotes 
the expectation operator). Subsequently, we linearize the motion equation using 
a first-order Taylor series expansion at T̂a and E{y(T̂a)}, and, from the linearization, 
calculate the approximate mean and variance for the distribution of y(t) at the first 
passage. This results in E{ya}   E{y(T̂a)} and variance
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to the uncertainties inherent to the process 𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡), an additional source of un-

certainty is that time itself is random, with distribution given by the FPTD. 

We propose a linearization approach to approximate the distribution of 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎 

that is valid for linear Gaussian state space models, such as the CV or CA 

model and their variants, referred to as Gauß-Taylor approximation (a similar 

method for approximation of the FPTD was proposed in (Reith-Braun, 

Thumm, et al., 2023)). For this, we first set up the motion equation 𝒚𝒚𝒚𝒚(𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎) in 

𝑦𝑦𝑦𝑦-direction at 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎, using 𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎� with 𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎 =  E{𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎} as initial state and neglecting 

additional noise (here, E{∙} denotes the expectation operator). Subsequently, 

we linearize the motion equation using a first-order Taylor series expansion 

at 𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎  and E �𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎��, and, from the linearization, calculate the approximate 

mean and variance for the distribution of 𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) at the first passage. This results 

in E{𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎} ≈ E�𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎�� and variance 
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For instance, for the CV and the CA model, we have Var{𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎} ≈ Var�𝒚𝒚𝒚𝒚�𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎�� +

E��̇�𝒚𝒚𝒚(𝑇𝑇𝑇𝑇�𝑎𝑎𝑎𝑎)�2 Var{𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎}. We then assume a Gaussian density for the distribution of 

the arrival location 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎. 

3.2 Deflection Windows Including Particle Extents  
So far, we considered the particles as point masses, i.e., they were fully de-

scribed by their center points. However, for a more realistic model, we need 

to take the particles’ extents into account. We now propose a method for in-

cluding particle extents in the determination of the deflection windows. 

For instance, for the CV and the CA model, we have Var{ya} ≈ Var{y(T̂a)} + 
E{ẏ(T̂a)}2 Var{Ta}. We then assume a Gaussian density for the distribution of the 
arrival location ya.

3.2 Deflection Windows Including Particle Extents 
So far, we considered the particles as point masses, i.e., they were fully described 
by their center points. However, for a more realistic model, we need to take the 
particles’ extents into account. We now propose a method for including particle 
extents in the determination of the deflection windows.

3.2.1 Temporal Deflection Windows
We propose to determine the temporal deflection windows based on the marginal 
distributions of the particle front arrival time T(a-l/2) and the particle back arrival time 
T(a+l/2), where l denotes the length of the particle in transport direction. Here, we 
assume that l does not change much (e.g., due to rotations) while passing the 
nozzle array. Particle extents may be then included by solving

3.2.1 Temporal Deflection Windows 

We propose to determine the temporal deflection windows based on the mar-

ginal distributions of the particle front arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and the particle back 

arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2 , where 𝑙𝑙𝑙𝑙 denotes the length of the particle in transport di-

rection. Here, we assume that 𝑙𝑙𝑙𝑙 does not change much (e.g., due to rotations) 

while passing the nozzle array. Particle extents may be then included by solv-

ing 
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for 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end, respectively, where 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end describe the lower and up-

per bound of the time interval within which the nozzles should be open. As 

before, 𝑞𝑞𝑞𝑞 ∈ (0, 1) denotes a desired confidence level with which one may 

wish to eject the particles. Solving the above equation essentially requires the 

quantile, or percent-point function (PPF), of the FPTD of 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2, 

which is available for the no-return approximation. 

