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Abstract—As sensor resolution increases, the accuracy and ro-
bustness of tracking algorithms can be improved by incorporating
more information about the shape of the target object. This raises
the need for simple and robust shape models capable of describ-
ing detailed objects. In this paper we propose an approach based
on Random Hypersurface Models that interprets target shapes as
scaled extrusions. This is achieved by combining projection-based
models with probabilistic approaches, integrating the strengths
of both mechanisms. As extruded shapes such as bottles, boxes,
or containers can be extensively found in everyday situations,
this approach can be applied for tracking in a large variety of
environments.

Index Terms—Extended object tracking, extrusions, shape
models, cylinder, solid of revolution.

I. INTRODUCTION

Object tracking classically works with the assumption that
the target shape consists of a single point. However, modern
sensors are typically capable of resolving multiple measurement
sources, allowing tracking approaches that exploit information
about the target shape to yield more robust and accurate
results. In many cases the shape parameters are not available
beforehand, requiring both pose and shape to be estimated
simultaneously. This raises the need for simple yet powerful
shape models that can take advantage of the information
available through the measurements.

For simple shapes, the mechanisms used to describe them
can be divided into two classes. In the first class are models
based on fitting, i.e., minimizing a distance function to a
projection, used in particular for conics [1]–[3]. In the second
class are approaches that develop probabilistic models explicitly
considering all sources [4], e.g., in estimators for line segments
[5].

For more complex shapes, however, there are two intercon-
nected issues. On the one hand, detailed models allow for more
flexibility in describing a variety of shapes. For example, active
contours are often used in computer vision to describe complex
objects [6]. On the other hand, simpler models have the benefit
of being robust and yielding high performance. For instance,
rigid object tracking [7] and articulations using basic shapes
[8] are popular in literature. As explicit probabilistic models
tend to be intractable for detailed shapes, fitting techniques are
generally used instead.

However, an alternative approach consists of constructing
detailed objects using simple shapes, allowing the combination

(a) Target shape. (b) Scaled extrusion model.

Figure 1: Modeling an extended target as a scaled extrusion.

of probabilistic and projection-based techniques. One of these
is called Random Hypersurface Models (RHMs) [9], which
describe detailed shapes as the transformations of a base
shape. Using RHMs, shapes such as filled disks [10], arbitrary
filled star-convex [11] and non-convex shapes [12] have been
modeled. In addition, cylinders were used to track objects in
3D point clouds [13].

In this paper, we propose a straightforward mechanism to
extend RHMs in order to model scaled extrusions such as in
Fig. 1. As extruded objects are easy to manufacture, they are
widely present in a large variety of environments. These include
familiar objects such as bottles, containers, metal bars, tubes,
and many others. In Fig. 1, for example, a target object (Fig. 1a)
is seen as the scaled extrusion of a base shape (Fig. 1b).

This paper is structured as follows. First, Sec. II details
the problem formulation, and then Sec. III describes how to
model extended objects. Implementation details are explained
in Sec. V, and an evaluation is presented in Sec. VI. Finally,
Sec. VII concludes this paper.

II. PROBLEM FORMULATION

This paper deals with estimating the parameters of a target
object based on received noisy point measurements.

The target parameters for the time step k are contained in
the state xk. Thus, the probability density p(xk) represents
the uncertain knowledge of the parameters. The received point
measurements Yk = {y

k,0
, · · · , y

k,l
} are assumed to stem

from the boundary of the target shape. Each measurement



(a) Spatial distribution model. (b) Greedy association model.

Figure 2: Commonly used shape models.

y
k,i
∈ Rd, where d is generally two or three, is described in

Cartesian coordinates. It is not assumed that the number of
measurements contains any information about the target. Note
that the measurement index will be dropped unless needed.

Each measurement y
k
∈ Yk is related to the state xk through

a measurement model, which can be divided into a sensor model
and a shape model. On the one hand, the sensor model assumes
that y

k
originates from a measurement source zk drawn from

the boundary of the target shape, described by the set Z(xk),
and then is disturbed during observation by an additive noise
term vk. It is assumed that vk is drawn from a Gaussian
distribution with zero mean and covariance matrix Cv

k, so that

p(y
k
| zk) = N (y

k
− zk; 0,Cv

k) (1)

holds. On the other hand, the shape model describes how a
measurement source zk is generated in function of xk, and
depends on the characteristics of the target shape Z(xk). This
can be described using the probability density p(zk |xk).

