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Abstract—A popular approach when tracking extended ob-
jects with elongated shapes, such as ships or airplanes, is to
approximate them as a line segment. Despite its simple shape,
the distribution of measurement sources on a line segment can
be characterized in many radically different ways. The spectrum
ranges from Spatial Distribution Models that assume a distinct
probability for each individual source, to Greedy Association
Models as used in curve fitting, which do not assume any
distribution at all. In between these border cases, Random
Hypersurface Models assume a distribution over subsets of all
sources. In this paper, we compare Bayesian estimators based
on these different models. We point out their advantages and
disadvantages and evaluate their performance by means of
illustrative examples with synthetic and real data using a Linear
Regression Kalman Filter.

I. INTRODUCTION

In this work, we consider the task of tracking extended
objects with elongated shapes by approximating them as
line segments. In contrast to a simple point model, a line
segment model allows for additionally estimating parameters
such as orientation and length naturally. Using this rough
approximation is a reasonable approach when dealing with
few measurements and high sensor noise. Furthermore, line
segments can also be embedded into extrusion models for
more complex 3D shapes [1], when measurement quality and
quantity increases. Hence, application areas range from aerial
and naval surveillance, over robotics and telepresence, up to
consumer entertainment systems. In this work, our intention is
to compare three different strategies of modeling line segments
[3–7] and to investigate their specific properties. In doing
so, we show that these strategies essentially differ in their
assumptions on the distribution of the underlying measurement
sources.

Incorporating knowledge about the source distribution may
have a strong impact on the estimation result, in both direc-
tions. As an example, let us consider the task of tracking a
pen based on a Microsoft Kinect (see Fig. 1), where 3D point
measurements are segmented according to their brightness in
the IR-image. Usually, these measurements originate from
sources that are uniformly distributed along the pen and
incorporating this knowledge improves the estimation result.
However, due to segmentation errors, parts of the pen are oc-
casionally invisible to the sensor, which makes the distribution
of measurement sources hard to predict. In these cases, it may
be better to omit the concept of source distribution at all, as

(a) Experimental setup

(b) Pen in detail view

(c) Snippet of IR-image

Figure 1: Tracking a pen as a line segment with a Kinect.

shown in [8]. Note that special considerations on clutter [4],
[5] and kinematics [9] are out of the scope of this work. Other
approaches to extended object tracking, dealing with different
shapes and their source distributions, are proposed in [10–13].

This paper is structured as follows. After a brief problem
statement in Sec. II, we introduce the different modeling
strategies in Sec. III and their implementation in Sec. IV. In
Sec. V we compare the different models and evaluate their
usability in a synthetic estimation task and in the tracking
scenario from Fig. 1. We conclude in Sec. VI with a summary.

II. PROBLEM STATEMENT

Given: At each time step k, a sensor measures the elongated
object as a list of 2D or 3D noisy points Yk = {y

i,k
|i =

1, . . . ,nk}, where the potentially time-varying number nk of
measurements is considered to not contain any information
about the object extent. Rather, measurements are assumed
to originate, statistically independently from another, from
unknown sources z̃i,k ∈ Z̃(xk) on a line segment, whose
pose and extent is specified by the state vector xk. We assume
additive sensor noise according to

y
i,k

= z̃i,k + wi,k , (1)



Figure 2: Given: Measurements Yk of unknown sources Z̃(xk)
on the line segment at time k. Desired: state parameters xk of
the line segment.

where the noise variable wi,k is drawn from the Gaussian
distribution N (0,Cwi,k

), and assumed to be independent from
state and measurement sources.

Desired: Then, the task is to continuously determine the
parameters xk, which correspond to the line segment that
most likely has generated the measurements Yk. In particular,
we are interested in the position vector tk, orientation matrix
Rk, and length lk = 2 · rk. Fig. 2 illustrates the estimation
task and involved parameters. For clarity, time indices k and
measurement indices i will be omitted whenever possible.

Separation of Shape and Pose: As indicated in Fig. 2, we
distinguish between two coordinate frames: the object frame
(black) that represents the object without any pose information,
i.e., unrotated and centered on the origin, and the world
frame (gray) that represents how the object is seen from the
outside. Unless otherwise stated, all geometric considerations
are assumed to refer to the object frame.

