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Abstract— Bayesian neural networks (BNNs) offer
an elegant and promising approach to deciding
whether the predictions of a neural network are
trustworthy by allowing the estimation of predictive
distributions. However, training and prediction can
only be performed approximately, and state-of-the-art
approximation methods are known to frequently pro-
vide inaccurate uncertainty estimations, thus limiting
the broad application of neural networks. To remedy
this, we define criteria for trustworthy predictions
and propose a new approach capable of identifying
input space regions with trustworthy predictions.
For this, we use statistical hypothesis testing on the
BNN’s predictions and point out some connections
to previously known calibration and uncertainty
estimation metrics. We demonstrate our method using
several state-of-the-art approximate inference methods
on two single-input, single-output regression tasks.
Our results show that the proposed approach identifies
input space regions with well-calibrated uncertainty
predictions while providing valuable insights into the
test statistics of the underlying distributions.

Index Terms— Bayesian neural networks, trust
regions, uncertainty quantification, calibration,
statistical testing.

I. Introduction

M ethods for reasoning and decision making under
uncertainty play a pivotal role in developing

accurate and interpretable machine learning methods.
Artificial neural networks have revolutionized various
fields by exhibiting impressive predictive capabilities,
but are limited to providing point estimates. In addition,
Bayesian Neural Networks (BNNs) introduce a powerful
extension to classical neural networks by incorporating
a stochastic component, enabling the estimation of the
probability distribution over weights and predictions. The
Bayesian approach allows to quantify the uncertainty,
which is crucial in real-world applications where uncer-
tainties are inherent. The great promise associated with
this is the ability to determine how confident a network is
in its predictions and to take countermeasures if it is not.

However, while BNNs offer an elegant solution for
uncertainty quantification, their practical implementation
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Fig. 1: Identified trust regions of a BNN trained with NUTS using
a cubic regression example. The colored areas highlight significant
differences (α=0.01) between the BNN’s predictions and the test
data as evaluated by the ANEES test.

faces challenges. In general, training and prediction of
BNNs lack analytical solutions, necessitating the adoption
of various approximation methods, such as Markov Chain
Monte Carlo (MCMC) [1], Variational Inference (VI) [2],
Expectation Propagation (EP) [3], or Kalman filtering [4].
The accuracy of these approximations is significantly
influenced by various model assumptions [5], encompass-
ing the architectural choices and the number of neurons
employed. In particular, considerable simplifications are
usually assumed for the distribution of the weights, such
as a fully factorized normal distribution (known as the
mean-field approximation [6]). Furthermore, errors can
be caused by suboptimally chosen prior distributions [7]
or the quantity of training data [8]. As a consequence,
despite contributing to scalability regarding the network’s
size, these approximation methods are reported to lead
to poor and miscalibrated uncertainty predictions, with
the latter describing significant mismatches in predicted
confidence intervals from observed test points [9].

In the BNN literature, there exist various metrics for
measuring the quality of the predicted distributions, such
as the negative log-likelihood (NLL), the uncertainty
calibration error (UCE) [10], the expected normalized
calibration error (ENCE) [11], or the quantile calibration
error (QCE) [12]. However, these metrics primarily
attempt to provide measures for the uncertainty
prediction quality using a predefined set of test points,
which, e.g., can be used for comparing the prediction
quality of different approximate inference methods. A
weakness of these measures is that they do not provide
help on the question of whether a specific prediction



may be trustworthy or not. Since this cannot be decided
solely on the basis of predicted uncertainties due to
their notoriously poor quality, the lack of such methods
drastically limits the broad application of neural networks.

In this paper, we explicitly address the question of
whether one can trust a prediction of a BNN. This is
achieved by a slight reformulation of the question under
consideration: Instead of asking if the predictions are
trustworthy, we ask when, or more specifically in which
regions of the input space the predictions are trustworthy.
This change of view acknowledges the fact that there are
regions in the input space that are only sparsely covered
with training data or not covered at all and may thus,
due to lack of training data, never produce appropriate
predicted distributions. Our approach thus first identifies
regions where the training data is located and then uses
rigorous statistical testing to decide whether one can trust
the network’s predictions within each region (see Fig. 1).
Note that our approach is presented using BNNs as an ex-
ample, but can be applied to Bayesian models in general.

