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Abstract—In this paper, we propose the Progressive Bingham
Filter (PBF), a novel stochastic filtering algorithm for nonlinear
spatial orientation estimation. As an extension of the orientation
filter previously proposed only for the identity measurement
model based on the Bingham distribution, our method is able to
handle arbitrary measurement models. Instead of the sampling-
approximation scheme used in the prediction step, a closed-
form solution is possible when the system equation is based on
the Hamilton product. Besides stochastic approaches, we also
introduce the Spherical Averaging Method (SAM), which is an
application of the Riemannian averaging technique. The two
approaches are then applied to a specific problem where the
wavefront orientation is estimated based on Time Differences of
Arrival (TDOA) and evaluated in simulations. The results show
theoretical competitiveness of the PBF.

Keywords—Nonlinear Progressive Filtering, Directional Esti-
mation, Bingham Distribution, Time Difference of Arrival

I. INTRODUCTION

Spatial orientation estimation plays an important role in
various application scenarios including multilateration, com-
puter vision [1], robotic manipulation and navigation as well as
perception [2]–[4]. Over the years, there have been extensive
efforts towards robust and accurate estimation techniques for
rotations or more general spatial transformations, among which
the stochastic approaches are quite popular. However, mostly
due to the nonlinear group structure of the special orthogonal
group SO(3), conventional stochastic filtering approaches cannot
be trivially applied [5], [6]. More specifically, the following
issues can make the stochastic estimation of orientations
challenging.

First, different representation methods of spatial orientation,
which determine the state domains, can have a significant
impact on the problem formulation. One of the mostly used
representations is the Euler angle parameterization. However,
Euler angles have the problem of gimbal lock [2] and also
ambiguity [7]. Another choice is to use the matrix of the 3-D
rotation group, which can cause numerical instability due to
over-parametrization. In contrast, the unit quaternion is more
intuitive to compose and involves less redundancy. Second,
spatial orientations are periodic and belong to the SO(3), whose
group structure is nonlinear. Some stochastic filters have been
proposed to tackle the nonlinear estimation problem in a locally
linearized domain, e.g., the well-known Extended Kalman
Filter (EKF) [1] and Unscented Kalman Filter (UKF) [8].
However, this could be problematic for high noise level and
fast orientation changes. Moreover, they also lack stochastic
modeling of uncertain orientations directly on the nonlinear
manifold itself but rather assume Gaussian-distributed noise on
the locally linearized domain.

Directional statistics [9] specifically models uncertain
directional variables, e.g., angles or orientations, directly on
their periodic and nonlinear domain. In [10]–[13], stochastic
filters using specific directional distributions, e.g., von Mises-
Fisher distribution, (bivariate) wrapped normal distribution, and
Bingham distribution, have been proposed. They typically rely
on a deterministic sampling scheme analogous to the unscented
transform for propagation through nonlinear system dynamics.
The Bingham distribution [14], which can be seen as a modified
version of Gaussian distribution on the sphere or hypersphere,
has shown benefits for nonlinear filtering based on a unit
quaternion representation. However, the previously proposed
Bingham Filter (BF) [15] is only applicable to the identity
measurement model, which limits its application in most of the
real-world scenarios. Moreover, the sampling-approximation
scheme during the prediction step might be time-consuming.

In this work, we introduce the Progressive Bingham Filter
(PBF), an extended version of the originally proposed Bingham
Filter (BF) based on unit quaternion representation, to handle
arbitrary nonlinear measurement models. For the prediction
step with system equations purely based on the Hamilton
product, we give a closed-form solution as an alternative
to the deterministic sampling-based approach. Besides the
stochastic approaches through unit quaternion filtering, we
apply an existing Riemannian averaging technique [16] directly
on the manifold S2 of spatial orientations. The evaluation is
simulation-based with an application to orientation estimation
using noisy Time Difference of Arrival (TDOA) measurements,
which is of broad interest in signal processing and surveillance.
The results show that the proposed PBF outperforms the original
PF and the Riemannian averaging technique under the system
noise assumed to be Bingham-distributed.