III. BAYESIAN LINE SEGMENT ESTIMATION

In this section, we derive a Bayesian estimator for the
line segment in order to demonstrate the different modeling
strategies. The knowledge of the state is modeled by a prior
probability distribution p(x). Then, tracking consists of two
alternating steps. First, the prediction step lets the distribution
p(x) evolve over time according to a system model. Second,
the measurement update step incorporates new measurement
points Y according to Bayes’ rule

p(x|Y) ∝ p(Y|x) · p(x) ,

where p(Y|x) is the likelihood of measuring Y . The statistical
independence between the measurements allows for separating
the likelihood

p(Y|x) =
∏
i

p(y
i
|x) ,

and considering each measurement individually.
If the originating source z̃(x) for a measurement y and a

state x was known, the likelihood would immediately follow
from the additive noise model (1) according to

p(y|x) = N (y; z̃(x),Cw) .

Figure 3: Individual likelihoods, dependent on s.

However, due to the noise, the true sources are generally
unknown and cannot be recovered exactly from the measure-
ments, which is known as the association problem.

We distinguish between three strategies to deal with this
problem by deriving approximate likelihoods. For this purpose,
we introduce a continuous index parameter s ∈ [−1, 1] that
iterates through all possible sources z̃(x, s) ∈ Z̃(x) according
to

z̃(x, s) = [s · r, 0]T (2)

for the 2D case, and z̃(x, s) = [s · r, 0, 0]T for the 3D case,
respectively. As a reminder, r was defined to be half the length
of the line segment, so that s = −1 and s = 1 refer to the left
and right edges, respectively. Note that s defines an individual
likelihood for each source by p(y|x, s) = N (y; z̃(x, s),Cw)
as illustrated in Fig. 3.

A. Spatial Distribution Model
The first strategy to deal with the association problem is

to define a probability distribution p(s) that specifies the
probability of to each source z̃(x, s) to be measured. Then,
the likelihood is obtained by marginalizing over all source
hypotheses

p(y|x) =
∫ 1

−1
N (y; z̃(x, s),Cw) · p(s) ds . (3)

This model [3–6] is known as Spatial Distribution Model
(SDM). As an example, Fig. 5(a,c,e) illustrate different dis-
tributions p(s) for the sources from Fig. 4a that can be
modeled in an SDM. As can be seen, each source hypothesis
z̃(x, s) is considered to be the true measurement source and
weighted according to its probability. This individual treatment
is indicated by using different colors for each source in
Fig. 4a. However, especially in real world applications, it may
happen that knowledge about the source distribution is not
available or non-trivial to calculate [14]. This raises the need
for approaches that depend less on p(s).

B. Greedy Association Model
The second strategy is to drop any prior assumption upon

the distribution p(s) and greedily associate the measurement
to the “best” of all sources on the line segment. In [8], it
was shown that “best” in this context generally means that the
source yields the highest individual likelihood

p(y|x) = max
s∈[−1,1]

N (y; z̃(x, s),Cw) . (4)



(a) SDM: individual sources (b) RHM: symmetric pairs (c) GAM: entire segment

Figure 4: Modeling strategies for the line segment. Selected sources are colored, and connected according to their aggregation.

This Greedy Association Model (GAM) is popular in curve-
fitting [15] and can be derived from an SDM by imposing
special assumptions, as shown in [8]. In contrast to the
SDM, the GAM imposes that a specific source must have
generated the measurement exclusively and drops all other
hypotheses. All sources are connected and drawn in the same
color in Fig. 4c, in order to indicate that they are not treated
individually. Note that the GAM from (4) does not offer
any way to incorporate knowledge about the distribution of
measurement sources. However, this ignorance turns the task
of estimating the length of a line segment into an ill-posed
problem [3] as will be discussed in Sec. V.

C. Random Hypersurface Model

The third strategy combines ideas from the SDM and the
GAM in order to arrive at a model, known as Random
Hypersurface Model (RHM) [7], [16] that overcomes their
inherent drawbacks. This combination consist of assuming a
probability distribution over partitions of the shape to describe
how likely it is that a measurement originates from a source
within the partition. Then, within these partitions, a greedy
association is performed to select the source which yields the
highest individual likelihood.