Contributions: First, we provide a definition of what
we consider to be trustworthy uncertainty predictions.
Based on this, we propose a general strategy to indicate
whether the predictions of BNNs are trustworthy
consisting of the steps 1.) identifying the input space
regions where the data are located, and 2.) checking
the calibration within these regions. Second, we present
a variant of this strategy that identifies input space
regions by evaluating distance measures between an
approximate ground truth for the learnable distribution
(e.g., using MCMC) and a distribution from a simpler
approximate inference approach (e.g., using VI). It then
evaluates the calibration within these regions using a
parametric test of error distributions or a nonparametric
proportion test. Third, we implement this variant for
the case of regression tasks in single-input, single-output
(SISO) systems, pointing out some connections between
statistical hypotheses testing and known metrics for the
quality of the uncertainty predictions. We demonstrate
the method using two SISO example data sets.

Notation: Throughout this paper, vectors will be
indicated by underlined letters, e.g., x, boldface letters, for
instance, x, will represent random variables, and boldface
capital letters, e.g., A, will indicate matrices. The indices
in parentheses are used to describe a sorted sequence,
e.g., x(1),x(2),...,x(N) represent the ascending sequence
of x1,x2,...,xN such that x(1)≤x(2)≤···≤x(N) holds.

II. BNN Learning Setup
We consider a supervised learning setup with a

feedforward BNN with L layers. We use the notation
y=f(x,w) for the feedforward BNN, where all weights
are summarized in w and are considered as random
variables with prior distribution p(w). The data set D=
{(xn,yn)}

N
n=1 consists of N independent and identically

distributed pairs consisting of the dx-dimensional input
xn ∈Rdx and dy-dimensional output y

n
∈Rdy . It splits

into the training data set DTrain and the test data set
DTest with respectively NTrain and NTest pairs. The
weight posterior distribution p(w |DTrain) as well as the
predictive distribution p(y |x,DTrain) are obtained by

p(w |DTrain)=
p(YTrain |XTrain,w)p(w)

p(YTrain |XTrain)
, (1)

p(y |x,DTrain)=

∫
Ωw

p(y |x,w)p(w |DTrain)dw , (2)

where XTrain = {x1, ... , xNTrain
} and YTrain =

{y
1
, ... , y

NTrain
} are the sets of input and output

data of the training data set DTrain and p(YTrain |XTrain)
can be considered as a normalization constant. However,
there is no general analytical solution to p(w | DTrain)
and p(y | x,DTrain). Therefore, in practice, one must
resort to approximate inference techniques as outlined
in the subsequent section.

III. Related Work
A. Approximate Inference Techniques for BNNs

MCMC [1] provides a popular and powerful approach
to probabilistic inference, in particularly for learning
in BNNs. This method approximates probability
integrals by sampling from a Markov process, which
comes with the drawback of high computational cost.
Various suggestions for improvement of the standard
Metropolis–Hastings algorithm have been proposed,
such as Gibbs sampling [13], hybrid Monte Carlo [14],
Hamiltonian Monte Carlo (HMC) [15] and its extension,
the No-U-Turn Sampler (NUTS) [16]. Note that MCMC
approaches represent both p(w |DTrain) and p(y |x,DTrain)
by samples, without making distributional assumptions.

