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Abstract—The assessment of prediction quality in machine
learning models is crucial, particularly within specific regions of
the input space, as black-box models do not perform equally well
in every region. Common methods, such as mean squared error
and calibration measures, are unable to assess local quality. To
address this issue, we propose a novel approach based on Voronoi
tessellation, which provides a visual and intuitive method for
analyzing two-dimensional input spaces. Our method identifies
regions in the input space, assesses the calibration of predictions
within these regions, and is implemented for regression tasks
in multi-input systems. The effectiveness of our approach is
exemplified using Bayesian neural networks (BNNs) and shows
that our proposed method provides a clearer understanding of
the quality of predictions in different input space regions.

Index Terms—Bayesian neural networks, uncertainty quantifi-
cation, Voronoi tessellation, region merging, calibration testing.

I. INTRODUCTION

White-box modeling is a theory-based method that involves
analyzing the internal components of a system and utilizing
relevant theorems and laws to construct a model under specific
assumptions [1]. While this method can yield accurate results,
it demands expertise across various domains for effective
application [1]. For some complex system processes, white-box
modeling presents a significant challenge, as it is difficult to
include all relevant aspects [2].

As an alternative to white-box models, learned black-box
models, such as neural networks, have gained popularity. For
example, these models are employed in optimal control and
state estimation, e.g., as a measurement model [1], [3]. However,
classic neural networks provide only point estimates, making
it unclear how reliable these models are and when they can
be trusted. A better approach is to quantify the uncertainty of
predictions, e.g., by using Bayesian neural networks (BNNs).

However, training BNNs can only be done approximately,
using methods such as Markov Chain Monte Carlo (MCMC) [4]
or Variational Inference (VI) [5], which introduce errors.
Furthermore, the quality of predictions is also influenced by
the lack of data and the choice of hyperparameters. Therefore,
it is crucial to verify the trustworthiness of black-box models
such as BNNs.
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Fig. 1. Identified and tested Voronoi trust regions.

The assessment of uncertainty estimates usually relies on
metrics such as mean squared error, negative log-likelihood,
or calibration measures like uncertainty calibration error
(UCE) [6], quantile calibration error [7], and averaged normal-
ized estimation error squared [8]. However, these metrics and
calibration measures calculate a single score over all test data,
without considering the input space location of data points.
This means they do not account for regions sparsely covered or
not covered at all by training data. Consequently, these regions
may never produce appropriate predictive distributions, but
this local behavior is not reflected in the single score of these
measures.

To overcome this limitation, [9] introduced a new paradigm
of asking when, or more specifically, in which regions of the
input space the predictions are trustworthy. This is achieved
by using a reference model to identify trustworthy regions
in the input space of single-input systems. The reference
model is a second model that has been trained for the same
purpose in a different manner than the base model to be
tested. The approach in [9] has been extended to multiple-input
systems without using a reference model [10], [11]. However,
there are currently no methods for multiple-input systems that
incorporate a reference model.

This paper addresses this issue by using Voronoi tessellation
to create small cells in the input space and performing region-
merging using a reference model. By doing so, it provides



an illustrative perspective on local model quality, as shown
in Fig. 1.

Contribution: In this paper, we introduce a novel approach
based on Voronoi tessellation, providing an intuitive and
visual method for analyzing two-dimensional input spaces.
We merge Voronoi cells based on evaluated distance measures
between predictions of a base model (e.g., using VI) and
a reference model (e.g., using MCMC). Additionally, we
assess the calibration of predictions within each identified
Voronoi region, ensuring a comprehensive evaluation of model
performance. Our method is implemented for regression tasks
in multiple-input systems, demonstrating its effectiveness and
applicability.

Notation: In this paper, underlined letters, e.g.,
¯
x, denote

vectors, boldface letters, such as
¯
x, represent random variables,

while sets are represented as calligraphic letters, e.g., D.

II. RELATED WORK

A. Approximate Inference

Unlike classical neural networks with deterministic weights,
BNN weights cannot be trained using standard backpropagation.
Instead, learning weight distributions relies on fundamental
approaches of approximate probabilistic inference, which are
detailed in this subsection.

