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ABSTRACT 

A self-localization concept for a mobile robot is pre- 
sented, which is based on angle measurements to both 
known and unknown landmarks. The main contribu- 
tions of this paper are the following: 

0 A fast normalized cross correlation algorithm 
(NCC) that uses a sum expansion of the template 
function and tables containing the integral over 
the image function (running sum) to detect the 
landmarks. 

0 A linear solution for the relative position and ori- 
entation update of the robot using angle measure- 
ments to unknown landmarks. 

Furthermore, we apply a new kind of estimator for 
optimal sensor data fusion in the presence of both 
stochastic and deterministic errors for self-localization 
of the robot. Experiments demonstrate the feasibility 
of our approach. 

1 INTRODUCTION 

Mobile service robots have to estimate their global 
position and orientation during operation to accom- 
plish typical service tasks. The application domain, 
for which our self-localization system is considered, is 
an indoor environment, where the robot travels at rela- 
tively high speed. We assume 24 hour operation, which 
means, that the illumination of the environment may 
change significantly. Furthermore, the robot has to 
cope with varying floor conditions. 

The sensors we use for our self-localization system 
are 

0 odometric sensors 

0 a panoramic camera. 

Odometry is used for relative self-localization, while 
the panoramic camera is used for both relative and 
absolute self-localization with respect to environmental 
landmarks. 

Fusing of the information of both sensors is done 
with a new kind of estimator, that takes into account 
both stochastic and deterministic errors. This leads to 
robust and reliable self-localization in the considered 
environment. 

2 PRINCIPLE OF 
SELF-LOCALIZATION 

To determine the position and orientation of the robot 
relative to its previous position or to the world co- 
ordinate system with the panoramic camera, we mea- 
sure a set of angles to landmarks in the environment of 
the robot [5]. An error analysis of the self-localization 
algorithm that calculates the position update shows 
that it is necessary to use landmarks that surround 
the robot to minimize the error. The landmarks are 
detected in an omnidirectional panorama image using 
a modified, fast normalized cross correlation (NCC) al- 
gorithm. The angles to the landmarks depend linearily 
on their position in the omnidirectional image. 

A linear equation for the relative robot position and 
orientation with respect to last frame, which is used for 
relative position update, is derived. One angle mea- 
surement to a single landmark is sufficient for robot 
position update, if other sensor data is available. 

The position estimate for the robot calculated by 
the self-localization algorithm is then fused with data 
from the odometry and the gyroscope using a new set 
theoretic estimator to take into account all available 
sensor data in an optimal way. 

3 NCC-ALGORITHM 

As our system uses angle measurements to known or 
unknown landmarks for self-localization, it is neces- 
sary to track the landmarks in the camera image dur- 
ing robot navigation. There are a lot of different, 
well-known algorithms in image processing for feature 
tracking, including the approach of template match- 
ing, for which normalized cross correlation is a reason- 
able choice [l]. Experiments revealed, that high pass 
filtering for edge detection leads to less accurate and 
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robust performance in finding and tracking artificial, 
rectangular retroreflecting landmarks compared to a 
template matching algorithm. 

Using the normalized cross correlation coefficient (1) 
is far better 

but the drawback is, that the denominator is computa- 
tionally expensive compared to the nominator, which 
could be for example calculated in the frequency range 
with the Fourier theorem. In (1) f ( z , y )  is the image 
function and t ( z ,  y) is the template function. At every 
point ( U ,  v) of the image, at which y = y(u, w) is deter- 
mined, the energy of the image f2(z, y) has to be 
recalculated, whereas the template energy t2(z ,  y) 
has to be precalculated only once. To overcome these 
problems, the use of tables containing the integral over 
the image function f ( z , y )  (running sum) is proposed 
in [I]. 