A second similarly popular class of approximate infer-
ence algorithms for BNNs is subsumed under the term VI.
Here, the general idea is to approximate the complicated
weight posterior p(w | DTrain) by a simpler variational
distribution, usually a normal distribution, that allows for
a computationally efficient evaluation of (2). The original
problem of computing (1) can then be reformulated as an
optimization problem w.r.t. the parameters of the vari-
ational distribution, which can be solved by minimizing
the empirical lower bound of the reverse Kullback–Leibler
divergence, usually using gradient descent [2]. In [17]
samples from the variational distribution are used in the
forward pass to estimate gradients from the entire data
set, resulting in gradients with high variance and lack
of scalability for larger architectures. To address this
issue, Stochastic VI (SVI) [6] utilizes scaled gradients
from randomly chosen subsets of training data to update
the variational distribution, thus improving scalability.
A deterministic approach is proposed in [18] that utilizes
approximate moment propagation instead of sampling in
the forward pass, resulting in reduced gradient variance.
To reduce computational costs, [19], [20] proposed the
use of the dropout technique, which approximates the
variational distribution [21]. Note that p(w | DTrain)



is described by the variational distribution (usually a
normal distribution), where neuron-wise, layer-wise, or
network-wide correlations can be realized [2].

Building upon the same ideas as VI, EP [3] minimizes
the forward Kullback–Leibler divergence rather than the
reverse Kullback–Leibler divergence. EP’s versions for
BNNs, such as Probabilistic Backpropagation (PBP) [22]
and its extension [23], both utilize the mean-field
approximation, closed-form moment propagation during
the forward pass and gradient-based weight updates in
the backward pass.

In addition to Monte Carlo approximations or
methods that require explicit computation of gradients
for optimization, Kalman filtering approaches can
be used to train BNNs. These approaches assume
normally distributed weights and differ in the number
of correlations considered and the way nonlinearities
are accounted for. For example, the extended Kalman
filter [4], [24], which requires analytical linearizations
of the network’s nonlinearities, or sampling-based
Kalman filtering techniques such as unscented Kalman
filter (UKF) [25] or the ensemble Kalman filter [26] were
used. To avoid linearization or sampling, [27] proposes the
Bayesian perceptron, which analytically calculates the
mean and covariance of p(w |DTrain) and p(y |x,DTrain)
with correlated weights for certain kinds of activation
functions. [28] extended the Bayesian perceptron to a
fully connected feedforward network with neuron-wise
correlated weights, referred to as Kalman BNN (KBNN).

B. Statistical Hypothesis Testing
Statistical hypothesis testing is a fundamental part

of inferential statistics, which is used to make decisions
about hypotheses based on data using a test statistic T .
The process involves testing a null hypothesis, denoted H0,
against its alternative hypothesis H1. If the data provides
significant evidence against H0, then H0 is rejected in
favor of H1. During a test procedure, two kinds of errors
can occur. The error of the first kind occurs when a true
H0 is incorrectly rejected, whereas the error of the second
kind occurs when the test fails to reject an incorrect H0.
H0 is rejected if the test statistic T is less than a lower
critical value cl or greater than an upper critical value cu,
for two-sided tests. These critical values are designed to
limit the probability of error of the first kind α. Typically,
α is set to 0.01≤α≤0.1, ensuring that a false rejection of
H0 will occur in no more than 100·α % of cases. Statistical
tests can be divided into parametric and nonparametric.
Parametric tests are associated with certain assumptions
about the distribution of the test data, e.g., normality,
while nonparametric tests do not impose strict assump-
tions, thus providing more flexibility. For more detailed
descriptions of the principles of statistical testing, we
refer to [29]. In the following, we briefly review the tests
that will be used in the presentation of our approach.

1) Parametric Tests: If the data is normally
distributed, well-known parametric tests such as

Student’s t-test or F-tests can be used to test for
either matching means or variances [29]. To determine
whether the data are consistent with an estimated
normal distribution, the chi-square test w.r.t. the average
squared Mahalanobis distance, also known as the averaged
normalized estimation error squared (ANEES) [30], as a
test statistic can be used. This test will be referred to as
the ANEES test, with its test statistic TANEES given by

TANEES=
1

S

S∑
s=1

(
y
s
−µy

s

)T(
Cy

s

)−1(
y
s
−µy

s

)
, (3)

where S is the number of considered normalized estima-
tion errors squared (NEES), µ

s
is the estimated mean, Cy

s

is the estimated covariance matrix and y
s

is a data sample
of dimension d [30]. If the normality assumption holds,
the ANEES follows a chi-squared distributed test statistic,
resulting in the critical values of the test statistic given by