The MCMC method, initially proposed in [4], has emerged
as a widely utilized approach for probabilistic inference, partic-
ularly in the context of training BNNs. MCMC approximates
the weight posterior distribution by sampling from a Markov
process. Despite its effectiveness, MCMC has a significant
drawback: its high computational cost. This is due to the
need to generate numerous samples, as exemplified by the
Metropolis–Hastings algorithm [12]. To enhance its efficiency,
several improvements have been developed, including Gibbs
sampling [13], hybrid Monte Carlo [14], Hamiltonian Monte
Carlo [15], and the No-U-Turn Sampler [16].

Another category of approximate inference algorithms for
BNNs, collectively known as Variational Inference (VI), has
become widely recognized as a promising approach to simplify
complex learning tasks. This approach approximates the weight
posterior with a more straightforward distribution, commonly
referred to as the variational distribution, thereby reducing
the complexity of the learning problem. The variational
distribution, which is typically a normal distribution, is refined
during the training by minimizing the empirical lower bound
to the reverse Kullback–Leibler divergence using gradient
descent [5]. Several advancements have been introduced to
enhance scalability for larger architectures, such as using
scaled gradients from random subsets of the training data to
update the variational distribution, as implemented in Stochastic
Variational Inference [17], or employing deterministic moment
propagation instead of sampling in the forward pass [18].
To further reduce computational costs, [19], [20] suggested
the dropout technique, which approximates the variational
distribution [21].

Expectation Propagation (EP) [22] is a notable approach
to the learning of weight posteriors, akin to VI. Both meth-
ods simplify the true posterior by approximating it with a
more manageable distribution, but EP minimizes the forward
Kullback–Leibler divergence, unlike VI, which targets the
reverse. The application of EP in BNNs has garnered consid-
erable interest, with prominent examples such as probabilistic
backpropagation [23] and its extension [24].

Recent innovations, like Kalman Bayesian Neural Net-
works [25], leverage sequential Bayesian filtering within each
layer, eliminating the need for explicit gradient computation
and facilitating rapid sequential learning. As proposed in [26],
the Bayesian perceptron represents the fundamental component
of the Kalman Bayesian Neural Networks, offering a closed-
form solution for the forward pass and weight updates that is
equivalent to statistical linearization [10].

B. Calibration Measures

Evaluating prediction quality using calibration measures
involves assessing how well predictive distributions match the
actual data-generating process. However, this task is challenging
due to the finite amount of samples in the test data set and the
lack of ground truth for uncertainty estimates. Various methods
exist for evaluating machine learning model predictions, such
as calibration plots [27], which visually compare predicted and
observed confidence levels.

For regression models, scoring rules are typically used to
assess the quality of uncertainty estimates. Calibration measures
like uncertainty calibration error (UCE) [6] and expected
normalized calibration error [28] evaluate the discrepancy
between predicted variances and observed mean squared error
using binned test data Bl. The UCE is the sum of errors over
all bins and is defined by

UCE =

L∑
l=1

|Bl|
NTest

|MSE(Bl)−MV(Bl)| ,

where MSE(Bl) represents the mean squared error between
the predicted means and the output data within the l-th bin,
while MV(Bl) denotes the mean variance of the predictions
within the l-th bin. |Bl| is the number of test data points
within the l-th bin, whereas NTest is the total number of
test data points. However, the UCE and expected normalized
calibration error are restricted to univariate predictions. For
normally distributed predictions with arbitrary dimensions, [7]
introduced the quantile calibration error, which compares
observed frequencies with selected quantile values of chi-
squared distributed errors.

C. Trust Region Identification

To enhance single calibration scores, which are derived from
calibration measures across entire test data sets, [9] introduced
a novel two-step testing methodology for Bayesian models.
This approach focuses on identifying regions within the input
space that yield calibrated and trustworthy predictions. The
methodology consists of two main phases:
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Fig. 2. Taxonomy of trust region identification methods.