In the case of a line segment, we proposed [7] to partition
the shape into pairs of symmetric sources z̃(x,−s∗) and
z̃(x, s∗), with s∗ ∈ [0, 1] being the index parameter that
iterates through all partitions. Fig. 4b schematically shows
the partitions by coloring and connecting lines. Over all of
the partitions a probability distribution p(s∗) is defined, as
qualitatively shown in Fig. 5(b,d,f). Within the partitions, the
left or right source is greedily associated to the measurement,
depending on which one yields the higher likelihood. Formally,
the RHM likelihood then can be calculated according to

p(y|x) =
∫ 1

0

max
s∈{−s∗,s∗}

(
N (y; z̃(x, s),Cw)

)
· p(s∗) ds∗ .(5)

In contrast to the SDM, the integration range of the RHM is
reduced by a factor two. This becomes an advantage in sample-
based estimators, as it doubles the effective spatial sample
resolution [7]. However, this increased resolution is achieved
at the cost of coarsening the source distribution, as we will
illustrate in Sec. V.

IV. IMPLEMENTATION

In this section, we show how to implement Bayesian esti-
mators for line segments based on the SDM (3), GAM (4), and
RHM (5) from the previous section. In doing so, we assume
the state parameters x encode the “radius” r, orientation matrix
R, and position t of the line segment.

In order to derive an approximate measurement update, we
use statistical linearization, which was already successfully
applied to the estimation of line segments based on an SDM
[6] and RHM [7]. For this purpose, we need to specify a
generative measurement function in the form of y = h(x,w)
for each of the models.

A. Measurement Equation (SDM)

The SDM from (3) directly translates to the measurement
equation

y = h(x,w, s) = R · z̃(x, s) + t+ w. (6)

As measurements y are generally given in world coordinates,
the sources (being defined in object coordinates (2)) have to be
converted according to R · z̃(x, s) + t. In (6), w is the additive
measurement noise and s is a multiplicative noise variable
whose characteristics describes the occurrence of measurement
sources along the line segment [3–6].

B. Measurement Equation (GAM)

For the GAM, deriving an explicit generative measurement
model would yield

y = R · z̃(x, ŝ) + t+ w , (7)

which requires finding the particular index ŝ that refers to the
source z̃(x, ŝ) with the maximum individual likelihood (4). In
[7], it was pointed out that z̃(x, ŝ) is often approximated by the
point on the line segment that is closest to the measurement
y in terms of an appropriate distance measure. However, this
calculation depends on the current measurement y such that
the right hand side of (7) is not longer independent of the
measurement.

In order to resolve this dependence, let us first rearrange
the explicit generative measurement model (7) to the implicit
expression

0 = R · z̃(x, ŝ) + t+ w − y (8)

= z̃(x, ŝ)− (RT · (y − w − t)) .

Note that z := RT · (y − w − t) can be understood as the
measurement minus the noise, converted to object coordinates.
Based on (8), we can define an implicit measurement equation
in the form of 0 = h(x, y,w), where 0 is interpreted as a
constant pseudo-measurement, and the original measurement
acts as a function parameter. Finally, approximating z̃(x, ŝ) in
(8) with the point on the line segment that is closest to the
measurement yields for a line segment in 2D

0 = h(x, y,w) =

{
[0, z2]

T if |z1| < r

[|z1| − r, z2]T otherwise .
(9)



The 3D version simply requires adding z3 as another di-
mension. From a geometric view, the generative model (9)
produces 0-valued differences between (y − w) and their
closest point on the line segment, which is given by x. In
[7], we showed that these vector valued-differences are often
approximated by by scalar-valued distances by taking the
Euclidean norm. There are two important aspects to note. First,
the measurement equation in (9) is independent of s, such that
there is no way to incorporate the source distribution in the
generative model. And second, w now is a non-additive noise
variable.

C. Measurement Equation (RHM)

Similar to the GAM, we can define an implicit generative
model for the RHM [7], e.g., in 2D, according to

0 = h(x, y,w, s∗) = [|z1|, z2]T − z̃(x, s∗) . (10)

Again, the 3D version simply requires adding z3 as another
dimension. In contrast to (9), which produces 0-valued differ-
ences for z lying on the entire line segment, (10) produces 0
only for z being equal to z̃(x, s∗) or z̃(x,−s∗) for a given
instance of the index s∗ ∈ [0, 1]. Note that in (10), both w
and s are non-additive noise variables.