3.2.2 Spatial Deflection Windows 

For the derivation of the spatial deflection windows, i.e., the dimension of the 

window along the nozzle array, we introduce two new random variables, 

namely the upper and the lower particle edge location during the particle’s 

passage of the nozzle array. These are defined by 
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Here, 𝑏𝑏𝑏𝑏 is the particle width orthogonal to the transport direction (we again 

assume that 𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙 do not change much). We then may again determine the 

deflection windows by solving 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦low) =
1 − 𝑞𝑞𝑞𝑞

2
 , ℙ�𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦up� =
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for tstart and tend, respectively, where tstart and tend describe the lower and upper bound 
of the time interval within which the nozzles should be open. As before, qϵ(0,1) 
denotes a desired confidence level with which one may wish to eject the particles. 
Solving the above equation essentially requires the quantile, or percent-point 
function (PPF), of the FPTD of T(a-l/2) and T(a+l/2), which is available for the no-return 
approximation.
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3.2.2 Spatial Deflection Windows
For the derivation of the spatial deflection windows, i.e., the dimension of the window 
along the nozzle array, we introduce two new random variables, namely the upper 
and the lower particle edge location during the particle’s passage of the nozzle array. 
These are defined by

3.2.1 Temporal Deflection Windows 

We propose to determine the temporal deflection windows based on the mar-

ginal distributions of the particle front arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and the particle back 

arrival time 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2 , where 𝑙𝑙𝑙𝑙 denotes the length of the particle in transport di-

rection. Here, we assume that 𝑙𝑙𝑙𝑙 does not change much (e.g., due to rotations) 

while passing the nozzle array. Particle extents may be then included by solv-

ing 
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for 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end, respectively, where 𝑡𝑡𝑡𝑡start and 𝑡𝑡𝑡𝑡end describe the lower and up-

per bound of the time interval within which the nozzles should be open. As 

before, 𝑞𝑞𝑞𝑞 ∈ (0, 1) denotes a desired confidence level with which one may 

wish to eject the particles. Solving the above equation essentially requires the 

quantile, or percent-point function (PPF), of the FPTD of 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 and 𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2, 

which is available for the no-return approximation. 

3.2.2 Spatial Deflection Windows 
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Here, 𝑏𝑏𝑏𝑏 is the particle width orthogonal to the transport direction (we again 

assume that 𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙 do not change much). We then may again determine the 

deflection windows by solving 
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Here, b is the particle width orthogonal to the transport direction (we again assume 
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per bound of the time interval within which the nozzles should be open. As 

before, 𝑞𝑞𝑞𝑞 ∈ (0, 1) denotes a desired confidence level with which one may 

wish to eject the particles. Solving the above equation essentially requires the 
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which is available for the no-return approximation. 
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namely the upper and the lower particle edge location during the particle’s 
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Here, 𝑏𝑏𝑏𝑏 is the particle width orthogonal to the transport direction (we again 

assume that 𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙 do not change much). We then may again determine the 

deflection windows by solving 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦low) =
1 − 𝑞𝑞𝑞𝑞
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1 + 𝑞𝑞𝑞𝑞
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for ylow and yup that describe the lower and upper bounds of the spatial deflection 
window. This means we require the PPFs of ymin and ymax.

However, note that deriving the distributions of ymin and ymax itself requires solving 
an additional first-passage time problem, due to the equivalence of maximum and 
first-passage time problems. For this reason, to render the problem feasible, we 
introduce the additional assumption that the process y(t) is either monotonously 
increasing or monotonously decreasing in t ϵ (T(a-l/2), T(a+l/2)). Incorporating this 
assumption yields

for 𝑦𝑦𝑦𝑦low and 𝑦𝑦𝑦𝑦up that describe the lower and upper bounds of the spatial de-

flection window. This means we require the PPFs of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