1) The initial phase involves identifying regions within the
input space where test data are present.

2) The subsequent phase evaluates how accurately the
predictions align with the data-generating process within
the identified regions, utilizing output test data, i.e., the
calibration is assessed on a regional basis.

The main aspects of the first phase are the representation of
regions and the means of identifying them. In [9], regions are
defined as intervals, identified through the use of a reference
model. The reference model is employed to obtain reference
predictions. By using a distance measure for probability
distributions, such as the Wasserstein distance [29], [30], the
differences between the base predictions and the reference
predictions can be obtained. The distances are used to
merge adjacent predictions that exhibit similar distance values.
However, these interval-based regions only work for single-
input systems. As general models are not restricted to one-
dimensional input spaces, [10] and [11] applied the two main
phases from [9] to multiple-input systems. This is achieved by
utilizing k-d trees [31] or ball trees [32] as candidate region
identification methods. Therefore, the regions are given as
hyperrectangles or hyperspheres. In contrast to [9], no reference
model is employed in [10] and [11], thus avoiding the necessity
to train a second model at an additional computational cost. A
concise overview of the methodologies is presented in Fig. 2.

As outlined in [9], the second phase of the testing employs
statistical tests such as the averaged normalized estimation
error squared test [8] and the binomial test to evaluate the
calibration of the identified candidate regions. If significant
discrepancies are found between the data and the predictions,
the candidate region is deemed untrustworthy and rejected by
these statistical tests. However, arbitrary calibration measures
can also be used to test candidate regions. For instance, the
expected calibration error is employed for classification tasks
in [10], while the UCE is utilized for regression tasks in [11].

III. LEARNING SETUP

We consider a supervised learning setup where a real system
generates N output realizations

¯
y
n
∈ Rdy when provided with

deterministic inputs
¯
xn ∈ Rdx , for n = 1, . . . , N . The outputs

are typically noisy, and the exact mapping between the inputs
and outputs is unknown.
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Fig. 3. Local calibration testing for a single-input, single-output system
(adapted version from [11]). Within the purple-colored input space region ,
only one test point is used, which is not statistically significant. Adjacent
predictions can be combined into candidate regions, as shown in the teal-
colored region , to increase the effectiveness of the test statement.

We model the relationship between inputs and outputs using
a feedforward BNN

¯
y = f(

¯
x,

¯
w), where

¯
y is the output

represented as a random vector, and
¯
w is the random weight

vector containing all network weights. Here, dw is the total
number of (scalar) weights in the network, and Ω

¯
w ⊆ Rdw is

the sample space of the weights. Note that the BNN is not the
real system generating the data, but a model that approximates
the real system. However, we treat the BNN as the probabilistic
model that generates the data, and we determine the likelihood
function p(

¯
y |

¯
x,

¯
w) for the BNN. For example, if there is no

additional noise in the output, the likelihood function is simply
given by the Dirac delta function p(

¯
y |

¯
x,

¯
w) = δ(

¯
y− f(

¯
x,

¯
w)).

Alternatively, if there is a (possibly unknown) noise density,
the likelihood function can be modeled accordingly, e.g., as
Gaussian likelihood. Even though

¯
x is deterministic, we can

condition on
¯
x in our probabilistic model, where conditioning

is denoted by "|". Additionally, we assume prior knowledge
about the weight vector in the form of a prior distribution p(

¯
w).

The posterior distribution over the weights p(
¯
w |X ,Y) and

the predictive distribution p(
¯
y |

¯
x,X ,Y) are then given by

p(
¯
w |X ,Y) =

p(Y |X ,
¯
w) p(

¯
w)

p(Y |X )
, and

p(
¯
y |

¯
x,X ,Y) =

∫
Ω

¯
w

p(
¯
y |

¯
x,

¯
w) p(

¯
w |X ,Y) d

¯
w , (1)

where p(Y |X ,
¯
w) =

∏N
n=1 p(

¯
y
n
|
¯
xn, ¯

w) is the likelihood
assuming independent

¯
y
n

given deterministic
¯
xn, and

p(Y |X ) =
∫
Ω

¯
w
p(Y |X ,

¯
w) p(

¯
w) d

¯
w is the normalization con-

stant. The sets X = {
¯
x1, . . . , ¯

xN} and Y = {
¯
y
1
, . . . ,

¯
y
N
}

represent the given inputs and outputs in the training data set.
It should be noted that there is no available analytical solution

for training or prediction. Therefore, in practice, approximation
methods must be applied, as described in Sec. II-A.