The remaining parts of this paper are structured as follows.
In Sec. II, preliminaries about unit quaternions and the Bingham
distribution are introduced. The closed-form solution for Hamil-
ton product-based system equations is explained afterwards.
Sec. III gives a detailed introduction to the PBF for arbitrary
measurement models. In Sec. IV, a non-stochastic technique,
the Spherical Averaging Method (SAM), is introduced. The
evaluation is performed in Sec. V for orientation estimation
based on Time Differences of Arrival (TDOA). Finally, the
work is concluded in Sec. VI.

II. PRELIMINARIES

A. Unit Quaternions and Spatial Orientations

In this part, we first give a basic introduction to the unit
quaternions for orientation representation and their manifold
structure. Some detailed preliminaries for quaternion arithmetics



can be found in [17]–[19]. Second, we recap the definition of the
Bingham Distribution and propose a novel closed-form solution
for its propagation given a purely Hamilton product-based
system equation.

The rotation representation using the unit quaternions is
essentially a re-parameterization of the axis-angle method.
Given a rotation axis u ∈ S2 and rotation angle θ, the
corresponding unit quaternion can then be composed as

q = cos

(
θ

2

)
+ u sin

(
θ

2

)
. (1)

For an arbitrary vector v ∈ R3, it can be rotated accordingly
as follows

v′ = q⊗ v ⊗ q∗ , (2)

with q∗ = diag(1,−1,−1,−1)q denoting the conjugate of
the quaternion q and ⊗ the Hamilton product [17]. Note the
norm of the quaternion,

√
q⊗ q∗, gives the same value as its

Euclidean norm, thus the unit quaternions essentially form a
hypersphere in the four-dimensional Euclidean space, namely
q ∈ S3 ⊂ R4. It can be easily verified that the quaternion
defined in (1) is a unit one. The Hamilton product of two
quaternions can also be written as matrix-vector product [18],
namely

p⊗ q = Ql
pq = Qr

qp , (3)

with

Ql
p =

p1 −p2 −p3 −p4

p2 p1 −p4 p3

p3 p4 p1 −p2

p4 −p3 p2 p1

 ,

Qr
q =

q1 −q2 −q3 −q4

q2 q1 q4 −q3

q3 −q4 q1 q2

q4 q3 −q2 q1

 .

(4)

Here, the matrix elements are directly taken from the quaternion
vectors, e.g., q = [q1, q2, q3, q4]>. Furthermore, ∀q ∈ S3, it
can be proven that its matrix representation Ql

q,Q
r
q ∈ SO(4),

which is the 4-dimensional rotation group. For unit quaternions,
the inverse, which performs rotation in the opposite direction,
equals to the conjugate, namely q−1 = q∗. Thus, for an
inverted unit quaternion q−1, its matrix representation is then
the transpose of the original one, i.e., Ql

q−1 = (Ql
q)
> and

Qr
q−1 = (Qr

q)
>.

B. Bingham Distribution under Hamilton Product

As (2) indicates, two antipodal unit quaternions on S3, e.g.,
q and −q, represent the same spatial orientation. In order to
model uncertain unit quaternions, the distribution should thus
be antipodally symmetric. The Bingham Distribution (BD) on
the hypersphere Sd−1 is generated by restricting a Gaussian
distribution in Rd on the unit hypersphere. More specifically,
the BD on S3 for modeling uncertain unit quaternions is defined
as

f(q) = B(q;M,Z)

=
1

N(Z)
exp(q>MZM>q), q ∈ S3 ,

(5)

where the diagonal matrix Z = diag(z1, z2, z3, z4) indicates the
concentration with increasing entries z1 ≤ z2 ≤ z3 ≤ z4 ≤ 0,
M is an orthonormal matrix, and N(Z) is the normalization

constant which only depends on the concentration matrix.
Given a unit quaternion that is Bingham-distributed, i.e.,
qk ∼ B(Mk,Zk), the transformed unit quaternion under the
system equation qk+1 = qk ⊗ uk (without noise) is still
Bingham-distributed. The proof is as follows. It can be derived
that qk = qk+1 ⊗ u−1

k = (Qr
u)>qk+1, thus

f(qk+1)

= f(qk+1 ⊗ u−1
k ;Mk,Zk)

=
1

N(Zk)
exp

(
((Qr

u)>qk+1)>MkZkM
>
k (Qr

u)>qk+1

)
=

1

N(Zk)
exp

(
q>k+1(Qr

uMk)Zk(Qr
uMk)>qk+1

)
.

(6)
Since Qr

u ∈ SO(4), Qr
uMk is still an orthonormal matrix.