However, note that deriving the distributions of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max itself requires 

solving an additional first-passage time problem, due to the equivalence of 

maximum and first-passage time problems. For this reason, to render the 

problem feasible, we introduce the additional assumption that the process 

𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) is either monotonously increasing or monotonously decreasing in 𝑡𝑡𝑡𝑡 ∈
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Using a similar argument as for the no-return approximation, one can approx-

imate the distribution of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max by the lower and upper bound 
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respectively, where the distributions of 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2  and 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 can be approxi-

mated with the method described in Sec. 3.1. The interpretation of the above 

formula is that, since we cannot reasonably assume that the process is either 

de- or increasing, one considers each case separately and decides on the 

one with a higher probability. However, we cannot expect that the approxima-

tions are close to the true distributions on the entire support of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

On the other hand, our experiments suggest that they are close to the true 

distribution in the technically relevant regions, i.e., for small probabilities 
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mated with the method described in Sec. 3.1. The interpretation of the above 

formula is that, since we cannot reasonably assume that the process is either 

de- or increasing, one considers each case separately and decides on the 

one with a higher probability. However, we cannot expect that the approxima-

tions are close to the true distributions on the entire support of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

On the other hand, our experiments suggest that they are close to the true 
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respectively, where the distributions of ya+l/2 and ya-l/2 can be approximated with the 
method described in Sec. 3.1. The interpretation of the above formula is that, since 
we cannot reasonably assume that the process is either de- or increasing, one 
considers each case separately and decides on the one with a higher probability. 
However, we cannot expect that the approximations are close to the true distributions 
on the entire support of ymin and ymax. On the other hand, our experiments suggest 
that they are close to the true distribution in the technically relevant regions, i.e., for 
small probabilities ℙ(ymin < y1 ) and high probabilities ℙ(ymax < y2 ).

As an approximation for the PPF of ymin and ymax for small confidence levels q1 and 
high confidence levels q2, we use

for 𝑦𝑦𝑦𝑦low and 𝑦𝑦𝑦𝑦up that describe the lower and upper bounds of the spatial de-

flection window. This means we require the PPFs of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

However, note that deriving the distributions of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max itself requires 

solving an additional first-passage time problem, due to the equivalence of 

maximum and first-passage time problems. For this reason, to render the 

problem feasible, we introduce the additional assumption that the process 

𝒚𝒚𝒚𝒚(𝑡𝑡𝑡𝑡) is either monotonously increasing or monotonously decreasing in 𝑡𝑡𝑡𝑡 ∈

�𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2,  𝑻𝑻𝑻𝑻𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2�. Incorporating this assumption yields 

𝒚𝒚𝒚𝒚min = min �𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
2 , 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙
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 ,          𝒚𝒚𝒚𝒚max = max �𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙
2 , 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙

2 � + 𝑏𝑏𝑏𝑏
2
 . 

Using a similar argument as for the no-return approximation, one can approx-

imate the distribution of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max by the lower and upper bound 

 
ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) ≥ max �ℙ �𝒚𝒚𝒚𝒚
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�� , (2) 

 
ℙ(𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦2) ≤ min �ℙ �𝒚𝒚𝒚𝒚
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respectively, where the distributions of 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2  and 𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 can be approxi-

mated with the method described in Sec. 3.1. The interpretation of the above 

formula is that, since we cannot reasonably assume that the process is either 

de- or increasing, one considers each case separately and decides on the 

one with a higher probability. However, we cannot expect that the approxima-

tions are close to the true distributions on the entire support of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max. 

On the other hand, our experiments suggest that they are close to the true 

distribution in the technically relevant regions, i.e., for small probabilities 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) and high probabilities ℙ(𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦2). 