IV. TEST PROBLEM AND KEY IDEA

In this section, we begin by reviewing the test problem
associated with Bayesian models, followed by the formulation



of our key idea for this paper. It should be noted that the test
problem is identical to those discussed in [11].

A. Test Problem

Assessing the quality of predictions, alongside training and
predicting, presents a significant challenge. In the majority of
cases, only the finite test data set DTest = {(

¯
xn,

¯
y
n
)}NTest

n=1 , can
be employed for the assessment of prediction quality. Given
a learned model, predictive distributions p(

¯
y |

¯
xn,X ,Y) are

obtained for each test input
¯
xn using (1). In practice, the true

output distribution of the data-generating process, given an
input

¯
xn, is typically unknown. Instead, only one realization

¯
y
n

of the output is available for each input within the test data
set.

In an ideal scenario, a method for assessing the align-
ment between a prediction and the data-generating process,
namely whether the prediction is well calibrated, would be
available for each prediction. Nevertheless, the evaluation
of a prediction p(

¯
y |

¯
xn,X ,Y) derived from a specific data

point
¯
xn, using a single output realization

¯
y
n

lacks statistical
significance. For instance, even when a one-dimensional output
sample yn is observed to exceed three standard deviations from
the calculated mean value, as displayed in the purple-colored
region in Fig. 3, the probability of this occurrence is not
zero. However, it is unlikely that the sample originated from
this distribution, although it is still possible.

B. Key Idea

To address this challenge, the methodology proposed in [9]
entails not just examining single input–output pairs (

¯
xn,

¯
y
n
)

(which can be seen as Dirac distribution) for comparison with
the prediction p(

¯
y |

¯
xn,X ,Y), but rather forming regions with

adjacent predictions and data points, as shown in the teal-
colored region in Fig. 3. Consequently, calibration measures
can be employed at the local level within the input space,
thus making it possible to make quality statements about
specific regions within the input space. The general reference
model-based approach, initially introduced in [9], relies on the
following assumption:

Assumption 1. When comparing a base model BNNbase (e.g.,
using VI) with a reference model BNNref (e.g., using MCMC)
using their predictions pbase(

¯
y |

¯
xn,X ,Y) and a reference

model pref(
¯
y |

¯
xn,X ,Y), it is assumed that their predictions

will differ significantly in extrapolation. This difference, often
due to a lack of data, can be detected using distance measures
for probability distributions, thereby identifying regions where
no training data are present.

However, the method proposed in [9] is limited to single-
input systems. To overcome this limitation, our key idea is to
use the Voronoi tessellation of the input space, which is suitable
for multiple-input systems. This involves calculating distances
between the base and reference model predictions and merging
Voronoi cells that exhibit similar distances into regions, as
shown in Fig. 4. Then, as in [10], calibration measures can be
used to test the local quality per region.
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Fig. 4. Illustration of our proposed testing strategy. The strategy compares
two models, a base model BNNbase and a reference model BNNref, to identify
regions in the input space using distance measures for probability distributions,
the Voronoi tessellation, and a region merging method. It then uses calibration
measures within the identified regions to assess their trustworthiness.