The relation between a given measurement y
k

and the
state xk can be described probabilistically using a likelihood
p(y

k
|xk). It is assumed that each measurement noise term

is drawn independently from other noise terms and from the
state.

III. MODELING EXTENDED OBJECTS

A probabilistic measurement model that relates y
k

to the
state parameters xk can be described by combining the sensor
and shape models from Sec. II, in the form of

p(y
k
|xk) =

∫
Z(xk)

p(y
k
| zk) · p(zk |xk) dzk , (2)

which considers all possible sources zk from the target shape
Z(xk). This model, which explicitly assigns each source a
probability of generating a measurement, is called a spatial
distribution model [4] (SDM), shown in Fig. 2a. The advantage
of this approach is that it is able to incorporate information
such as object-to-sensor geometry to improve estimation, by
adjusting p(zk |xk) to specify which sources are more likely
to be measured. However, this also raises the requirement
that p(zk |xk) needs to be explicitly known, which in cases
of artifacts and unexpected occlusions might be extremely

(a) Correct shape. (b) Incorrect size. (c) Incorrect pose.

Figure 3: Issues using GAMs.

difficult. In addition, evaluating (2) requires considering all
possible sources, which may be intractable or inefficient.

In contrast, an approach commonly used in fitting [15]
consists of simplifying p(zk |xk) by considering only a
single source, denoted as the projection π(y

k
,Z(xk)). This

projection is selected as the closest source in Z(xk) to the
measurement y

k
, based on a given distance function. The

task for the estimator is, then, to minimize the distances
between measurements and their projections. The projection
π(·, ·) can be determined, for example, by selecting the source
with the smallest Euclidian or Mahalanobis distance to the
measurement. In this work, we denote these shape models as
greedy association models (GAMs) [14], shown in Fig. 2b.

GAMs can be seen as a special case of SDMs where all
the probability mass is assumed to be concentrated on the
projection, assumed to be the real source. Thus, as this approach
does not require the probability density to be explicitly defined
for all sources, it can deal better with occlusions and artifacts.
As an example, let the distance function be the difference
between the measurement y

k
and its projection π(y

k
,Z(xk)).

Then, the probability density p(zk |xk) can be simplified to

p(zk |xk) = δ(zk − π(yk,Z(xk))) , (3)

where δ(·) is the Dirac delta function. After plugging this into
(2) using (1), we obtain the simple likelihood

p(y
k
|xk) = N (y

k
− π(y

k
,Z(xk)); 0,Cv

k) .

However, this crude approximation introduces two issues in
GAMs. On the one hand, we have the problem of estimation
bias [14], which appears as a consequence of the fact that, in
many cases, π(y

k
,Z(xk)) 6= zk due to the effect of noise and

shape curvature. On the other hand, it cannot exploit additional
information about the distribution of sources on the shape,
which leads to issues with filled shapes [5], [14] as seen in
Fig. 3. In the three cases, the distance between the sources
(dark blue) and the estimated shapes (light blue) is always
0. This means that the estimator has no way of finding out
which estimated shape is the correct. As explicit SDMs take
into account the distribution of sources in the shape, this issue
is not present in those models.

As both the explicit and greedy treatments of p(zk |xk) bring
their own advantages and disadvantages, it is worth examining
how both approaches can be combined.



IV. EXTRUSION RANDOM HYPERSURFACE MODELS

In this paper, we explore the approach of modeling extended
objects as scaled extrusions. Informally, constructing an ex-
trusion can be seen as taking a given base shape (Fig. 4a)
and translating it along a given axis. The result, denoted as
the extruded shape, is in turn the union of all these translated
shapes (Fig. 4b). For example, a cylinder can be seen as an
extrusion using a circular base shape. For simplicity, it is
assumed that the axis is normal to the base shape plane. In
addition, the base shape is assumed to be flat, i.e., there exists
a plane that contains all of its points.

This concept can be generalized by translating and scaling
the base shape, where the scaling parameter of the translated
shape varies in function of its position (Fig. 4c). We denote this
process as scaled extrusion. In this way, solids of revolution
can be seen as scaled extruded shapes using a circular base
shape.

The key idea is, then, to take the simple model of the
base shape and use it to describe more complex, scale
extruded shapes. This section is concerned with developing a
probabilistic shape model for these scaled extrusions.