As an approximation for the PPF of 𝒚𝒚𝒚𝒚min and 𝒚𝒚𝒚𝒚max for small confidence levels 

𝑞𝑞𝑞𝑞1 and high confidence levels 𝑞𝑞𝑞𝑞2, we use 
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that is, we use the smallest value of 𝑦𝑦𝑦𝑦1 and the highest value of 𝑦𝑦𝑦𝑦2 that satisfy 

(2) and (3) since our bounds will reach 𝑞𝑞𝑞𝑞1 , 𝑞𝑞𝑞𝑞2  after, respectively before 

ℙ(𝒚𝒚𝒚𝒚min < 𝑦𝑦𝑦𝑦1) and ℙ(𝒚𝒚𝒚𝒚max < 𝑦𝑦𝑦𝑦2). The PPFs, 𝑞𝑞𝑞𝑞 →  �𝑦𝑦𝑦𝑦: ℙ�𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎−𝑙𝑙𝑙𝑙/2 < 𝑦𝑦𝑦𝑦� = 𝑞𝑞𝑞𝑞� and 

𝑞𝑞𝑞𝑞 →  �𝑦𝑦𝑦𝑦: ℙ�𝒚𝒚𝒚𝒚𝑎𝑎𝑎𝑎+𝑙𝑙𝑙𝑙/2 < 𝑦𝑦𝑦𝑦� = 𝑞𝑞𝑞𝑞� can be easily approximated using the Gauß-Tay-

lor method presented in Sec. 3.1. 

4 Experimental System and Employed Algorithms 
For our experiments, we use the pilot-scale optical chute sorter displayed in 

Fig. 2. The sorter has a chute width of 700 mm and is equipped with a Baumer 

VLXT-50C.I Bayer RGB area-scan camera with a maximum resolution of 

2448 × 2048 pixels. The system can use transmitted light for transparent ob-

jects and reflected light for opaque objects. The resolution of the installed 

nozzle array is 1000 Hz in the temporal domain and approximately 5.2 mm in 

the spatial domain, i.e., we can activate the nozzles in discrete steps of 1 ms 

and each nozzle covers approximately 5.2 mm along the nozzle array. 

The employed algorithm implements predictive tracking, as well as line-scan- 

camera-based sorting. For the latter, the line-scan camera is simulated using 

the area-scan camera by reducing the height of the image acquisition to a 

row of 1808 × 2 pixels, allowing a frame rate of 5000 fps. For predictive track-

ing, a frame rate of 250 fps and a resolution of 1808 × 952 pixels is used, 

which corresponds to a camera field of view of approximately 628 × 331 mm. 

For tracking, a time-discrete WN-CA model is used to model the particle mo-

tion in the transport direction, while a time-discrete CV model is used for the 

𝑦𝑦𝑦𝑦-direction. The slope angle for the WN-CA model was 𝛼𝛼𝛼𝛼 = 41.5°, although 

the chute has a slope of 55°. The difference between both accounts for friction 

forces acting on the particles and was determined experimentally. 

The original version of predictive tracking, i.e., the version without considering 

prediction uncertainties for the deflection window, uses the mean function of 

the time-continuous WN-CA model with the same slope angle as before to 

that is, we use the smallest value of y1 and y2 the highest value of that satisfy (2) 
and (3) since our bounds will reach q1, q2 after, respectively before ℙ(ymin < y1 ) and 
ℙ(ymax < y2 ). The PPFs, q → {y: ℙ(y(a-l/2)<y)=q} and q → {y: ℙ(y(a+l/2)<y)=q} can be 
easily approximated using the Gauß-Taylor method presented in Sec. 3.1.

4 Experimental System and Employed Algorithms
For our experiments, we use the pilot-scale optical chute sorter displayed in Fig. 2. 
The sorter has a chute width of 700 mm and is equipped with a Baumer VLXT-50C.I 
Bayer RGB area-scan camera with a maximum resolution of 2448  2048 pixels. 
The system can use transmitted light for transparent objects and reflected light 
for opaque objects. The resolution of the installed nozzle array is 1000 Hz in the 
temporal domain and approximately 5.2 mm in the spatial domain, i.e., we can 
activate the nozzles in discrete steps of 1 ms and each nozzle covers approximately 
5.2 mm along the nozzle array.