V. REGION MERGING ALGORITHM

Given the set of test input data points XTest = {
¯
xn}

NTest
n=1 ,

the Voronoi tessellation divides the input space into NTest

cells V(
¯
xn) such that each cell V(

¯
xn) consists of all points

closer to
¯
xn ∈ XTest than to any other point

¯
xm ∈ XTest

with m ̸= n. Formally,

V(
¯
xn) =

{
¯
x ∈ Rd

¯
x

∣∣∣ dV(
¯
x,

¯
xn) < dV(

¯
x,

¯
xm), ∀m ̸= n

}
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Fig. 5. Example of a Voronoi region merging step. Region R and its
neighbor R are considered for evaluating the merge predicate (2). The set of
combined distances WR,R is {0.1, 0.2, 0.5, 0.6}. Accordingly, both regions
are merged if ϵ > 0.5.

where dV(·, ·) denotes a distance measure between two points,
e.g., the Euclidean distance.

Based on the idea in [9], the distance between the base model
predictions and the reference model predictions is used to
merge Voronoi regions with similar distance values. Therefore,
the distances between the base predictions and the reference
predictions are given by

dn = d
(
pbase(

¯
y |

¯
xn,X ,Y), pref(

¯
y |

¯
xn,X ,Y)

)
,∀
¯
xn ∈ XTest,

where d(·, ·) is a distance between probability distributions, e.g.,
the 2-Wasserstein distance [33]. Therefore, the used information
for the region merging is given by

I = {(V(
¯
xn), dn)}

NTest
n=1

and assigns a distance between probability distributions to each
Voronoi cell.

Using the Voronoi tessellation of the given input test points,
the Voronoi region merging algorithm employs a region-
growing approach. The idea of the algorithm is simple: adjacent
Voronoi cells that have similar distances dn are merged
together to create larger regions. The region merging algorithm
employs the concept of a Voronoi region, wherein a Voronoi
region R = {V(

¯
xn)} is defined as a set of adjacent Voronoi

cells that together form a regional entity within the input space.
A Voronoi cell V(

¯
xn) can only be contained in a single Voronoi

region at a time, i.e., Voronoi regions are pair-wise disjoint:
R∩R = ∅ for any two Voronoi regions R and R .

The Voronoi region merging algorithm operates in two steps,
which will be explained in more detail below. Subsequently,
the selection of its hyperparameters will be discussed.

A. Step 1: Merging Voronoi Cells

Initially, for each Voronoi cell V(
¯
xn), a Voronoi region is

created, resulting in a total of NTest Voronoi regions

Rn = {V(
¯
xn)}, ∀n = 1, . . . , NTest .

The initial Voronoi regions are then sorted based on their
respective distances dn in ascending order. Subsequently, the
Voronoi regions are iterated in their sorted order. For each
region, the neighboring regions are evaluated using the merge
predicate Pred(R,R), where R and R are the current Voronoi
region and its neighbor, respectively. If the merge predicate is

(a) Regions before step 2. (b) Regions after step 2.

Fig. 6. Illustration of an outlier merging process. The shaded areas indicate
the merged adjacent outlier regions. The average model differences within
regions are color-coded.
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distribution function of the distances dn.

satisfied, both regions are regarded as similar and are merged.
The merge predicate is defined as

Pred(R,R) = |max(WR,R)−min(WR,R)| < ϵ ,

WR,R = {dn | V(
¯
xn) ∈ R ∪R} ,

(2)

where WR,R is the set of the combined distances corresponding
to R and its neighbor R. I.e., two Voronoi regions will
be merged if the min-max span of all distances within the
hypnotically merged region R∪R is lower than the threshold ϵ,
as displayed in Fig. 5.

B. Step 2: Merging Outlier Regions

Following the completion of step 1, regions R that contain
less than λ Voronoi cells, i.e., |R| < λ, are classified as outlier
regions. For these regions, the surrounding Voronoi regions
exhibited dissimilarities with regard to their corresponding
distances, thereby invalidating the merge predicate. However,
adjacent outlier regions are merged, with the result of the merge
predicate being ignored. The second step of the algorithm
reduces the number of total regions, provided that the outlier
regions are adjacent. For instance, if two adjacent outlier
regions each contain a single Voronoi cell—that is if each
region contains only one data point—then the two regions
are merged. This is important since test measures using a
single data point are not statistically significant, as discussed
in Sec. IV-A. Moreover, the merging of outliers does not
impact the regions of interest, which are the regions exhibiting
similarities according to Assumption 1. An example of this
step is shown in Fig. 6.