Moreover, the normalization constant depends only on the
concentration matrix Z. Thus, the transformed unit quater-
nions are still Bingham-distributed with the same concen-
tration rotated on S3 according to the system input uk,
namely qk+1 ∼ B(Qr

uMk,Zk). Compared to the sampling-
approximation scheme proposed previously [15], this should
give some speed-up during the prediction step for stochastic
estimation under a system dynamics purely based on the
Hamilton product.

III. PROGRESSIVE BINGHAM FILTER

In this section, the novel Progressive Bingham Filter (PBF)
is introduced. Unlike the previously proposed Bingham Filter
(BF) [15] where an identity measurement model is assumed,
it can handle arbitrary measurement models by applying a
progressive update step. Moreover, by using the closed-form
solution introduced in II-B, our method shows better efficiency
with the system dynamics purely conducting the Hamilton
product.

A. Prediction Step

The system dynamics is assumed to be

qk = a(qk−1,uk)⊗wk , (7)

with uk denoting the system input, qk the system state and
wk the system noise, which are all in unit quaternion form,
namely qk,uk,wk ∈ S3. We thus assume the system noise is
Bingham-distributed with wk ∼ B(Mw,Zw). Here, a general
system equation a(·, ·) is used, for which the prediction step can
be solved by using a deterministic sampling scheme analogous
to the unscented transform [15]. However, it would be also
interesting to use the technique introduced in II-B for a purely
Hamilton product-based system equation without using the
sampling scheme, namely

qk = qk−1 ⊗ uk ⊗wk , (8)

where the state qk is directly rotated by uk and further propa-
gated by the Bingham-distributed system noise wk according
to the Hamilton product. The corresponding algorithm for the
prediction step can thus be proposed as shown in Alg. 1. Here
the function for composing two different Bingham distribution
(see line 3 in Alg. 1) into a new one is originally introduced
in [20].



Algorithm 1 Prediction
procedure predict(B(Me

k−1,Z
e
k−1),Bw,uk)

1: Mk ← Qr
uk
Me

k−1;
2: Zk ← Zek−1;
3: B(Mp

k,Z
p
k)←composeBingham(B(Mk,Zk),Bw);

4: return B(Mp
k,Z

p
k)

end procedure

B. Progressive Update Step

During the update step, we aim to correct the prior using
the measurements. As introduced in [15], the measurement
model is restricted to be identity, namely

zk = qk ⊗ vk , (9)

with zk,vk,qk ∈ S3 and the measurement noise vk assumed
to be Bingham-distributed . In most of the real-world cases,
however, the measurements zk are not necessarily in the form
of unit quaternions. Besides, the noise term vk normally does
not follow the previously proposed Bingham distribution after
the raw measurements are converted into unit quaternion form.
In order to give better modeling of the measurement noise, we
introduce an arbitrarily given measurement model

zk = h(qk) � vk , (10)

with h(·) denoting the measurement function, which maps the
system space to the domain of the measurements. Here vk ∈ Z
denotes the measurement noise in an arbitrary domain and �
indicates the composition of both additive and non-additive
noise. For instance, a measurement model with the additive
noise can be derived based on the Time Differences of Arrival
(TDOA) of sensor array for wavefront orientation estimation
as shown in (26). The prior can thus be updated according to
the Bayes’ rule

f(qk|zk) ∝ f(zk|qk)︸ ︷︷ ︸
likelihood

· f(qk)︸ ︷︷ ︸
prior

, (11)

where the likelihood can be derived in a similar way to [18] as

f(zk|qk) = fvk

(
h(qk)−1 � zk

)
, (12)

with an assumption that the operator � is invertible. For identity
measurement model as (9), its likelihood can then be derived
as

f(zk|qk) = fvk
(q−1
k ⊗ zk) . (13)

This results in the closed-form posterior as a rescaled Bingham
distribution as shown in [15]. For non-identity measurement
model, instead of the closed-form solution, the update step
typically relies on a sampling-approximation-based scheme.
However, this method could lead to the problematic sample
degeneration and is particularly risky when the sample number
is small, e.g., with the Bingham distribution on S3 only 2 ·
(4− 1) + 1 = 7 samples are drawn deterministically [15].