[cl,cu]=
1

S

[
F−1
χ2
k

(α
2

)
, F−1

χ2
k

(
1−α

2

)]
, (4)

with F−1
χ2
k

being the chi-square inverse cumulative
distribution function with k = d ·S degrees of freedom.
Falling below the lower critical value cl indicates that the
uncertainty of the estimated normal distribution is larger
than the data reflect. Exceeding the upper critical value
cu indicates a significant bias or an uncertainty that is
too small [30]. Note that the higher S is, the smaller
the resulting interval [cl,cu], reflecting the reduction in
variability with repeated simulations [30].

2) Nonparametric Tests: If the test data is not assumed
to follow a specific distribution, nonparametric tests such
as the famous Kolmogorov–Smirnov (KS) test [31], cal-
culating the maximum distance between two cumulative
distributions, can be used. Furthermore, the Cramér–
von Mises test [32] or the Anderson–Darling test [33],
which use the squared distances between two cumulative
distributions or their weighted distances, respectively,
are applicable. If, instead of cumulative distributions, a
ratio π between two possible categories of outcomes of
a Bernoulli experiment is to be tested, the binomial test
can be used. Therefore, the proportion π is the ratio k/S,
where k describes the successes belonging to one possible
category of the experiment in S trials. Under H0 : π=π0,
this results in a binomially distributed test statistic TBin∼
Bin(S,π0). The test statistic value TBin is obtained by

TBin=Bin(k |S,π0)=

(
S
k

)
πk
0 (1−π0)

S−k
, (5)

with k successes in S trials. Instead of critical values of
the test statistics, the critical values of successes, kl and
ku can be determined such that

kl∑
k=0

Bin(k |π0,S)≤
α

2
,

S∑
k=ku

Bin(k |π0,S)≤
α

2
(6)

applies in order to perform two-sided tests. Thus, for
example, if the number of hits k is less than kl or greater
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Fig. 2: Illustration of our model of involved distributions in learning.

than ku, then H0 is rejected because there is significant
evidence against the proportion π0. When applying the
binomial test, it is crucial to respect the minimum sample
size required to detect certain population deviations ±ε
from the population to be tested π0. An estimation of the
minimum sample size required can be obtained based on
the Hoeffding’s inequality [34] or the more conservative
Chebyshev inequality resulting in sHoeff.

min ≥ ln(α/2)
2ε2 and

sCheb.
min ≥ π0(1−π0)

ε2α , respectively.

C. Uncertainty Calibration Measures for Regression Tasks
The quality of uncertainty estimates in BNN regression

tasks is usually measured using scoring rules that
either evaluate the combined prediction and uncertainty
estimation quality, such as the NLL, or the calibration of
uncertainty estimates. Calibration in this context refers
to how well the uncertainty estimates match the observed
errors between prediction and actual values on test data
points. However, there are several ways of measuring
calibration. For one-dimensional normally distributed
predictions, recently proposed calibration measures such
as UCE [10] and ENCE [11] compare predicted variances
with the observed mean squared error, exploiting the
relationship between both. For one- and multivariate
normally distributed predictions [12] proposed the QCE,
which compares the observed frequencies and the desired
quantile values of the chi-squared distributed errors.
It is worth noting that the QCE uses the same error
distribution as the ANEES test, but not for statistical
testing. For non-normal univariate predictions, the
pinball loss [35], which compares certain quantiles can
be employed. Additionally, calibration plots [36] can be
used for a visual comparison of how accurately expected
and observed confidence levels match across all test data.

IV. Trust Region Identification
In this section, we examine the distributions involved

in learning, and use this model to create a general testing
strategy.