(a) input data (b) true mean (c) predicted mean BNNbase (d) predicted mean BNNref

(e) predicted variance BNNbase (f) predicted variance BNNref (g) BNNbase to ground truth distance (h) BNNref to ground truth distance

(i) model differences dn (j) threshold pϵ = 0.4 (k) threshold pϵ = 0.5 (l) threshold pϵ = 0.6

Fig. 8. Results of the Nonlinear Regression Example. The training and test data used are displayed in (a), while the true mean of the data-generating process
is shown in (b). The predicted means and variances by the base model BNN are shown in (c)–(f). The 2-Wasserstein distances between the true data-generating
process are presented in (g) and (h), while the differences between the base and the reference model are displayed in (i). The results of our proposed testing
method are shown in (j)–(l) using different thresholds pϵ and the UCE [6] as a calibration measure, with the outlier regions highlighted as shaded areas.

C. Selection of Threshold ϵ

The threshold value ϵ utilized in the merge predicate (2) is
a hyperparameter within the Voronoi region merging algorithm.
The resulting Voronoi regions are dependent upon the selected
threshold, as a higher threshold directly increases the probability
of two regions being merged. However, the selection of this
parameter depends on the distribution of dn. In order to ensure
that the selection is independent of the distribution of the
distances, the threshold is selected by

ϵ = CDF−1(pϵ) ,

where CDF−1(·) is the inverse cumulative distribution function
of the distances, i.e., the quantile function of dn. This
enables the selection of a threshold value ϵ by specifying a
probability pϵ ∈ [0, 1], and deriving the corresponding distance
value from the cumulative density function. E.g., a probability
of 0.4 would result in a threshold value that corresponds to a
distance value that is larger than 40% of all distances dn, as
illustrated in Fig. 7.

VI. NUMERICAL EVALUATION

A. Settings

The proposed testing method is demonstrated using the
nonlinear regression example

y = sin
(
x2
1 + x2

2

)
+ ϵ , (3)

where 4500 training points and 3000 points are generated using
ϵ ∼ N (0, 0.1). The training inputs

¯
xn ∈ X and the test inputs

¯
xn ∈ XTest are each uniformly drawn from [−1.75, 1.75] ×
[−1.75, 1.75] and [−2.5, 2.5] × [−2.5, 2.5], respectively. To
create a gap in the training data, 30% of the data was removed,
by creating a hole around the origin, as shown in Fig. 8a.

We use a fully connected feedforward network comprising a
single hidden layer with 50 neurons and ReLU activation for the
hidden layer, and linear activation for the output layer, which
is trained using the No-U-Turn Sampler [16] and Stochastic
Variational Inference [17] as reference model BNNref and base
model BNNbase, respectively.

In order to create Voronoi diagrams, the Euclidean distance
is employed for dV(·, ·). To compare the base model predic-
tions with the reference model predictions, the 2-Wasserstein
distance between two normal distributions is utilized for d(·, ·).



The 2-Wasserstein distance between two normal distributions
p1 = N

(
µ1, σ

2
1

)
and p2 = N

(
µ2, σ

2
2

)
is given by [33]

W2(p1, p2) = (µ1 − µ2)
2
+ (σ1 − σ2)

2
. (4)

The assessment of the calibration per identified region is done
using the UCE [6]. Regions containing less than λ = 10
Voronoi cells are considered as outliers.

To evaluate if the predictions actually are good, we use
the data-generating process (3) and calculate distances to the
predictions of the respective model, using the 2-Wasserstein
distance (4). It should be noted that this is not part of the
proposed algorithm. The distances to the true stochastic process
can be regarded as distances to the ground truth.

