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Abstract—The Fokker-Planck propagator is derived for pre-
diction on cylindric manifolds. We exploit the low-rank tensor
decomposition technique that is already being used in the
Euclidean domain. With only a small change to the finite difference
matrix, we can readily apply it to certain manifolds such as
the cylinder. Our application example is estimating the angular
position and velocity of a rotating shaft. This state estimation
problem may seem linear at first glance, but since the underlying
state space is nonlinear due to the periodicity of the angular
coordinate, it is an inherently nonlinear estimation problem.

I. INTRODUCTION

High-quality nonlinear state estimation requires a density
representation that is expressive and facilitates highly accurate
prediction and filtering steps with reasonable computational
complexity and storage requirements.

A. Assumed Density Particle Filtering

Densities may be represented using a parametric form,
such as the Gaussian. Samples thereof allow for approximate
nonlinear filtering and prediction [1], [2], where high-quality
deterministic samples [3], [4], [5] maximize the posterior
accuracy. However, the Gaussian assumption may be too
restrictive, such that the results are not satisfying even for
a very high number of samples [6].

On nonlinear manifolds, like cylinders, tori, and spheres,
one has the additional effect that, due to periodicity, probability
mass can “come back from the other side”, see Fig. 1g, thus
rendering even linear-looking systems like constant velocity
into inherently nonlinear problems. Assumed density particle
filtering techniques for manifolds have so far been developed
for spheres S2 [7], [8], [9], [10], the torus T2 [11], [12], [13],
and the special Euclidean groups SE(2) [14], [15] and SE(3)
[16], [17].

B. Particle Filter

Another possibility is a purely sample-based representation
using purely a point cloud of samples, which is very flexible and
can represent arbitrary densities. In general, the prediction step
is easy to perform with particles, as they are just propagated
by the system equation (and perturbed with some noise). The
Bayesian filter step is however difficult as it introduces sample
weights, leading to sample degeneracy [18], [19], [20]. And
in higher dimensions one requires a large number of samples

to achieve high accuracy. Some of these problems can be
mitigated via progressive resampling techniques [21], [22].

C. Regular Grid Representation

The most straightforward density representation is a simple
regular grid that discretizes the relevant part of the respective
state space. In that case, the filter step is very easy to compute,
while the prediction step is more difficult. Prediction can be
performed by solving the Fokker-Planck (FP) equation, which
has been attempted in various ways [23], [24], [25], [26], [27],
[28], [29], [30]. On certain periodic manifolds, prediction can
also be done via trigonometric polynomials and the Fourier
transform [31], [32]. This has been done on the torus [33],
the sphere [34], [35], and the SO(2) [36], [37] and SE(3) [38]
domains. Of course, all these methods have a problem with
high dimensions, as the number of grid points or voxels (and
thereby probability values to store) increases exponentially with
the dimension, famously coined the “curse of dimensionality”.

D. Low-Rank Grid Representation

It is however often possible to capture most of the variablility
using low-rank tensor representations [39], [40]. Like for
example in the two-dimensional (2D) case, which we focus on
in this work, the probability grid (or tensor) can be associated
with a matrix P. We compute its singular value decomposition
P = UΣV⊤ =

∑N
i=1 ρu,i ρ

⊤
v,i
,where ρ

u,i
and ρ

v,i
are the

columns of U and V, multiplied with
√
σi, respectively, where

σi are the entries of diagonal Σ. If everything is sorted such
that the σi are appearing in decreasing order, we can obtain
a truncated representation P ≈

∑L
i=1 ρu,i ρ

⊤
v,i

of lower rank
L < N . The ρ are then called loading vectors, as they are the
factors of the low-rank tensor decomposition. The question
now is whether we can not only efficiently store the truncated
representation, but also perform prediction and filtering steps
on it, without the necessity to ever iterate through the full grid.
The answer is yes, as has been proposed in [41], [42], [43].

E. Contribution

In this work, we extend the application to nonlinear periodic
manifolds, in particular the cylinder. This may be used, for
example, to represent a rotating shaft, representing its angular
position φ on the periodic dimension and the rotation velocity
ω on the real dimension, enabling us to estimate the rotation



speed using angular measurements from an encoder. Nonlinear
periodic manifolds are in principle particularly suitable for
grid-based techniques, as the periodicity inherently limits the
extent of the state space: along periodic dimensions, we only
need to decide for the grid resolution but not for the start and
end point.