A. A General Model of Distributions in Learning
Our model is built on three distributions to explain the

learning environment and is inspired by but not identical
to the one in [8] (see Fig. 2). The first distribution p(y |x)
reflects the true data-generating process that produces
the observed outcomes given inputs x. Unfortunately, this
distribution is unknown and only realizations of input-
output pairs are available in the data set D. The second

distribution pA
n (y | xn,DTrain) constitutes the (optimal,

but infeasible) solution to (2), given a fixed family of
regression functions f(x,w), i.e., the BNN’s architecture,
the prior distribution for the weights p(w), and a training
data set DTrain. A BNN that corresponds to pA

n (y |
xn,DTrain) is denoted as BNNA. Note, however, that it is
not guaranteed that BNNA will map the data-generating
process well [8], since its modeling abilities depend on
the choice of the BNN’s architecture, the prior weight
distribution, and the training data. The third distribution
pB
n(y |xn,DTrain), represented by a BNN instance BNNB,

is the result of an approximative inference technique
on (2), performed by methods such as those presented
in Sec. III-A. In addition to the errors made when
deciding on model architecture, prior weight distribution,
and training data set collection, this distribution also
incorporates errors from the approximation of (1) and (2),
i.e., the training and inference procedures.

B. A Definition for Trustworthy Uncertainty Predictions
Based on these three distributions, ideally, we would

like to test a BNN against the true distribution p(y |x)
to decide whether the BNN’s predicted distributions
are reliable. However, since p(y | x) is unknown, we
need a practical yet wider definition of what is meant
by trustworthy uncertainty predictions. Our definition
provided below builds upon the following two criteria:

1.) Proximity to training data: A major challenge is
that complete continuous support in the input space can-
not be covered by the finite sampled data. Consequently,
there are regions in the input space that are densely
covered with data, while there are other regions that are
only sparsely covered or not covered at all. Thus, also an
appropriate choice of a network’s architecture and prior
weights distribution will not guarantee that an optimally
trained BNN pA(y | x,DTrain) matches p(y | x) for all x.
In fact, it is totally hidden to us what may happen in
regions not covered by the available data (note that also
the prior distribution p(w) does not provide help to this
question). It is our understanding that, for trustworthy
predictions, one should thus avoid extrapolation and
stay “close” to the provided training data. By “close”
in this context, we mean the input space regions where
an appropriately designed and optimally trained BNNA

should be able to learn the distribution from the data,
i.e., the input space regions where proximity is ensured
are those where pA(y |x,DTrain) and p(y |x) match.

2.) Calibrated predictions: In the case that prox-
imity is ensured, errors may still occur in BNNA due to
an inappropriate choice of architecture or prior. Likewise,
approximate inference may lead to additional errors in
BNNB. Consequently, a meaningful prediction must be
“calibrated”. By “calibrated’’ in this context, we mean
that the predicted distribution must accurately reflect
p(y |x) through the sampled test data, i.e., the predicted
distribution of BNNB and the empirical distribution of
the sampled test data in these regions must match.



C. A General Test Strategy Using Candidate Regions
Note that by the definition of proximity, if a BNN is

calibrated within a certain input region, proximity is also
satisfied within this region. Therefore, it is immaterial
whether it constitutes the optimal solution BNNA or an
approximation BNNB, since both models are susceptible
to errors. A testing strategy based on this consideration
may therefore exploit that is sufficient to test the calibra-
tion of the predictions of BNNA or BNNB in a certain
region of interest using samples of the test data set. A gen-
eral strategy may therefore consist of the steps: 1) Identify
input space region candidates where data is located, and
2) verify calibration within these regions. Note, however,
that while this strategy is simple, it does not guarantee
that all regions with sufficient input data will be identified.

D. Our Proposed Variant
We now propose a variant of the general testing strategy

presented in the previous subsection (see Fig. 3 for an
illustration). The basic concept to identify candidate input
space regions in this variant is to compare two trained
BNN distributions pÃ

n (y |xn,DTrain) and pB
n(y |xn,DTrain)

at the inputs xn ∈ XTest of the test data set DTest =
(XTest,YTest) using a distance measure for probability
distributions. Here, pÃ

n (y |xn,DTrain) denotes an approx-
imation to pA

n (y | xn,DTrain) since pA
n (y | xn,DTrain) is

infeasible. For pÃ
n (y |xn,DTrain), one may e.g. use MCMC

or any other method that is known to provide an accurate
approximation. The idea is based on the assumption that
in extrapolation the predicted distributions of BNNÃ

and BNNB differ significantly (which can be detected
by distance measures for probability distributions) due
to the lack of training data, thus directly pointing to
regions where no training data were present.