The employed algorithm implements predictive tracking, as well as line-scan- 
camera-based sorting. For the latter, the line-scan camera is simulated using 
the area-scan camera by reducing the height of the image acquisition to a row of 
1808  2 pixels, allowing a frame rate of 5000 fps. For predictive tracking, a frame 
rate of 250 fps and a resolution of 1808  952 pixels is used, which corresponds 
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to a camera field of view of approximately 628  331 mm. For tracking, a time-
discrete WN-CA model is used to model the particle motion in the transport direction, 
while a time-discrete CV model is used for the -direction. The slope angle for the 
WN-CA model was  41.5°, although the chute has a slope of 55°. The difference 
between both accounts for friction forces acting on the particles and was determined 
experimentally.

The original version of predictive tracking, i.e., the version without considering 
prediction uncertainties for the deflection window, uses the mean function of the 
time-continuous WN-CA model with the same slope angle as before to determine the 
time of arrival and the mean function of the time-continuous CV model to determine 
the location of arrival. We use this version for comparison with our new method (in 
the remainder of the paper simply referred to as predictive tracking). In line-scan-
camera-based sorting and the original version of predictive tracking, the size of a 
deflection window is determined based on the size and velocity of the respective 
particle, plus a fixed enlargement (as explained in Sec. 2.2). In our newly proposed 
version of predictive tracking (hereinafter referred to as adaptive deflection), the size 
of the deflection window is determined by the uncertainty of the motion prediction 
of the particle’s front and back and uppermost and lowermost edge, as described 
in the previous section. 

Fig. 2. Image of the sorting system. The material is fed into the system via a vibration feeder and a 
chute (on the right in the image). It is perceived by an area-scan camera, which is located at the top 
left of the image. Below the chute is an array of compressed air nozzles that separate the material.
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5 Evaluation
Our evaluation consists of two parts: We first demonstrate the power of our 
approximation schemes by a numerical verification and then, after some parameter 
tuning, compare the adaptive deflection method with line-scan-based prediction 
and predictive tracking in sorting experiments. For both parts, we consider the pilot-
scale optical chute sorter presented in the previous section (respectively, a simple, 
geometric model of it, for the numerical verification) and recycling glass particles 
having diameters in the range of 6 to 30 mm.

5.1 Numerical Verification of the Derived Distributions
We demonstrate the soundness of our approximations introduced in Sec. 3 by 
comparing them with Monte Carlo simulations. For this, we consider the example 
of a virtual particle moving perfectly according to the WN-CA model in the transport 
direction and according to the CV model orthogonal to the transport direction. For 
the state distribution used as input of our approximations and all parameters of the 
methods, we use the values obtained by tracking a typical particle from our sorting 
task and the same parameters as for the final sorting experiments.

The Monte Carlo simulation uses the discrete-time counterparts of the motion models 
with very small time increments. In each time step, it checks if the particle center, 
front, and back have already crossed the nozzle array. Likewise, the particle center, 
uppermost, and lowermost edge locations are recorded within the period when the 
particle passes the nozzle array. From this information, we then extract histograms 
used as (approximate) ground truth for comparison with our approximations.

The results for the approximation of the FPTD and the -position at the first arrival 
are displayed in Fig. 3. The approximations are generally very close to the Monte 
Carlo histograms, with no differences in PDF and CDF visually recognizable. 
For comparison, the plots also show uniform distributions corresponding to the 
conventional case where a point prediction (in this case from predictive tracking) is 
used with a window length equal to the particle length divided by an estimate of the 
particle velocity in the -direction or the particle width, respectively, and no additional 
enlargement. Note that our approximations capture the true distributions way more 
precisely, but at this point do not account for the particle extents.
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Fig. 3. The PDF and CDF of the first-arrival time distribution (left) and the distribution of the particle 
location along the nozzle array (right) of a typical particle from our sorting experiments. “No-return 

approx.” denotes the similarly named approach from (Reith-Braun, Thumm, et al., 2023) for approximate 
FPTD. “Gauß-Taylor approx.” denotes the approach proposed in Sec. 3.1 for approximation of the 

-location at the arrival time. “Uniform distribution” denotes the conventional approach, i.e., using a point 
prediction (in this case from predictive tracking, visualized by the black vertical line) for the particle arrival 
time and location and a window length with no additional enlargement. The shaded parts (denoted “MC 

simulation”) display histograms of the respective distributions obtained by Monte Carlo simulations.