In order to solve this issue, we can rely on the progressive
update methods which have been originally proposed only
for Gaussian noise in [21] and further extended to directional
state manifolds, e.g., torus [13], circle [22], and manifold of
the planar dual quaternions [18]. Detailed introduction can
be found in Alg. 2. Instead of updating the prior at once,

the filter gradually corrects the prior with the likelihood in
multiple progression steps, which is mathematically ensured
by the Bayesian inference given (11) as follows

f(qk|zk) = f(qk) ·
n∏
i=1

f(zk|qk)λi , (14)

with λi indicating each progressive step size and satisfying∑n
i=1 λi = 1, λi ∈ (0, 1]. For each progression step i, we have

a predefined threshold τ limiting the ratio of the maximum
and minimum rescaled likelihoods sj = f(zk|qj)λi of all the
prior samples qj , namely

min
j=1,··· ,m

f(zk|qj)λi

max
j=1,··· ,m

f(zk|qj)λi
=

(
smin

smax

)λi

≥ τ , (15)

which gives the step size as

λi ≤
log(τ)

log(smin/smax)
. (16)

We then approximate a new prior using the rescaled likelihoods
and redo the sampling-rescaling-approximation scheme for each
progression steps until the posterior Bingham is computed in
the end.

Algorithm 2 Progressive Update
procedure progressiveUpdate(zk,B(Mp

k,Z
p
k), τ )

1: Λ← 1;
2: i← 0;
3: B(Me

k,Z
e
k)← B(Mp

k,Z
p
k);

4: while Λ > 0 do
5: i← i+ 1;
6: {(qj , pj)}j=1,··· ,m ←sampleDeterministic(B(Me

k,Z
e
k));

7: smin ← min
j=1,··· ,m

f(zk|qj);

8: smax ← max
j=1,··· ,m

f(zk|qj);

9: if smax = 0 then
10: return B(Me

k,Z
e
k);

11: end if
12: λi ← min(Λ, log(τ)

log(smin/smax)
);

13: for j = 1 to m do
14: pj ← f(zk|qj)λi · pj ;
15: end for
16: B(Me

k,Z
e
k)← estimateParameters({qj , pj}j=1,··· ,m);

17: Λ← Λ− λi;
18: end while
19: return B(Me

k,Z
e
k);

end procedure

IV. SPHERICAL AVERAGE METHOD ON S2

Instead of using stochastic filtering approaches, it is also
intuitive to obtain orientation estimates by averaging noisy
orientation measurements. Unlike in the Euclidean space,
averaging on the nonlinear manifolds is mathematically not
trivial, even for manifolds with relatively simple structure, e.g.,
the hypersphere. As the unit sphere S2, where the orientation
vector n locates on, is a compact Riemannian manifold, it would
be promising to perform general averaging techniques based on
Riemannian geometry through, e.g., geodesic interpolation [23]



  

Figure 1: Exponential and logarithm map on unit sphere S2.

or gradient descent [24]. In this section, we first briefly intro-
duce the necessary mapping techniques such as the exponential
and logarithm maps based on spherical geometry. Then we
employ the mapping approaches to the standard Riemannian
averaging techniques for doing orientation averaging introduced
in [16]. This approach has been successfully applied on
the S2 sphere for parameter fitting of the Spherical Normal
distribution [16].

A. Logarithm and Exponential Maps on S2

As shown in Fig. 1 and introduced in [16], for ∀n ∈ S2, we
can obtain the so-called tangent plane TnS2 that is orthogonal
to the unit sphere at n, meaning ∀nt ∈ TnS2, n>t n = 0 .
∀n1,n2 ∈ S2, the logarithm map that maps n2 to the tangent
plane Tn1

S2 determined by n1 can be derived based on the
spherical geometry as

logn1
(n2) =

(
n2 − (n>2 n1)n1

) α

sin(α)
, (17)

with α = arccos
(
n>2 n1

)
denoting the angle between the two

orientations. Conversely, ∀nt ∈ Tn1
S2, it can be mapped back

to the unit sphere via the exponential map as follows

expn1
(nt) = n1 cos(||nt||) +

nt
||nt||

sin(||nt||) . (18)

It can be verified that both the logarithm and exponential map
preserves the geodesic metric, namely the nearest path length
between ∀n1,n2 ∈ S2 in arc length, i.e.,

d(n1,n2) =
∣∣∣∣logn1

(n2)
∣∣∣∣ = arccos

(
n>2 n1

)
. (19)

Hereby, the domain of the tangent plane is essentially a circle
with a radius of π.