Given the input data and their associated distance
values, the input data that lead to similar distance
values are then grouped, creating candidate input space
regions (step 1). This step can be seen as a form of
semi-supervised clustering [37]. Once the input areas
have been identified, we use statistical tests to assess how
accurately the predicted outputs of each region match
the outputs of the test data set (step 2).

V. Special Case: SISO Systems
In this section, we apply our proposed testing strategy

(cf. Sec. IV-D) to the special case of SISO systems.

A. Candidate Region Identification
We assume that each prediction pÃ

n (y | xn,DTrain) of
BNNÃ (given by MCMC) for a test input xn∈XTest is rep-
resented by a Dirac mixture 1

R

∑R
r=1δ(y−yr). The predic-

tions of BNNB, pB
n(y |xn,DTrain), can be either expressed

as a Dirac mixture 1
M

∑M
m=1 δ (y−ym) (e.g., if BNNB

employs SVI or a MCMC algorithm), or as a normal dis-
tribution N (µy

n,(σ
y
n)

2) with mean µy
n and variance (σy

n)
2

(e.g., if PBP, or KBNN is used). For identifying possible
candidate regions, we thus calculate the distances between
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Fig. 3: Illustration of our proposed testing strategy. The strategy
compares two BNN models, BNNÃ and BNNB, to find candidate
regions in the input space using distance measures for probability
distributions. It then uses statistical calibration testing to identify
trustworthy regions within the identified candidate regions.

pÃ
n (y |xn,DTrain) and pB

n(y |xn,DTrain) employing the 1-
Wasserstein distance. If pB

n(y |xn,DTrain) is represented
by a Dirac mixture, it can be calculated according to [38]

dn(p
Ã
n ,p

B
n)=min

trm

R∑
r=1

M∑
m=1

trm‖yr−ym‖

s.t.
R∑
r

trm=
1

M
∀j ,

M∑
m

trm=
1

R
∀m ,

where tnm≥0 describes the amount of probability mass
that is moved between the two samples r and m. When
pB
n(y |xn,DTrain) is represented by a normal distribution,

the 1-Wasserstein distance is obtained by [39]

dn(p
Ã
n ,p

B
n)=

1

R

R∑
r=1

∣∣∣∣F−1
N

(
τr+τr−1

2

)
−y(r)

∣∣∣∣ ,

where F−1
N is the inverse cumulative distribution function

of pB
n(y | xn,DTrain), and y(r) is the r-th lowest value

of pÃ
n (y | xn,DTrain) with corresponding quantile level

τr=
r
R . In both cases, we obtain the set I={(xn,dn)}Nn=1

consisting of the test inputs values xn and associated
distance values dn.

To identify regions, we use a grouping algorithm that
first orders the set I according to xn to account for the
proximity of the input values and additionally calculates
the sorted sequence of the distance values d(n). A critical
distance value dcrit is then used to divide the input space
at index j=n if dn>dcrit. To reduce errors of the first and
second kind of statistical tests in this step, dcrit is based on
the minimum number of test data points per region, smin
(cf. Sec. III-B). Since the adjacent distance values can fluc-
tuate, we use a moving average filter with a window size of



savg to smooth them in order to avoid frequent region di-
visions close to the critical value. The resulting regions are
then described by Xk={x |xj≤x<xj+1}, where x0 is the
lower bound of the first region, and xN is the upper bound
of the last region. Since the algorithm described above is
very sensitive to its parameter dcrit, we use a heuristic for
finding a suitable critical value. For this, we initialize the
critical value with dcrit=d(1) and subsequently increase
it to the next highest distance value until all identified
regions contain at least smin test points. If the number
of test points in an interval sk is at least twice as large
as smin, we additionally divide the region Xk into

⌊
sk

smin

⌋
parts of similar size to create a finer subdivision of the in-
put space. Note that the first and last region may contain
fewer data points than smin. This ensures that outliers
in xn∈Xtest do not lead to an unwanted increase of dcrit
and individual outliers are not assigned to neighboring
candidate regions that are densely covered with test data.