II. PREDICTION STEP

A. System Dynamics

We define the state on a cylindrical manifold as

x =

[
φ
ω

]
∈ S× R , (1)

where φ is the angular position defined on unit sphere S =
R/(2πZ) and ω is the angular velocity. Furthermore, analogous
to the example in [41, Sec. V], we describe the system dynamics
as nearly constant angular velocity

dx =

[
0 1
0 0

]
xdt+ q

[
0
1

]
dw , (2)

with standard Wiener process w and its infinitesimal variance
q. The FP equation of the time evolution of the probability
density p(x, t) for this system dynamics is

∂p

∂t
= −ω

∂p

∂φ
+

q

2

∂2p

∂ω2
. (3)

The first term describes the “translation” of density mass along
the φ direction based on the ω value, and the second part
is a diffusion term that causes an overall “broadening” and
“Gaussianization” of the density, caused by the additive noise.
Note that even though the system dynamics look linear, the
problem is inherently nonlinear due to the periodicity of φ.

B. State Space Discretization

We discretize the state space using a regular grid representa-
tion, where the angular position φ is represented on a periodic
grid and the angular velocity ω on a real-valued grid. For the
periodic dimension, we use a grid with Nφ points, which are
uniformly spaced on S, and for the real-valued dimension, we
use a grid with Nω points that are uniformly spaced in the
interval [ωmin, ωmax]

φi =
2π(i− 1)

Nφ
, ωj = ωmin +

(j − 1) · (ωmax − ωmin)

Nω − 1
,

(4)

for i ∈ {1, . . . , Nφ} and j ∈ {1, . . . , Nω}. These values are
stored in vectors φ and ω, respectively. The coordinates of
the full grid are then given by the Cartesian product of these
two vectors, resulting in a 2D grid of size Nφ ×Nω . The grid
spacings are given by

∆φ =
2π

Nφ
, ∆ω =

ωmax − ωmin

Nω − 1
. (5)

The probability density p(x) is represented as a matrix of
probabilities P ∈ RNφ×Nω , where the entry Pij corresponds
to grid point (φi, ωj). By introducing a linear index, we can
also write the probability density as a vector p ∈ RNφ·Nω ,

where the entry pk corresponds to the grid point (φi, ωj) with
k = i+ jNφ. That is, we use column-major order to store the
matrix in a vector.

C. Fokker-Planck Equation Discretizaton

Now we can state the discretized FP equation in the form
of a matrix equation. The time evolution of the probability
density is given by

∂p

∂t
= L p , (6)

where L is the FP-operator. Again following [41, Eq. 29], it
can be written as

L = L1 + L2 (7)

= −diag(ω)⊗Dφ +Dωω ⊗
(q
2
I(Nφ)

)
(8)

= Aω,1 ⊗Aφ,1 +Aω,2 ⊗Aφ,2 , (9)

with Kronecker product ⊗ and N -dimensional identity matrix
I(N). Thereby Dφ is the first-order finite difference matrix
for the first derivative along the periodic dimension

Dφ =
1

2∆φ



0 1 0 0 0 −1
−1 0 1 0 0 0
0 −1 0 1 0 0

0 0
. . . . . . . . . 0

0 0 0 −1 0 1
1 0 0 0 −1 0


. (10)

Note that the entries in the upper-right and lower-left corners are
non-zero to account for the periodicity of the angular position.
The matrix Dωω is the second-order finite difference matrix
for the second derivative along the real-valued dimension and
is given by

Dωω =
1

∆2
ω



−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0

0 0
. . . . . . . . . 0

0 0 0 1 −2 1
0 0 0 0 1 −2


. (11)

Therefore, L1 is a block diagonal matrix

L1 =


−ω0 ·Dφ 0 · · · 0

0 −ω1 ·Dφ · · · 0
... 0

. . . 0
0 0 · · · −ωNω−1 ·Dφ

 ,

(12)

and the contribution of L1 in (6) is taking the derivative of
each column of P and multiplying with −ωj , corresponding
to the first term in (3).



D. Diagonalizations
We are going to need the eigendecompositions A =

VDV−1 of the A matrices in (9), so here we describe how
to obtain them.