A. Random Hypersurface Models

In order to model scaled extrusions, we introduce the
concept of Random Hypersurface Models (RHMs), which
can be interpreted as a combination of spatial distributions
and greedy association models. The key idea is to develop a
generative model for a target shape Z(xk) by transforming a
simpler base shape, denoted as Zb(xk). The transformation,
determined by the parameter τ ∈ T , can be arbitrary and yields
the transformed shape Zτb (xk). In addition, each transformed
shape is assigned an explicit probability p(τ) of generating
a measurement. In general, the base shape is modeled as a
GAM.

Thus, the process of generating a measurement source can
be described in the following two steps. In the first step, a
transformation parameter τ is randomly selected considering
p(τ). Then, in the second step, a measurement source is selected
from Zτb (xk) according to its shape model.

Using RHMs, the term p(zk |xk) from (2) can be written as

p(zk |xk) =
∫

τ∈T

p(zk |xk, τ) · p(τ) dτ , (4)

where p(zk |xk, τ) is determined by the shape model of the
corresponding transformed shape.

B. Extrusions as RHMs

The idea of RHMs can be easily extended to describe scaled
extrusions by interpreting the transformation of the base shape
Zb(xk) as a combination of translations and scalings.

The transformed shapes Zτb (xk) will be denoted as slices
(Fig. 5a). For each τ ∈ [0, 1] the corresponding slice can be
described as

Zτb (xk) := {s(τ) · zk + τ · lk | zk ∈ Zb(xk)},

(a) Base shape. (b) Simple extrusion. (c) Scaled extrusion.

Figure 4: Extrusion models.

where lk denotes the extrusion axis, and s(τ) is the lateral
function that determines the scaling coefficient. Finally, a
given p(τ), denoted as the slice probability density, determines
how probable it is that the corresponding slice generates a
measurement.

Thus, the parameters to be estimated consist of

xk =
[
xbk,x

s
k,x

h
k

]
, (5)

where xbk denotes the parameters of the base shape, xsk the
parameters of the lateral function, and xhk determines the
height, i.e., the length of the extrusion axis. This approach
encompasses both straightforward extrusions when s(τ) is
constant, as handled in [13], and solids of revolution when
Zb(xk) is a circle. Of course, (5) can be extended to describe
additional parameters required by other models.

As this approach is a combination of GAMs and SDMs,
it also combines their advantages. On the one hand, as the
slices are modeled as GAMs using projections, it retains the
robustness in cases of occlusions. On the other hand, as the
extrusion axis is modeled as an explicit SDM, we are able to
correctly estimate the height and avoid the issues from Fig. 3.

V. IMPLEMENTATION

In the implementation, we will focus on circular scaled
extrusions, i.e., scaled extruded shapes with circles as base
shapes.

A. Extrusion Slices

The base shape is a circle embedded in three dimensions,
described with the parameters

xbk =
[
xpk,x

o
k

]
,

where xpk denotes the position of the circle center, and xok the
orientation. The radius of the base circle is assumed to be 1,
as the scaling will be determined by s(τ) instead.

The shape model for the slices is a GAM, i.e., for a given
measurement y

k
only a single source is considered. This source

is selected as the Mahalanobis projection of y
k

onto the slice,
determined from

π(y
k
,Zτb (xk)) = argmin

zk∈Zτb (xk)
(zk − yk)

T (Cv
k)
−1(zk − yk) .

Note that for isotropic noise this is reduced to a simple
Euclidian projection. For non-isotropic noise, a polygonal



approximation of the slice can be used which yields an efficient,
closed-form projection.

In order to deal with issues of bias, the selected source can
be corrected using the approach from [14]. Note that for non-
isotropic noise, the estimated parameters may still be slightly
biased.

The measurement equation consists simply of comparing
y
k

to its projection onto Zτb (xk), in a similar fashion to (3),
yielding

p(zk |xk, τ) = δ(zk − π(yk,Z
τ
b (xk))) , (6)

where δ(·) is the Dirac delta function.

(a) Horizontal slices. (b) Lateral function. (c) Piecewise linear s(τ).

Figure 5: Modeling the lateral surface.

B. The Lateral Function

The lateral function s(τ) determines the coefficient for the
scaling of the slice τ (Fig. 5b). As the base shape is circular,
the extruded shape can be seen as a solid of revolution whose
lateral surface is determined by s(τ). Options to parameterize
the lateral function can be Bezier curves, Bernstein polynomials
[15] or Fourier series [11]. For simplicity, in this paper we
propose to use piecewise linear functions. This allows the easy
description of lateral surfaces that are vertically straight, such
as cylinders, truncated cones and their combinations, present
in many real-life extrusions. In addition, it is straightforward
to increase or decrease the level of vertical detail simply by
adding or removing a section.