D. Measurement Update Using Statistical Linearization

Based on (6), (9), and (10) approximate measurement
updates can be derived as follows. Preliminary, we require
knowledge of the probability distributions of all involved
random variables: That is for all models, state p(x) and
measurement noise p(w), and, p(s) for the SDM and p(s∗)
for the RHM. Then, the mean µ

h
and covariance matrix Ch

of the measurement equation h, as well as the cross-covariance
Cxh between x and h need to be calculated, e.g., based on
deterministic sampling [17], [18]. Finally, the updated mean
µe
x

and covariance matrix Ce
x can be calculated using the

well-known Kalman formulas. For the SDM, we obtain

µe
x
= µ

x
+K(y − µ

h
)

Ce
x = Cx −KChK

T

with K = CxhC
−1
h being the Kalman gain. Due to the pseudo

measurement 0, the calculation of the mean slightly differs for
the GAM and the RHM

µe
x
= µ

x
+K(0− µ

h
) .

V. COMPARISON

In this section, we point out specific properties of the
presented modeling strategies and evaluate their usability in
a real-life tracking problem. We consider p(x) to be Gaussian
in all experiments, and employ the sample-based filter from
[18] with five samples per dimension. In order to set up an
SDM-estimator, two requirements have to be fulfilled.

Requirement 1 (Quadratic Extension)
In [6], it was shown that linear estimators are not suitable
for estimating the length of the line segment based on the

(a) SDM (uniform) (b) RHM (uniform)

(c) SDM (Gaussian) (d) RHM (Gaussian)

(e) SDM (triangle) (f) RHM (triangle)

Figure 5: Source distributions along the line segment.

SDM from (6), as the statistical linearization decorrelates the
measurement from the length. This can be intuitively seen by
deriving the entries of the cross-covariance matrix between
the expected measurement h and radius parameter r, which
all are 0. For resolving this issue, a quadratic extension that
augments the measurement [y1, y2, y21 ]

T was proposed in [6].

Requirement 2 (Sigma Points)
Further, it was found in [7] that even with quadratic extension,
an SDM-estimator requires a specific type of samples. While
the Unscented Kalman Filter [17] does not have an effect on
the length, the Smart Sampling Kalman Filter [18] allows for
length estimation.

When using a GAM, another specific extension is required.

Requirement 3 (Regularization)
As already mentioned, length estimation based on the GAM
of a line segment is ill-posed. This issue was discussed in
[3] and is due to the fact that a GAM-estimator does not
penalize overestimated lengths, as only the distances from the
measured points to their closest sources on the line segment
are minimized. For illustration, consider a scenario with, e.g.,
two measured points. From the viewpoint of a GAM-estimator
it does not matter, how long the estimated segment is, as long
it intersects with both points. Inspired by the ideas of active
contours [3], [19], regularization by minimizing the internal
energy can be incorporated into the estimator, in order to
resolve this issue. Regularization can be implemented by a
process model that contracts the length of the segment in each
prediction step. In contrast to the GAM-estimator, SDM- and
RHM-estimators both penalize overestimated lengths as they
assume measurement sources originate from the line segment
according to a specific distribution.

A. Distribution of Sources

As the three approaches essentially differ in their assump-
tions on the source distributions, we evaluate the effect of vary-
ing the distribution. Specifically, we compare the performance



of an SDM-, RHM-, and GAM-estimator when measurement
sources r · s with s ∈ [−1, 1] originate along the line segment
according to

• a uniform distribution p(s) = 1
2 ,

• a truncated Gaussian distribution p(s) ∝ N (s; 0, 1
4 ), and

• a triangle distribution p(s) = 1
2 · (s+ 1).

It is interesting to note that the uniform and the Gaussian
distribution are symmetric with respect to the line segment,
while the triangle distribution is not.

By design, the SDM-estimator directly allows for in-
corporating these distributions, as qualitatively depicted in
Fig. 5(a,c,e). In contrast, the RHM aggregates the probabilities
of symmetric sources, such that the uniform and triangle
distribution yield identical distributions p(s∗), as qualitatively
shown in Fig. 5(b,f). In the GAM, the underlying distributions
are completely ignored.