Aφ,1 = Dφ (10) can be computed in closed form as it
is a circulant matrix [44]. With γφ = exp{2πı/Nφ}, the
eigenvector matrix is, for i, j ∈ {1, . . . , Nφ},

[Vφ,1]i,j =
1√
Nφ

· γ(i−1)·(j−1)
φ . (13)

The eigenvalues are, for i ∈ {1, . . . , Nφ},

λi =
1

2∆φ

(
−γ−(i−1)

φ + γ−(Nφ−1)·(i−1)
φ

)
(14)

=
1

∆φ
sinh

(
(i− 1) · 2πı

Nφ

)
. (15)

Aω,1 = −diag(ω) is trivial to diagonalize as it is already a
diagonal matrix,

Vω,1 = I(Nω) , Dω,1 = −diag(ω) . (16)

Aφ,2 = q2

2 · I(Nφ) is also trivial to diagonalize as it is a
scalar multiple of the identity matrix,

Vφ,2 = I(Nφ) , Dφ,2 =
q2

2
· I(Nφ) . (17)

Aω,2 = Dωω is a symmetric Toeplitz matrix that we
diagonalized by numerically computing the eigendecomposition
of the non-periodic difference matrix for second derivatives.

III. FOKKER-PLANCK PREDICTORS

In this section, we describe various approaches to predict the
probability density function on the grid using the FP equation.

A. Exact Prediction via Matrix Exponential
We can solve (6) up to numerical accuracy via the exponen-

tial of L. The solution is given by

p(t+ τ) = exp(τL) p(t) , (18)

where p(t) is the initial probability density, e.g., the last
estimate of the filter. The matrix exponential can be computed
by the eigendecomposition of L

L = VDV−1 , (19)

exp(τL) = V diag
(
eλ1τ , eλ2τ , . . . , eλNφ·Nω τ

)
V−1 , (20)

where λi are the eigenvalues and the entries in diago-
nal D. Of course, computing the eigendecomposition of a
(Nφ ·Nω ×Nφ ·Nω) matrix can be very expensive.

B. Prediction via Standard ODE Solver
We may also solve the FP equation (6) numerically using an

off-the-shelf ordinary differential equation (ODE) solver that
uses techniques such as the Runge-Kutta method. However,
this involves representing the full grid of probabilities in p ∈
RNφ·Nω , and matrix multiplications with L ∈ RNφ·Nω×Nφ·Nω ,
which is even square the size of p, albeit sparse. This can lead to
significant memory and computational overhead, especially for
large grids. Still, it is much faster than the matrix exponential
approach, so we will use the ODE method as ground truth.

C. Prediction via Tensorized Predictor

Now we come to the tensorized predictor. This involves
reformulating the FP equation in a way that allows us to
exploit low-rank structure of the operator and the densities
[41], [43]. From

L = Aω,1 ⊗Aφ,1 +Aω,2 ⊗Aφ,2 , (21)

with the Lie-Suzuki-Trotter approximation of first order [45,
Eq. 4], [41, Sec. 3] we obtain

exp{τL} (22)

≈
2∏

l=1

exp{τAω,l ⊗Aφ,l} (23)

=

2∏
l=1

exp
{
τ(Vω,l ⊗Vφ,l)(Dω,l ⊗Dφ,l)

(
V−1

ω,l ⊗V−1
φ,l

)}
=

2∏
l=1

(Vω,l ⊗Vφ,l) exp{τDω,l ⊗Dφ,l}
(
V−1

ω,l ⊗V−1
φ,l

)
where we used eigendecompositions A = VDV−1 of the
matrices Aω,l and Aφ,l, for l = 1, 2, respectively, and
a Kronecker product property [46, Sec. 10.2.1], [47]. The
exponential term is then approximated via a Taylor series
expansion [48]

exp{τD} ≈
NT∑
p=0

τp

p!
·Dp . (24)

This leads to

exp{τL} (25)

≈
∑
p1,p2

2∏
l=1

(Vω,l ⊗Vφ,l)
(
D̃pl

ω,l ⊗ D̃pl

φ,l

)(
V−1

ω,l ⊗V−1
φ,l

)
≈
∑
p1,p2

(
2∏

l=1

Vω,lD̃
pl

ω,lV
−1
ω,l

)
⊗

(
2∏

l=1

Vφ,lD̃
pl

φ,lV
−1
φ,l

)
,

where

D̃pl =

(
τpl

pl!