(2) 
s(u,  v) = f(u, v )  + s(u - 1, v) -t s(u,  21 - 1) + 

- s(u - 1,v - 1) 

s y u ,  v) = f2(u, v) + s2(u - 1, v) + 
2 (3) 

+ s  ( u , v - l ) - s 2 ( u - l , v - l )  

s (u ,  v) and s2(u, v) are the sum tables over the image 
function f (z ,  y) and the image energy f2(x, y). With 
these tables, the denominator can be calculated in a 
very efficient manner, independent of the size N,,  Ny 
of the template, using 

(4) x=u y=v 

S(U+ N x  - l , v +  Ny - 1) - S(U- l , ~  + Ny - 1) 
- s(u + Nx - l , v  - 1) + s(u - 1 , v  - 1). 

As the number of computations required to calculate 
the nominator of the NCC-coefficient (1) in the fre- 
quency range with an FFT algorithm is still too high 
for real time processing with a standard PC, further 
simplification is required. The basic idea to simplify 
the calculation of the nominator is to  expand the tem- 
plate function t (x ,y)  to  the weighted sum of K rect- 
angular basis functions ti 

K 

f(5, Y) = kiti(z, Y>. ( 5 )  
i=l 

The function t i (z ,  y) is constant equal 1 inside an rect- 
angular area xf _< x _< x: A yf 5 y _< yi and zero 

otherwise. Figure IC) shows an example of a typical 
template that is used as a landmark in the ofice envi- 
ronment. It is taken from a normal camera image to 
demonstrate how the algorithm works. This template 
can well be approximated by the weighted sum of 3 
rectangular basis functions, which yields a new tem- 
plate function f ( z ,y )  (Figure le). For this example, 
the 3 basis functions ti where selected manually. 

For automatic determination of the basis functions, 
the quadratic criterion J = C,,,(t(z,y) - f ( ~ , y ) ) ~  is 
used to calculate the quality of the approximation, and 
a recursive algorithm divides the template into rectan- 
gular basis functions. The iteration process is stopped, 
when J is below a predefined threshold. Note, however, 
that the approximation found by this algorithm is not 
globally optimal with regard to  the number of basis 
functions required to approximate the template. Many 
features in an office environment can nevertheless be 
well approximated with few basis functions. 

Using the sum expansion of the template function 
f(z ,y)  allows to rewrite the nominator of the cross 
correlation coefficient as 

i=l x=x;+uy=y:+v 

where K is the number of basis functions and Ici is the 
coefficient for basis function i. With the integral ta- 
ble over the image function (2), that has already been 
calculated to simplify the determination of the denom- 
inator, which cannot be calculated in the frequency 
range, the inner double sum in (6) can be calculated 
with only 3 additions. 

- s(zi, y;) + s(zf, yf). 

This means, that the number of calculations required 
to  determine the nominator in (1) depends only on the 
number of rectangular basis functions used, but not 
on their size. The number of computations required to 
calculate the nominator of the NCC coefficient for an 
image of the size Mx*My and a template of the size 
Nx*Ny that has been approximated with K rectangu- 
lar basis functions is given in table (1). It can be seen, 
that the number of multiplications depends linearly on 
the number of basis functions K. For our application, 
the typical size of the image function is 1500x60 pixel 
and 30x30 pixels for the template function. For ex- 
ample, two basis functions are used to approximate 
the rectangular landmarks we use for robot navigation. 
Table (2) shows, that the number of multiplications 
for the nominator is reduced 150 times compared to 
the FFT and 450 times compared to a direct calcula- 
tion, assuming that the sum tables used for calculating 
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(a) Image function f (z ,  y) 

Add / Sub I M,  = 1500. My = 30, 
n. K = : !  

(c) Template function t ( z ,  y). 

Mult 

(b) Cross correlation matrix y(u, w). 

M 

(d) Surface plot of t ( z ,  y). 

(e) Sum Expansion $(z,y). 

Figure 1: Experiment: Template matching with fast normalized cross correlation. 

(f) Surface plot of t (z ,  y). 

the denominator are required for each algorithm. This 
means, that up to 300 basis functions may be used, be- 
fore the computational load is equivalent to the FFT 
algorithm. It is assumed that the FFT algorithm re- 
quires that f and t be extended with zeros to a common 
power of two (zero padding). 