B. Results

The data, predictions, and test results of our proposed method
are presented in Fig. 8. By comparing the 2-Wasserstein
distance between the true data-generating process and the
predictions, it can be seen that the base model has effectively
learned the data-generating process, where training data are
available, as evidenced by the near-zero 2-Wasserstein dis-
tances (Fig. 8g). In the outer areas (|x1|, |x2| > 1.75), where no
training data are available, the predictions deviate significantly
from the ground truth, considering the predicted mean (Fig. 8c)
as well as the predicted variance (Fig. 8e). Around the origin,
where training data are missing, the base model’s mean deviates
from the true mean. While the predictions around the origin are
not accurate, they are less erroneous than in the outer regions,
as evidenced by the 2-Wasserstein distances in Fig. 8g.

The same pattern can be seen (without the use of ground truth
information) through our presented method, using the UCE
per identified Voronoi region. For instance, in Figs. 8j and 8l,
the outer regions are identified as badly calibrated according
to their UCE scores. Furthermore, the region around the origin
has lower UCE scores than the outer regions, which are also
aligned with the ground truth distances.

In Figs. 8j to 8l, the results of our method are shown for
different thresholds for the merge predicate. It can be seen that
a threshold of pϵ = 0.4, as illustrated in Fig. 8j, results in more
conservative regions than a higher threshold, such as pϵ = 0.6,
shown in Fig. 8l. Here, conservatism implies that the regions
are less extended towards areas where no training data are
available. Moreover, the impact of the selected threshold is
evident in the area surrounding the origin, where the base
and reference models exhibit dissimilarities according to the
merge predicate with pϵ = 0.4, resulting in this region being
identified as an outlier region. However, employing pϵ = 0.5
results in multiple non-outlier regions in the central area.

C. Discussion

The proposed method builds upon the two-phase testing
strategy introduced in [9]. Initially, the input space is partitioned
into Voronoi cells. Then, adjacent Voronoi cells are merged into
regions if they are similar with respect to distances between
base and reference model predictions. Subsequently, these
regions are tested using calibration measures, such as the UCE.

It should be noted that the reference model and the base model
can be swapped, which, in the method presented here, results
in a change to the model that is tested in the second phase.

The region identification process is capable of dividing the
input space into regions. In contrast to the hyperrectangular
or hyperspherical regions described in [10], [11], the shape
of the Voronoi regions is not predefined. A comparison of
the 2-Wasserstein distance between the predictions and the
known ground truth of the example in Fig. 8 reveals that our
method is able to detect untrustworthy regions and calculate
how well specific regions match the real stochastic process
using the UCE. The hyperparameter, which represents the
threshold of the merge predicate, can be employed to refine
the region. Lower threshold values entail a more conservative
approach, as regions must exhibit greater similarity in their
distance values to be merged.

It should be noted that local testing in regions of the input
space necessitates the utilization of a considerable quantity of
testing data, as evidenced by the regression example, wherein
approximately ≈ 50% of the data is employed as test data.
Nevertheless, this is a characteristic of region-based testing,
which necessitates a substantial quantity of data to achieve a
high-resolution partitioning of the input space.

However, building Voronoi tessellations explicitly in high-
dimensional spaces requires complex algorithms [34]. There-
fore, we recommend using it only for low-dimensional input
spaces, such as two input dimensions, where our method
provides an intuitive and visual way to gain information about
the predictive capabilities and trustworthiness of black-box
models such as BNNs. For larger input dimensions, the ball
tree and k-d trees-based methods discussed in Sec. II-C are
better suited.

VII. CONCLUSION

In conclusion, this paper presents a novel testing method for
Bayesian models, such as Bayesian neural networks (BNNs),
that initially employs Voronoi tessellation and region merging
to identify input space regions. Subsequently, the local quality
of predictions is evaluated using calibration measures for
each identified region. A key contribution of our work is the
provision of local calibration information, which is particularly
valuable for ensuring the trustworthiness of models. The local
calibration information offers deeper insight into the model’s
predictive capabilities within specific regions of the input space,
thereby enhancing the trustworthiness of the models in question.

In the future, we want to leverage the developed method in
the field of state estimation and optimal control. For instance,
the incorporation of local calibration information in state
estimation, with the objective of improving trust in black-
box models, which can be employed as measurement models,
represents a potential direction for further research.
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