)1/2

Dpl , (26)

for indices (ω, l) and (φ, l), respectively. The square root comes
from dividing the factor in (24) between both matrices.

Now the initial density p(t) is introduced. We assume it is
given in a low-rank tensor decomposition form

p(t) =

L′∑
l′=1

ρ
ω,l′

(t)⊗ ρ
φ,l′

(t) , (27)

where ρ
φ,l′

(t) ∈ RNφ and ρ
ω,l′

(t) ∈ RNω are the loading
vectors of the decomposition and L′ is the rank. Then we have

p(t+ τ) = exp{τL} p(t) (28)

≈
∑

l′,p1,p2

(
2∏

l=1

Vω,lD̃
pl

ω,lV
−1
ω,l

)
ρ
ω,l′

(t) ↱ (29)



⊗

(
2∏

l=1

Vφ,lD̃
pl

φ,lV
−1
φ,l

)
ρ
φ,l′

(t) (30)

≈
∑

l′,p1,p2

ρ
ω,l′

(t+ τ)⊗ ρ
φ,l′

(t+ τ) , (31)

where

ρ
φ,l′,p1,p2

(t+ τ) =

(
2∏

l=1

Vφ,lD̃
pl

φ,lV
−1
φ,l

)
ρ
φ,l′

(t) , (32)

ρ
ω,l′,p1,p2

(t+ τ) =

(
2∏

l=1

Vω,lD̃
pl

ω,lV
−1
ω,l

)
ρ
ω,l′

(t) . (33)

Summarizing, for every dimension (φ, ω), we can directly
transform the L′ loading vectors ρ(t) of the initial density p(t)
into L′ ·N2

T loading vectors ρ(τ + t) of the evolved density
p(t+ τ) using the stated operations. To complete this, a rank
reduction step may be required, which can be done using a
singular value decomposition or similar methods.

D. Step Size and Taylor Order Tradeoff

A practical consideration is the choice of time step τ and the
order NT of the Taylor expansion. Using a small τ allows for
a low-order Taylor expansion (small NT), but requires more
prediction sub-steps to reach a given time horizon. Conversely,
using a larger τ requires a higher-order Taylor expansion to
maintain accuracy, but fewer sub-steps. The optimal choice
depends on the desired accuracy, computational resources, and
the properties of the FP operator. In practice, a balance must be
struck between the number of sub-steps and the computational
cost of higher-order expansions. Adaptive step size or order
selection strategies may further improve efficiency [49], [50],
[51].

IV. FILTER STEP

The filter step via the Bayes formula can also be performed
in a tensorized manner [52]. Assume the likelihood p(z | x),
for measurement z, can be stated in decomposed form with
“loading functions” λφ,l′(φ) and λω,l′(ω)

p(z | φ, ω) =
L′∑

l′=1

λφ,l′(φ) · λω,l′(ω) . (34)

Assume the prior density pp is also given in continuous form
with loading functions ρ

pp(φ, ω) =

L∑
l=1

ρφ,l(φ) · ρω,l(ω) . (35)

Then the posterior density pe can be computed using Bayes’
theorem

pe(φ, ω) (36)

=
1

c
p(z | φ, ω) · pp(φ, ω) (37)

=
1

c

 L′∑
l′=1

λφ,l′(φ) · λω,l′(ω)

 ·

(
L∑

l=1

ρpφ,l(φ) · ρ
p
ω,l(ω)

)

=
1

c

L′∑
l′=1

L∑
l=1

λφ,l′(φ) · ρpφ,l(φ) · λω,l′(ω) · ρpω,l(ω) (38)

=
1

c

L′∑
l′=1

L∑
l=1

ρpφ,l,l′(φ) · ρ
p
ω,l,l′(ω) . (39)

Thus, the number of loading functions in the posterior density
has increased to (L′ · L). The same is true for the discretized
case, where the loading functions of the prior are replaced
by their discrete counterparts. The posterior loading vectors
are then the Hadamard products of all combinations of the
likelihood and prior loading vectors

ρe
φ,l′,l

= λφ,l′(φ)⊙ ρp
φ,l

, (40)

ρe
ω,l′,l

= λω,l′(ω)⊙ ρp
ω,l

, (41)

with the full posterior density vector

pe =
1

c

L′∑
l′=1

L∑
l=1

ρe
ω,l′,l

⊗ ρe
φ,l′,l

. (42)

The normalization constant c can also be easily computed, as
described in Section V-A.