An example implementation is by homogeneously splitting
the interval [0, 1] into multiple sections with coordinates
{τs0 , ..., τsm}, where τsi = i

m . Then, let the shape parameters
have the form

xsk =
[
xsk,0, ...,x

s
k,m

]
,

where each xsk,i determines the value of the lateral function
at the coordinate τsi , i.e., s(τsi ) = xsk,i (Fig. 5c). For the other
values of τ , the scaling is obtained from linear interpolations
of the nearest sections.

C. Modeling the Extrusion

Next, we develop a probabilistic model for the scaled extru-
sion process. For convenience, we define the slice projection

πτ (yk,xk) := π(y
k
,Zτb (xk)) .

Then, by adjusting (6), we obtain

p(zk |xk, τ) = δ(zk − πτ (yk,xk)) ,

which, when plugged into (4), results in

p(zk |xk) =
1∫

0

δ(zk − πτ (yk,xk)) · p(τ) dτ ,

which, in turn, can be inserted into (2), yielding

p(y
k
|xk) =

1∫
0

N (y
k
− πτ (yk,xk); 0,C

v
k) · p(τ) dτ , (7)

so that the likelihood can be described as a weighted Gaussian
convolution around the slice projections.

While some forms of s(τ) and p(τ) allow for a closed-
form evaluation of (7), in general this is untractable. However,
given the small range of τ , an implementation can use simple
numerical approximations and still obtain good results.

D. Slice Probabilities

As a reminder, each slice was modeled as a GAM in order
to allow the estimator to remain robust even if parts of the slice
are occluded. This is particularly useful given that a sensor
usually can only observe one side of the object. However,
the extrusion axis was modeled using the explicit probability
density p(τ), in order to estimate the height correctly. Because
of this, we still require information about the probability of
each slice to generate a measurement.

Assuming a low vertical curvature in the lateral surface, a
probability density in the form p(τ) = U(τ ; 0, 1), i.e., with a
uniform distribution in [0, 1], might suffice. In other cases, we
need to take into account how the object is observed by the
sensors, such as an RGBD camera using a pinhole model or
a laser scanner. Thus, a simple approximation is by using the
intuitive notion that the probability for each slice to generate
measurements depends on its size. From this, we obtain the
probability density

p(τ) ≈ c · s(τ) ,

where c is a normalization constant.

E. Extrusion Caps

While the focus of this paper is on the lateral surface, it
may happen that the top and bottom caps are also visible. In
this case, measurements generated from these parts will have
an influence on p(τ).

An approach to solve this issue is by using circular RHMs
[10], which work similarly to the proposed approach, by
shrinking a circular boundary to describe a filled disk. The
likelihood of the whole shape is then the weighted sum of the
cap disk likelihood and the lateral surface likelihood (7). The
required weights are proportional to how much of the surface
area of each component is visible to the sensor.



F. Estimator

A recursive Bayesian estimator can be developed in a
straightforward way. Such an estimator generally has two steps.
First, an update step is realized using Bayes’ rule, in the form
of

p(xk | yk) ∝ p(yk |xk) · p(xk) ,

where p(xk) is the prior knowledge of the state and p(y
k
|xk)

is the likelihood from (7). Second, a prediction step is executed
using a given system model.

The update step can be implemented with a variety of filters,
such as the PGF [16] or the GPF [17], which deal with explicit
likelihoods. An implementation is also possible using non-linear
Kalman Filters such as the UKF [18] or the S2KF [19].

VI. EVALUATION

The evaluation consists of tracking the object described in
Fig. 6a using synthetic data. The target has a height of 1 m,
and the scaling is 0.5 m at the bottom and 0.1 m at the top.
The base shape is a circle, and the extrusion axis is assumed
to lie in the xy-plane. The object is observed from above, i.e.,
the camera points in the direction of the negative z-axis. Thus,
only the lateral surface was visible.

(a) Ground truth. (b) Extrusion RHM. (c) Fitting.

Figure 6: Ground truth and estimated shape.

The state has the form

xk =
[
xpk,x

α
k ,x

v
k,x

ω
k ,x

h
k ,x

s
k,0, ...,x

s
k,5

]
,

where xpk represents the position and xvk the velocity. The
object can be rotated around the z-axis, with xαk determining
the angle and xωk the angular velocity. For both the position and
the angle, a constant velocity model is assumed. The height is
described with xhk . The lateral function is modeled as shown
in Sec. V-B, using a piecewise linear function which split the
lateral surface into six sections. Thus, each xsk,i determines
the scaling for each section.