The results of our proposed methods for considering particle extents are visualized 
in Fig. 4. Again, the approximations are able to capture the true distributions for 
the particle under consideration with high precision. For comparison, again the 
same conventional approach as in Fig. 3 is displayed. Note, however, that it is 
here described by Dirac distributions (instead of uniform distributions), since we are 
now considering the particle’s front and back arrival time, and its uppermost and 
lowermost edge location, respectively. Note that our approximation for a reasonably 
high always yields larger deflection windows than the ones from the conventional 
approach without additional enlargement, since the prediction uncertainty then adds 
up with the particle size. However, when the deflection windows of the conventional 
method are additionally enlarged, the approximation can also yield smaller deflection 
windows than the conventional method even if high values of  are used.
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Fig. 4. The PDF and CDF of the front and back arrival time distribution (left) and the distribution 
of the minimum and maximum particle edge location at the nozzle array (right) of a typical 

particle from our sorting experiments. “No-return approx. with extents” denotes the approach 
described in Sec. 3.2.1. Likewise, “Gauß-Taylor with extents” denotes the approach described 

in Sec. 3.2.2. “Dirac with extents” denotes the usual approach, i.e., using a point prediction 
(in this case from predictive tracking) for the particle front and back arrival and the minimum 

and maximum particle edge, respectively. The shaded parts (denoted “MC simulation”) 
display histograms of the respective distributions obtained by Monte Carlo simulations.

5.2 Sorting Experiments
The mass flow to be sorted consists of a mixture of glass recycling of 500 g white 
and 75 g stained glass. These particle types can be easily distinguished visually 
so that misclassifications can be precluded, and the sorting results are directly 
indicative of the effectiveness of the underlying algorithm for optical sorting. The goal 
of our sorting trails was to eject stained glass. The approximate mass flow during 
the experiments was 170 g/s. In total, we conducted five sorting trails for each of 
the three methods: line-scan prediction, predictive tracking, and adaptive deflection. 
In the following, we first describe our evaluation metrics and how we obtained the 
parameters of our methods, before finally presenting the sorting results.

5.2.1 Metrics
For evaluation of the sorting accuracy, we consider the true negative rate 
TNR = TN/(FP + TN) and the true positive rate TPR = TP/(TP + FN), where positive 
particles are those that should not be ejected (white glass, in our case). A high 
TNR thus indicates a high purity of the non-ejected fraction (there are only a few 
unwanted particles left), whereas a high TPR indicates a high purity of the ejected 
fraction (there are only a few co-deflected particles). As a measure for evaluating 
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the compressed air consumption, we record the nozzle time, i.e., the cumulate time 
for which the nozzles were opened.

5.2.2 Preliminary Sorting Experiments and Parameter Tuning
The parameters of our new approach are the power spectral densities S (in x- and 
y-direction) and the confidence levels q (temporal and spatial). For simplicity, we 
assume the same value of S in both directions. Furthermore, we use the same S 
for the motion models in the Kalman filters of the MTT part of predictive tracking. 
For the confidence levels, we chose the same q = 0,95 for all confidence intervals. 
Note that strictly speaking, this does not imply that we wish to eject 95 % of all 
unwanted particles since we apply q to the temporal and spatial deflection window 
independently. It remains to find a suitable value for the power spectral density S. 
In general, this is a difficult task. There exist multiple approaches to learning the 
noise from data in the literature, e.g., expectation maximization (Ghahramani & 
Hinton, 1996), dual (Nelson, 2000), or ensemble Kalman filtering methods (Stroud 
& Bengtsson, 2007), each of which has their pros and cons (see also the survey by 
(Zhang et al., 2016)). Yet, the choice of S has a large influence on the size of the 
obtained deflection widows, and therefore we require a convenient method.