V. MOMENTS

A. Normalization Constant

The FP equation is linear, therefore the prediction does not
require a correctly normalized p(t). However, for computing the
moments of p, we need to ensure that the density is normalized.
The normalization constant of a low-rank tensor can be cheaply
computed [43, Appendix], [52]. Assuming the density p(φ, ω)
is given in low-rank decomposition form

p(φ, ω) =

L∑
l=1

ρω,l(ω) ρφ,l(φ) (43)

using continuous “loading functions” ρφ(φ), ρω(ω), then its
integral is

c =

∫∫ L∑
l=1

p(φ, ω) dφdω (44)

=

L∑
l=1

(∫
ρφ,l(φ) dφ

)
·
(∫

ρω,l(ω) dω

)
(45)

=

L∑
l=1

Nφ∑
i=1

[
ρ
φ,l

]
i
∆φ

 ·

Nω∑
j=1

[
ρ
ω,l

]
j
∆ω

 . (46)

In pseudo-code notation, what we actually do with the loading
vectors is simply

c = ∆φ ·∆ω ·
L∑

l=1

[
sum

(
ρ
φ,l

)
· sum

(
ρ
ω,l

)]
. (47)



(a) τ = 0 (b) ODE; τ = 0.5; 2.2 s (c) FP; 0.077 s;NT = 40 (d) FP; 0.15 s;NT = 55

(e) L = 6 (f) L = 15 (g) ODE; τ = 2π; 32 s (h) FP; τ = 2π; 1.8 s

Fig. 1: Cylindric manifold with predicted densities. Areas with high density in yellow. Noted are propagated time τ , computation
time (in seconds), order NT of Taylor expansion, and rank L of representation. (a) initial density, (b) after propagating τ = 0.5
with an off-the-shelf ODE solver, note that areas with positive ω are rotating in positive direction (and vice versa), (c) using the
proposed, tensorized solver with NT = 40 and a single step, (d) same but with with NT = 55, (e) SVD-reduction to 6 pairs of
loading vectors, (f) SVD-reduction to 15 pairs of loading vectors, (g) now propagating to τ = 2π (such that for every unit of
ω, one rotation is done) with an off-the-shelf ODE solver, (h) same with the proposed, tensorized solver with 102 sub-steps,
NT = 4, and rank 20, computing 17 times faster.

B. Mean of ω

With a similar procedure, the mean of ω can be computed.
We have

E{ω} =

∫∫ L∑
l=1

ω · p(φ, ω) dφdω (48)

=

L∑
l=1

(∫
ρφ,l(φ) dφ

)
·
(∫

ω · ρω,l(ω) dω

)
(49)

=

L∑
l=1

Nφ∑
i=1

[
ρ
φ,l

]
i
∆φ

 ·

Nω∑
j=1

ωj ·
[
ρ
ω,l

]
j
∆ω

 .

Again, in pseudo-code notation, what we have to implement
is simply

E{ω} = ∆φ ·∆ω ·
L∑

l=1

[
sum

(
ρ
φ,l

)
· sum

(
ω ⊙ ρ

ω,l

)]
.

(50)



C. Variance of ω

The variance of ω can conveniently be computed from the
noncentral second moment E

{
ω2
}

and the mean E{ω} via

Var{ω} = E
{
ω2
}
− (E{ω})2 . (51)

And E
{
ω2
}

can be obtained, very similarly to E{ω}, via

E
{
ω2
}

(52)

=

L∑
l=1

Nφ∑
i=1

[
ρ
φ,l

]
i
∆φ

 ·

Nω∑
j=1

ω2
j ·
[
ρ
ω,l

]
j
∆ω

 (53)

= ∆φ ·∆ω ·
L∑

l=1

[
sum

(
ρ
φ,l

)
· sum

(
ω ⊙ ω ⊙ ρ

ω,l

)]
. (54)

D. Circular Mean of φ

To compute the circular mean of φ, we first have to compute
the first trigonometric moment [53, Sec. 2.4]

m1 =

∫ 2π

φ=0

p(φ)eıφ dφ (55)

=

∫ 2π

φ=0

p(φ) cos(φ) dφ+ i

∫ 2π

φ=0

p(φ) sin(φ) dφ , (56)

then the mean direction is given by [53, Sec. 2.2], [54, Sec. II.A]