B. Statistical Calibration Testing

Here, we present two possibilities for testing the
calibration of pan(y | xn,DTrain) with a ∈ {Ã,B} in each
interval Xk using either a parametric or a nonparametric
statistical test. The parametric test is suitable when both
the prediction and output are approximately normally
distributed, while the nonparametric test is appropriate
when the normality assumption does not hold, or one
only is interested in whether the confidence intervals of
a certain confidence level are sufficiently estimated.

As a parametric test, we use the ANEES test and
calculate the ANEES value and the critical values of the
test statistic for each identified input region using the
equations (3) and (4). If the ANEES value is lower than
the critical lower bound, this suggests that the BNN has
overestimated the uncertainty in the corresponding input
region. Conversely, if the calculated ANEES value is
greater than the critical upper bound, this indicates that
the BNN has underestimated the uncertainty or has a
significant bias in the corresponding input region. If the
ANEES value is within the bounds, we do not reject H0

since we do not have significant evidence against H0. To
additionally check the validity of the initial assumption
of normality, we use the nonparametric KS test, i.e.,
we check whether the NEES values follow the assumed
chi-square distribution.

As a nonparametric test, we use the two-sided binomial
test (5) and (6) to check whether the frequency of
yn ∈ Yk within the predicted confidence interval of
pan(y |xn,DTrain) matches the confidence interval π0 being
tested. E.g., if π0=0.95 of a region is to be examined, the
binomial test is used to check whether 95% of yn ∈Yk

lie within the 95% confidence interval of the predictions
of the region k. Again, if the bounds (6) are respected,
we do not reject H0.

VI. Numerical Evaluation
We now demonstrate the proposed SISO testing

strategy on two synthetic data sets.

A. BNN Architecture, Training, and Test Parameters
For all experiments, we use a fully connected feedfor-

ward network with one hidden layer, 50 hidden neurons,
ReLU activation for the hidden layer, and linear activation
for the output layer. We use NUTS [16] for BNNÃ, and
for BNNB we test variants with SVI [6] and PBP [22] with
mean-field approximation, KBNN [28] with neuron-wise
correlated weights, and UKF [25] with network-wide cor-
related weights. For NUTS and SVI, we use implementa-
tions provided by the probabilistic programming package
NumPyro [40]. For PBP [22] and KBNN [28], we use the
implementations of the authors. The implementation of
UKF for BNNs is realized following the procedure of [25].

We train the BNNs using SVI, PBP, KBNN, and UKF
for 80000, 200, 10, and 1 epochs, respectively. Statistical
tests are conducted with a significance level of α=0.01.
We use π0=0.95 for the two-sided binomial test, which
corresponds to a tested prediction confidence interval of
95%. To identify regions, a moving average filter with
a window size of savg = 50 is used to obtain smooth
adjacent distance values.

B. Experiments
For our first experiment, we generate 2000 training

points and 2400 test points from y=x3+ε, with ε ∼
N (0, 9). Training inputs xn ∈ XTrain and test inputs
xn∈XTest are drawn uniformly from [−5,5] and [−6,6], re-
spectively. We then remove the center 30% of the training
data points to simulate a gap in the data. To identify input
space regions, smin is set to 200, which is greater than
the minimum sample size sHoeff.

min required for the binomial
test according to Hoeffding’s inequality (see Sec. III-B.2).
The results of all approximate inference methods tested
are shown in Fig. 4a-d. The predictions with NUTS as
BNNÃare shown in Fig. 1. The input space regions x<−5
and x>5 in which no training data were available show bi-
ased and miscalibrated predictions and were consequently
detected by both statistical tests. Interestingly, for SVI
and PBP, the center regions lead to calibrated predictions,
although no training data were available. In contrast, for
KBNN and UKF, e.g., in the region k=4, the ANEES
test detects overconfident or biased predictions. Similarly,
for the KBNN, both statistical tests detect overestimated
uncertainties in the regions k=1 and k=2.