I I I New alrr. I 0.32 Mio I 0.091 Mio I 
Table 2: Analysis of Complexity, Example. 

In Figure l b )  the result of the NCC computed with 
the algorithm (5) ( 6 )  for the example shown in Fig- 
ure la)  is given. 3 basis functions where used to ap- 
proximate the template, which is the highlighted door 
handle in Figure la) .  Despite this rough approxima- 
tion (Figure le)), the NCC determines the position 
of the template in the original image correctly, yield- 
ing the maximum value at [z,y]' = [245 1781'. Fig- 
ure Id) and e) show a surface plot of the original and 
the approximated template function t ( z ,  y) and t"(z, y). 

4 RELATIVE POSITION 
UPDATE 

The algorithm described in the previous section allows 
to find and track natural and artificial landmarks with 
little computational effort in real time. As mentioned 
before, a typical operation area of the mobile robot 
contains many features, that can be used as landmarks, 
although their position in the world coordinate system 
is unknown. With these landmarks, a relative position 
update of the robot can be performed to improve the 
results of odometry, which may be disturbed by sys- 
tematic errors, like unknown wheel diameters or vary- 
ing floor conditions. On the other hand, from time to 
time, a global position update of the robot has to be 
calculated using known, artificial landmarks, for which 
a closed form, linear solution has been derived in [2]. 
In this way, the global position error of the robot can 
be constrained to an upper threshold. 

Now, also for relative position update, a closed form 
linear solution has been derived, that yields the robot 
position and orientation with respect to the previous 
frame. Figure 2 shows the frames of three consecutive 
robot positions during travel at the discrete time steps 
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Direct calc. 
FFT 
New alg. 

Ti-2, Ti-1 and Ti. At each frame, the angle ai to  the 
landmark is measured. 

Add 1 Sub Mult 

9M, My log, ( M ,  M ) 
(4K - 1)(M, - N,'+ l)(M, - Ny + 1) K ( M ,  - N, + l)(6!, -Ny + 1) 

N,Ny(M, - N,  + l)(My - Ny + 1) N,Ny(M, - N,  + l)(My - Ny + 1) 
6MzMy log,(M,M 

(Ti-,) Robot position s3 

(Ti 1 

Figure 2: Relative position estimation. 

If an estimate of the transformation 'T2 from frame 
SI to frame S2 with the translation [Ax12 Ay121 and 
the rotation $2 is given from odometry and previous 
measurements of the camera sensor, the linear equation 
(8) can be derived from geometrical analysis of the 
robot positions relative to  the landmark 

sin (as) A [ codab)A]'[ e ]  =ca. (8) 

The vector 
tion and orientation of the robot at frame S3 with 

= [p Y <3 contains the transformed posi- 

] (9) 
Ax23 -k Ay23 tan($R) [ :] = [ -AY23Tt2$:7($R) 

and the coefficients are calculated by 

A = -sin(al - 0 2  -t+!12) (10) 
B = cos(a2 +$2 -a3) (11) 
C = -sin(aZ +$2 - a s )  (12) 
A = Ax12 sin(a1) - Ay12 cos(a1). (13) 

In these equations, ai is the angle to  the landmark 
measured at frame i, and Ax23 and Ay23 are the com- 
ponents of the vector from frame 5'2 to frame S3 mea- 
sured in frame SI.  (8) can be used for position update 
with a single angle measurement, if it is fused with re- 
sults from other relative sensors, like odometry or the 
gyroscope, in our case. If three landmarks are tracked 
simultaneously, the resulting linear system of equations 

can be solved for [p Y <] and the position and orienta- 
tion of the robot relative to  the previous frame can be 
directly calculated using the inverse transform of the 
state variables. 

To estimate the resulting uncertainty which has to 
be calculated for sensor data fusion, the Jacobian ma- 
trix of the measurement errpr is determined at the 
estimated position 2 = [ji 3 (1 of the robot. 