E{φ} = arg(m1) . (57)

In our particular case, we have the integral

m1 =

∫∫
eıφ · p(φ, ω) dφdω (58)

=

L∑
l=1

(∫
eıφ · ρφ,l(φ) dφ

)
·
(∫

ρω,l(ω) dω

)
(59)

=

L∑
l=1

Nφ∑
i=1

eıφi ·
[
ρ
φ,l

]
i
∆φ

 ·

Nω∑
j=1

[
ρ
ω,l

]
j
∆ω

 (60)

= ∆φ ·∆ω ·
L∑

l=1

[
sum

(
eıφ ⊙ ρ

φ,l

)
· sum

(
ρ
ω,l

)]
, (61)

and obtain the mean direction

E{φ} = atan2(ℜ(m1),ℑ(m1)) . (62)

E. Circular Variance of φ

The circular variance can, like the circular mean, also be
computed from the first trigonometric moment. It is given by
[53, Sec. 2.3]

Var{φ} = 1− |m1| . (63)

VI. EVALUATION

To demonstrate the method, we compute and visualize a
number of densities on the cylinder. We define a 100 × 100
grid from 0 to 2π in φ and from −1 to 3 in ω. Therefore,

ρ ∈ R100 , A ∈ R100×100 , L ∈ R10000×10000 . (64)

A. Initial Density

As an initial density, for φ, we assume the von Mises
distribution [55], [56], p(φ) = eκ cos(φ)/(2πI0(κ)), with
κ = 40, where I0(κ) is the modified Bessel function of the
first kind of order zero, and for ω a noninformative uniform
distribution, p(ω) = const. See Fig. 1a for a visualization.
This density can be exactly represented with just one loading
vector for φ and ω, i.e., L′ = 1, where p(φ, ω) = p(φ) · p(ω).

B. Propagation

Then we propagate this density to τ = 0.5 using an off-
the-shelf ODE solver [57] and the proposed FP solver with
NT = 40 and NT = 55, respectively. The results are shown in
Figs. 1b to 1d. We see that in this particular case, one needs
a Taylor expansion of order NT = 55 to achieve a similar
accuracy as the ODE solver and avoid the artifacts seen in
Fig. 1c. In each case the tensorized FP propagator is much
faster to compute, see computation times in subcaptions.

C. Post-Processing

With NT = 55 Taylor terms, we obtain L = 402 = 1600
and L = 552 = 3025 loading vectors, so the resulting tensor
actually has full rank, 100. After approximation to rank L = 6
(Fig. 1e) one can see some artifacts, but with L = 15 (Fig. 1f),
it looks indistinguishable to the ground truth (Fig. 1b). To
reduce computational load, this operation should be done via
truncated SVD [58], [59].

D. Sub-Steps

Finally, we propagate to τ = 2π, where one full rotation is
done for every unit of ω. There the nonlinearity of the problem
due to the periodicity of the domain becomes fully apparent, as
no Gaussian estimator could reproduce the occurring densities.
Again we compare the ODE solver (Fig. 1g) to the proposed
FP propagator (Fig. 1h). The proposed propagator is much
faster to compute, see computation times in the captions. We
use 102 sub-steps, each followed by a SVD rank reduction to
L = 20 loading vectors. Due to the smaller step size, NT could
be reduced from 55 to 4. In general, there is some tradeoff
between NT, number of sub-steps, and representation rank that
has to be investigated further.

Julia source code of our implementation will be made
available on CodeOcean and linked on the IEEE Xplore page.

VII. CONCLUSION

We derived the low-rank representation of the FP propagator
for the constant velocity dynamics on the two-dimensional
cylindric manifold, fully respecting the nonlinearity due to the
periodicity of the domain. The tensorized solver was at least ten
times faster than the an off-the-shelf ODE solver, not to mention
an eigenvalue decomposition of the full FP operator matrix L.
We demonstrated that the FP propagator is able to efficiently
and accurately predict densities on the cylinder. We saw that
correlations between the coordinates are well captured and can
be represented with only few loading vectors. This method
can easily be extended to other system dynamics and similar



Riemannian manifolds in higher dimensions, in particular, the
torus and hypertori, and Cartesian products between tori and
Euclidean spaces other than the cylinder.
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