B. Spherical Average Method Based on Gradient Descent

Given a bunch of noisy orientation measurements
{ni}i=1,...,N ∈ S2, their mean value can be derived by applying
general Riemannian gradient descent techniques [25] as shown
in Alg. 3 with the aforementioned logarithm and exponential
maps. The procedure, which is originally proposed in [16],
starts from an arbitrary orientation vector on the sphere (given
as the first orientation measurement n1 in the algorithm), then
iteratively minimizes the sum of squared geodesic metric by
finding the deepest gradient descent direction on the tangent
plane (Alg. 3, line 3), which could be also viewed as a spherical
version of the mean shift method.

Algorithm 3 Spherical Average Method
procedure sphericalAverage({ni}i=1,...,N )

1: n̄← n1;
2: repeat
3: δn← 1

N

∑N
i=1 logn̄(ni);

4: n̄← expn̄(δn);
5: until ||δn|| < 10−5

6: return n̄

end procedure

V. EVALUATION

In this section, we evaluate the proposed Progressive Bing-
ham Filter (PBF) for spatial wavefront orientation estimation
based on simulations. Hereby, the wavefront orientation is
measured by a three-dimensional sensor array based on Time
Differences of Arrival (TDOA), which can be applied to
a variety of practical scenarios, e.g., multilateration, sensor
network localization, etc. We then compare the proposed PBF
to the Spherical Average Method (SAM) as well as the ordinary
Bingham Filter (BF), which assumes the identity measurement
model.

A. Wavefront Orientation Measurement Based on Time Differ-
ences of Arrival (TDOA)

When the source is located sufficiently far away from the
sensor array compared to the array size, we can assume that
the wavefront can be approximated as a plane in the three-
dimensional Euclidean space, which is determined by

n>si + b = ri , (20)

where i = 1, · · · , S for S sensors, n denotes the unit vector
indicating the wavefront orientation, the scalar b denotes the
plane offset and ri is the signed distance of sensor location si
to the plane. For an arbitrary sensor pair ∀ i, j ∈ 1, · · · , S of
the sensor network, their Time Differences of Arrival (TDOA)
can be derived as

ti,j = ti − tj =
1

c
(si − sj)

>n

=
1

c
s>i,jn ,

(21)

with c denoting the propagation speed and si,j the vector
from sensor i to sensor j. We can thus derive the measurement
model for the wavefront orientation by concatenating the TDOA
equation of each possible sensor pair

t1,{2,··· ,S}
t2,{3,··· ,S}

...
tS−1,S


N×1

=
1

c


s>1,{2,··· ,S}
s>2,{3,··· ,S}

...
s>S−1,S


N×3

· n , (22)

with n ∈ S2 and N =
(
S
2

)
. Here, e.g., t1,{2,··· ,S} denotes the

TDOA measurements between the first sensor and the rest of
the sensors. We then formulate the aforementioned equation
for sensor cluster {si}i=1,···N in a concise manner as

∆t = H · n , (23)



where ∆t denotes the TDOA for each pair of the sensors
in the array, H is determined by the sensor array structure
which is constant, and n ∈ S2 denotes the resulting wavefront
orientation unit vector. Given the TDOA measurements, the
wavefront orientation can be directly calculated according to
the following closed-form solution

n̄ = H+∆t , (24)

with H+ denoting the pseudoinverse of H, namely H =
(H>H)−1H>. Note for noisy measurement, the resulting
n̄ does not fall on the unit sphere anymore, thus a post
normalization is necessary.

B. Evaluation Set-up

In order to evaluate the recursive estimators based on the
Bingham distribution and compare them to non-stochastic
approaches, we use unit quaternions to represent the wavefront
orientations as the system state. The wavefront is simulated to
follow the Bingham distribution, namely

qk+1 = qk ⊗wk, wk ∼ B(Mw,Zw) , (25)

with MwZwM
>
w = diag(0,−100,−100,−100). The individ-

ual parameter matrix, Mw and Zw, can be calculated through
eigendecomposition of the diagonal matrix. This distribution is
thus zero-centered, i.e., has the mode at [1, 0, 0, 0]>. Based on
the TDOA function formulated in (23), we set the measurement
model to

zk = H · (qk ⊗ n0 ⊗ q∗k) + vk, vk ∼ N (0,Σv) , (26)

with n0 = [1, 0, 0]> denoting the initialized orientation such
that the wavefront orientation can be represented by the unit
quaternion qk via n = qk ⊗ n0 ⊗ q∗k . The sensor array has
a spherical structure as shown exemplarily in Fig. 2, where
the six individual sensors are homogeneously located on the
surface. The measurements zk ∈ RN (N =