As a second experiment, we train the BNNs
on 500 uniformly distributed samples drawn from
y=x+sin2(x)+ε, ε∼N (0,0.1) in x∈ [−2,2] and test the
predictions using 1000 test inputs ranging from -3 to 3.
To identify the input space regions smin is set to 100 since
we have less data than in the first example. The results
are shown in Fig. 4e-h. As in our first example, all regions
where training data were not available are detected.
Again, test statistics and critical values differ significantly
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(h) UKF

Fig. 4: Results of the candidate region identification and the statistical calibration testing. The results of the first experiment y=x3+ε
are depicted in a-d. The results of the second experiment y=x+sin2(x)+ε are shown in e-h. The 1-Wasserstein distance between the
predictions and the true data-generating process (denoted by WGT

1 ) is shown in each upper plot. In the same plot, calibration test
decisions are highlighted by the colored areas (using the ANEES test for a-d and the two-sided binomial test for e-h). The lower plot
displays the identified candidate regions as well as test statistics for each input region of both the ANEES and the two-sided binomial
test. In case the blue ANEES markers do not overlap with the orange confidence bar illustrating the range between the critical values,
H0 is rejected. The same applies to the red markers and their purple displayed confidence ranges in the case of the two-sided binomial test.
If the KS test rejects H0, the ANEES markers are represented by diamonds, otherwise, by crosses. Triangular-shaped ANEES markers
represent values that are outside the scope (ANEES o.s.) of the plot and lead to the rejection of H0.

in these regions. It is noticeable that the ANEES test
in the region k = 1 of the KBNN does not reject H0,
although WGT

1 is similar to the k=1 region of the UKF,
where the ANEES test rejects the region. However, as
the result of the KS test shows, the test assumption of
normality is violated in this case, indicating that the
ANEES test is not applicable in this region of the KBNN.

C. Discussion

The results show that the 1-Wasserstein distance is
highly sensitive to differences in the compared distribu-
tions and thus an appropriate choice for candidate region
identification. The region identification itself is able to
divide the input space into regions of sufficient number
of data points. Both statistical tests are able to detect
cases where the predictions were strongly biased, either
under- or overconfident. The ANEES test uses the error
distribution between predictions and data, which leads
to a stronger statement regarding calibration. However,
its dependence on the normality assumption is a major
limitation. In contrast, the binomial test does not assume

normality, but only one confidence interval is evaluated.
For almost all intervals the test results of the ANEES and
two-sided binomial are identical. However, small devia-
tions of the predictions from the ground truth, expressed
by their Wasserstein distances, such as those in the input
space region k=3 in Fig. 4 (g) can lead to different test
decisions for the ANEES test and the binomial test. In
such cases, special attention has to be paid to the test
results, since they, by definition, incorrectly reject H0 in
up to 100·α %. Here, statistics and critical values as well
as their distances can provide useful information beyond
binary decisions per input space region.

VII. Conclusion

This paper introduced a testing strategy to locate
trustworthy input space regions in BNNs, i.e., input space
regions that lead to predicted distributions accurately re-
flected in test data. For this, we first detected candidate re-
gions and then used the parametric ANEES test and non-
parametric binomial tests to assess the prediction quality



in these regions. Our approach was able to accurately de-
tect input space regions with trustworthy uncertainty pre-
diction for our two considered SISO examples. Moreover,
the approach revealed under- or overconfident input space
regions and established a foundation for refining Bayesian
model evaluation. Therefore, we believe that it can be
considered as a first step towards an approval process for
Bayesian models such as BNNs and may help to open a
wider field of application for neural networks in general.

Future research directions include developing a method
to identify candidate regions without requiring a second
trained Bayesian model and extending the region
identification to multiple-input, multiple-output systems.
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