In order to evaluate the estimation performance when using
different models, we simulated a static line segment in 2D with
length 1, centered in (1, 2), and rotated by the angle π

8 . Then,
500 measurements were drawn from each source distribution
and distorted with additive Gaussian noise according to (1),
with Cw = 10−2 · I. Based on these measurements, 2D
position, rotation angle, and the length of the line segment
were estimated. We performed 100 Monte-Carlo runs of the
experiment, initialized with covariance matrix Cx0

= I, and
mean x0 as the ground truth with an additive distortion drawn
from N (0,Cx0

).
Result: Fig. 6 shows the root mean squared error RMSE

of the estimated length when using the different models. For
the uniform and Gaussian distribution, the RHM- and the
SDM-estimator both converge to the correct value, where
the RHM is slightly faster (see Fig. 6a and Fig. 6b). In
contrast, the GAM-estimator converges slowly to a biased
length, which depends on the regularization parameter and the
source distribution, making the task of adjusting parameters
non-trivial. When looking at the triangle distribution in Fig. 6c,
the SDM-estimator shows a fast convergence. As before, and
for the same reason, the GAM converges to a biased length.
Interestingly, the RHM also converges to a biased value, as
it cannot distinguish between the uniform and the triangle
distribution.

As the position is highly correlated with the length, the
graphs for their RMSE qualitatively coincide with the length.
In case of length convergence, the value for the position RMSE
is about 0.02 for the uniform and the Gaussian distribution and
about 0.08 for the triangle distribution. In contrast, the angle
parameter seems to be at most slightly affected by the length,
as all estimators produce comparable RMSEs of about 1.25◦

for all distributions. Tab. I gives a qualitative summary of the
presented results. Ticks mean that the model works for the
specific source distribution, or is robust against inaccuracies in
the source distribution, as will be investigated in Sec. V-B. For
the GAM-estimator, we additionally put the ticks into brackets
to indicate that finding parameters for the regularization is
non-trivial.

requirements uniform Gaussian triangle robust
SDM 1,2 X X X -
RHM - X X - -
GAM 3 (X) (X) (X) X

Table I: Summary of the considered modeling approaches.

B. Tracking a Pen

Next, we consider the experiment from Fig. 1a, where the
pose (position and orientation) of a pen should be tracked with
a Microsoft Kinect, while drawing a path on a WACOM tablet.
Specifically, a stream of registered IR and depth images with
640 × 480 pixels was captured by the Kinect, and then, 3D
point clouds were extracted. For segmentation, the pen body
was covered by a reflective sheet (see Fig. 1b), which could
be easily extracted from the IR image (Fig. 1c). At each time
step, 40 point measurements from the segmented pen were
randomly selected and assigned a covariance matrix according
to the sensor model from [20]. The pen is known to have a total
length of 14 cm and the distance from Kinect to tablet plane
is about 110 cm, where the tablet has dimensions of 30.5 cm
× 23.5 cm. For the estimation task, we considered a uniform
source distribution along the pen and the length to be known.
Thus, we estimated the 3D position, as well as the pitch and
yaw angle (roll angle of a line segment is not observable). In
addition, we used a constant velocity model for position and
angles, requiring them to be estimated as well.

Result: Occasionally, reflection artifacts and overexposure
in the IR image caused incomplete point clouds, which vi-
olated the modeled source distribution. Fig. 7, where the
intersection of the estimated line segment with the tablet plane
is drawn against the ground truth path (colored in black). The
RHM shows the smallest estimation error, especially in the
horizontal parts. However, the distance from the pen tip to the
intersection with the tablet plane (which should be 0 cm), the
GAM performs best with an avg. error of 0.3 cm in contrast to
∼ 0.7 cm of the SDM and RHM. That is, the GAM is robust
against the varying source distribution, which is caused by the
miss-segmentation. It happens that half of the pen is missing
due to overexposure, causing the SDM- and RHM-estimators
to adjust the position along the pen line.

VI. CONCLUSION

In this work, we compared three strategies to derive a source
model, which can be used in a Bayesian estimator for the
pose and length of an elongated object by approximating
it as a line segment. We found that accurately estimating
the length requires assumptions on the source distribution.
Then, given a distribution that is symmetric with respect to
the line segment, the RHM converges slightly faster than
the SDM. A second advantage is that the RHM does not
have any requirements to the filter being used. However,
in cases of more complex distributions, as for example an
asymmetric triangular distribution, only the SDM-estimator
converges to the true length. Using a GAM-estimator might be
useful in situations where the length is known, but the source
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Figure 6: Length RMSE for varying source distributions.
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Figure 7: Estimated path of the pen tip in the tablet plane.

distribution is unknown, e.g., due to miss-segmentation in the
pen tracking experiment.
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