(
6
2

)
= 12) are

essentially the TDOAs from the sensor array. Each individual
TDOA measurement is assumed to be independently Gaussian-
distributed and has zero mean and variance σ2 = 0.5 (thus Σv
in (26) is diagonal).

The proposed Progressive Bingham Filter (PBF) is then
compared with the original Bingham Filter (BF), where the
identity measurement model is assumed, i.e. zk = qk ⊗ vk. In
order to have similar noise level, we approximate the Bingham
distribution Bv of identity measurement model based on Monte
Carlo runs of the measurement model in (25). To get the
measurements for the BF, we first calculate the rotation angle
relative to the initialized orientation through θ = acos(n>0 n)
and the rotation axis through u = n0 × n, then compose the
pseudo measurements in unit quaternion form according to
the definition in (1), such that n = q ⊗ n0 ⊗ q∗ . Besides
the stochastic approaches, we also evaluate the proposed
Spherical Averaging Method (SAM) where multiple orientation
measurements are collected from several sensors of the array
based on (23) and then get averaged on S2. As a baseline, we
also calculate the result according to the closed-form solution
in (24).

C. Evaluation Result

Fig. 3 shows the evaluation results based on 200 Monte
Carlo runs. We give the geodesic RMSE based on the metric

Figure 2: An example of the wavefront orientation measured
by the sensor array structured on the sphere. The sensors can
also be arranged according to other array structures.

in (19). The proposed progressive filter outperforms the
original one due to the fact that the PBF directly models
the measurement noise whereas the BF still assumes the
measurement model to be identity. The Spherical Averaging
Method (SAM) gives rational result, however, worse than
the stochastic approaches. This is not surprising, because the
recursive estimators consider the system propagation with the
assumed Bingham-distributed noise in (25).

VI. CONCLUSION AND OUTLOOK

In this work, we proposed a novel stochastic orientation
estimator, the Progressive Bingham Filter (PBF), which is
based on the unit quaternion representation. Compared to
the previously proposed Bingham Filter (BF) [15] where the
measurement model is assumed to be the identity, it can handle
arbitrary measurement models which allow direct modeling of
the measurement noise. This is done by applying the progressive
update approach based on deterministic sampling scheme on
S3, which is able to resolve the sample degeneration issue.
Furthermore, we point out that the sampling-approximation-
based propagation scheme can be simplified to be closed-form if
the system equation is purely Hamilton product-based. Besides
the stochastic approaches, we also employ an averaging tech-
nique for spatial orientation, namely the Spherical Averaging
Method (SAM) derived based on Riemannian geometry. As an
evaluation, we applied the proposed methods for orientation
estimation given TDOA measurements, which could be of
great interest to the surveillance field. The simulation results
show better performance of the proposed Progressive Bingham
Filter. This indicate the possibility, at least theoretically, of
applying directional statistics-based method to solve wavefront
orientation estimation problems using the TDOA measurements.

There is still much potential that can be exploited based on
this work. For instance, the SAM approach can be extended
from S2, where the orientation vectors are located on, to the
manifold of unit quaternion S3 and further integrated into the
stochastic filtering scheme for general averaging purposes. The
proposed Progressive Bingham Filter should be further tested
in real-world scenario for TDOA-based orientation finding
application. Moreover, the proposed orientation estimator can



be extended to perform localization in a time-of-arrival-based
(TOA-based) sensor network. Once the wavefront orientation
can be estimated by each sensor node individually, the source
location can thus be determined accordingly with proper
distributed estimation methods.
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Figure 3: Evaluation results based on 200 Monte Carlo runs.
As baseline, the green curve is given by the closed-form
solution introduced in Sec. V-A. The orange curve is from
the SAM introduced in Sec. IV. The red curve is given by the
Bingham Filter with identity measurement model [15]. The
proposed progressive approach (blue curve) outperforms the
other methods.
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