Here we propose to tune S using a calibration method, i.e., we wish to choose  
such that 95 % of all unwanted particles appear at the nozzle array within the 
corresponding confidence interval. For this, we record a data set of particle tracks 
of the unwanted class and track the particles until they have crossed the nozzle 
array (for this purpose, we adjust the camera field of view, so that we can observe 
the nozzle array). Using the recorded tracks, we then conduct “virtual” sorting 
experiments, whereby we run the algorithm with a specific S and count the number of 
hits within the confidence interval. In this step, to obtain a more accurate estimation 
of the particles’ time and location of arrival at the nozzle array (respectively its front, 
back, and upper and lower boundary), we use a linear interpolation between the last 
measurement before and the first measurement after the nozzle array, similar to the 
concept of a virtual nozzle (see e.g., (Pfaff et al., 2015; Reith-Braun, Bauer, et al., 
2023)). We then perform a line search to find the desired value of S.

To ensure a proper comparison of the approaches, we chose the length of the 
enlargement of the deflection windows of the line-scan and conventional predictive 
tracking method so that a similar nozzle time as for the adaptive deflection approach 
with q = 0,95 was achieved. This is to compensate for the effect that we can generally 
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achieve a higher TNR with a longer nozzle time. Finally, this resulted in an amount 
of 1.6 ms and 3.47 mm by which the deflection windows were enlarged.

5.2.3 Sorting Results
Our sorting results are visualized along with the nozzle times in Fig. 5. All three 
approaches yield high TNRs in the range of 90 to 100 % and high TPRs of 
approximately 99 % and higher. Comparing the TNR, predictive tracking achieves, 
as expected, on average slightly higher accuracies than line-scan-based prediction. 
Our new method improves on the results of predictive tracking and achieves by 
far the highest TNR (with an average of 96.7 %, compared with 94.6 and 94.0 % 
for predictive tracking and line-scan-based prediction). In addition, it also shows 
the lowest deviations between the different runs. Comparing the TPR, again, our 
new approach has the highest overall accuracy, slightly outperforming the other 
approaches. Looking at the cumulative activation times of the nozzles, the nozzle 
time is quite similar for all approaches, which indicates a proper balance within the 
comparison.

Fig. 5. Results of the sorting experiments for the three compared algorithms for optical sorting. Each 
point depicts the result of one of the five sorting trails. The box plots show the first, second, and 

third quartile of the results of the sorting trails with the whiskers extending to the most distant data 
point within the 1.5-fold interquartile range, starting from the upper or lower quartile, respectively.
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6 Conclusion
We proposed a new method based on quantifying prediction uncertainty for 
determining the length of the deflection windows in optical sorting. Numerical 
simulations demonstrate that the approximations for the underlying distributions yield 
high precisions for the motion behavior of typical particles and are therefore suitable 
for application in optical sorters. Our sorting results show superior accuracies of the 
new method compared with line-scan-based prediction and predictive tracking, with 
an average TNR of approximately 96.7 %.

The proposed method therefore not only offers the possibility to further improve the 
sorting accuracy but also, and probably more importantly, to reduce the number 
of incorrectly deflected particles and the energy consumption by choosing the 
deflection window for each particle only as long as necessary. Future work may 
focus on this aspect, e.g., by incorporating a more accurate model of the particle–
nozzle field contact and the conditions that must be satisfied for a particle to be 
ejected. A simple approach in this context may be to artificially reduce the size of a 
particle by a certain factor to account for that one may wish to target a potentially 
smaller range than given by the particle extent.
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