For estimation, a PGF [16] with 120 samples is used, i.e.,
8 samples per state dimension. The state is assumed to be
Gaussian, i.e., the estimator treats the uncertain state as p(xk) =
N (x; x̂k,C

x
k). For the initial state at k = 0, the position xpk

is 1 m away from the ground truth, with rotation xαk = 0, and
with xsk,i = 0.3 m for all scalings. The initial velocities are
zero. The initial uncertainty is Cx

0 = 10−2 · I.
At each time step, 20 measurement sources are generated

from the boundary of the ground truth target. Each measurement

source is then corrupted using zero mean additive Gaussian
noise. Of interest are situations with relatively high, non-
isotropic noise, similar to that encountered using RGBD
cameras. Because of this, the noise covariance matrix had
the form Cv

k = η2 · diag(1, 1, 5), rotated randomly.
This section is divided in two parts. First, the static scenario

compares the new approach with direct fitting, and serves
to illustrate the height problem. Then, the dynamic scenario
evaluates the proposed approach using a moving target.

A. Static Scenario

In this scenario, we compared the introduced mechanism
with the classical approach of fitting [15], i.e., minimizing the
distance of the measurements to the shape. Both the fitting and
the extrusion estimators used the same parameters. However,
the fitting update assumed a shape model based on GAMs, i.e.,
only the measurement projection on the shape was considered
as a source. The noise parameter was η2 = 2.5 · 10−4, i.e.,
the largest error component had a standard deviation of about
3.5 cm. At each time step, a Gaussian zero mean process noise
with covariance matrix 10−4 · I was assumed.

A snapshot for the extrusion estimator can be seen in Fig. 6b,
and for fitting in Fig. 6c. A major problem with fitting is
that, given that only the sides are visible, the height could
not be estimated at all, which had a catastrophic effect on
every other parameter. A regularization mechanism can be
found using ideas of Active Contours [6], by shrinking it a
small amount at each time step. However, finding suitable
parameters is extremely difficult, given that they depend on
factors such as the number of measurements, measurement
quality, process noise, etc, all of which can change at any
moment. A representative case which illustrates this issue can
be found in Fig. 7a. Even if the shape parameters and the
orientation were incorrect, the fitting approach was still able
to correctly find the target position, as seen in Fig. 7b.
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(a) Height error.
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(b) Position error.

Figure 7: Results of the static scenario.

B. Dynamic Scenario

In the dynamic scenario, the target was moving in a circular
arc, as shown in Fig. 8a. The position of the ground truth shape
moved along a circle of radius 4 m, at a rate of 1 degree each
time step. Simultaneously, the true shape was rotating so that
the extrusion axis always pointed to the center of the rotation
circle. Note that, in consequence, the constant velocity model
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(b) Height error.
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(c) Top radius error.
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Figure 8: Results of the dynamic scenario.

could approximate but not fully capture the circular motion.
The noise parameters were η2 = 2.5·10−4 for the middle noise
runs, and η2 = 2.5 · 10−3 for the high noise runs. In other
words, the largest error components had a standard deviation
of about 3.5 cm and 11 cm respectively. At each time step,
a Gaussian zero mean process noise with covariance matrix
10−4 · I was assumed.

The mean results of 30 runs are shown in Fig. 8. The position
was never further than 4 cm away from the ground truth, as
seen in Fig. 8a. The height error (Fig. 8b) remained about
3 cm for both noise levels, indicating an issue of bias most
likely caused by the incomplete motion model. Considering
the ground truth height of 1 m, those are still very good results.
Given that the noise was relatively large in relation to the top
radius of 0.1 m, it is not very surprising that the results were
not as stable there (Fig. 8c). A similar artifact can be seen in
the top radius of Fig. 6b. For the bottom radius of 0.5 m, a
constant error of 5 cm could be seen (Fig. 8d), likely due to a
bias issue in a similar way to the height.

VII. CONCLUSION

In this paper, we presented an approach to track extended
objects by modeling them as scaled extrusions of a base shape.
This allows the description of commonly used objects such as
bottles, cans, containers, etc. To achieve this, we combined both
probabilistic and projection-based techniques in order to exploit
the advantages of both approaches, including robustness against
occlusions and the ability to incorporate information about
the distribution of measurement sources. An implementation
using circles as base shapes was presented and evaluated using
synthetic data. The results showed that the proposed approach

could easily track the target object even with high noise while
also estimating its shape.
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