5 ABSOLUTE POSITION 
UPDATE 

As relative self-localization suffers from accumulating 
errors, the robot has to  perform an absolute position 
update using landmarks, whose positions in the world 
coordinate system are known, from time to time. In 
[2], an efficient linear solution has been derived for 
the problem of calculating the position and orientation 
of the robot, if the angles ai to N known landmarks 
have been measured. Our system can measure angles 
to both known and unknown landmarks at the same 
timestep. The results of the relative and the abso- 
lute position update algorithm have to  be fused, tak- 
ing into account the respective uncertainties. The po- 
sitions of the known landmarks may be either taken 
from a global map of the environment or estimated 
simultaneously during robot operation. 

6 DATAFUSION 

As our robot system uses two sensors to  determine 
its position in the operating space, that .  have differ- 
ent noise characteristics and lead to both systematic 
and stochastic errors, the data has to  be fused taking 
into account both types of errors in an optimal way. 
For example, the odometric measurements suffer heav- 
ily from systematic errors, that cannot be completely 
avoided. In [4], a new filter is proposed ,for state es- 
timation from noisy observations that are simultane- 
ously corrupted by uncertainties with known distribu- 
tion and uncertainties with known bounds. The new 
filter unifies Kalman filtering and set theoretic filtering: 
A Kalman filter is attained, when the bounded error 
goes to zero, and a set theoretic estimator is attained, 
when the stochastic error vanishes. When both types 
of uncertainty are present, the new estimator provides 
solution sets that are uncertain in a statistical sense. 
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7 IMPLEMENTATION 

To measure the angles to the landmarks surrounding 
the robot, we use a panoramic camera that yields an 
omnidirectional view of the environment, ( Figure 3). 

Figure 3: Landmark measurement (principle). 

In order to compute the angles to the landmarks 
measured by the sensor, it is necessary to  transform 
the camera image from Cartesian coordinates to polar 
coordinates. The transformed image has the angle q5 
as the new x-axis and the radius T as the new y-axis. 
Because the angular image resolution is decreasing to- 
wards the center of the image, it is sufficient to trans- 
form a ring that contains the acquired landmarks. To 
determine the angles to the landmarks, the landmarks 
have to be extracted and tracked in the resulting image 
in polar coordinates. Then their position in the 4 di- 
rection is calculated, which corresponds to the angle ai 
to the i-th landmark in the robot coordinate system. 
As the transformation to the image in polar coordi- 
nates suffers from errors caused by the discretisation 
of the camera image, it is necessary to filter the image 
with a low-pass filter before further processing can be 
applied, to obtain the angles to the landmarks. 

Figure 4 shows the omnidirectional camera sensor 
with the ring of LEDs used to illuminate the land- 
marks. The sensor is used for both relative and ab- 
solute position update, measuring angles to unknown 
landmarks and retroreflecting landmarks whose posi- 
tion is known. Lighting of the landmarks is used to 
make the localization process as robust as possible 
against varying lighting conditions, and to allow oper- 
ation even in complete darkness. The CCD camera is 
a digital FireWire camera [6] mounted vertically inside 
the sensor. All image processing algorithms describe 
above as well as the self-localization algorithm are run 
on a standard Intel Pentium-I11 with 500 MHz, that is 
equipped with an FireWire adapter card. 

8 EXPERIMENTS 

8.1 Relative position update 

Figure 5 shows the results of the relative position up- 
date algorithm, when three unknown landmarks 1, 2 
and 3 are tracked. The positions of frame SI and Sz 
are assumed to be known from previous localization 

t E 

UJ 

E 

0 

L 
\ 

LED ring 

Figure 4: Camera sensor. 

measurements and all further positions of the sensor, 
which is moved from the point "Start" to the point 
"End", are estimated using an one step estimation of 
frame S,. It can be seen, that the results are fairly 
accurate with a deviation of about 5 cm although no 
other sensors are used to improve the position estimate. 
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Figure 5:  Relative localization experiment. 

If more than 3 landmarks are available for posi- 
tion estimation, what is often the case in well struc- 
tured office environments, the resulting measurement 
equations can easily be added to the equation system, 
yielding a redundant system of equations. 
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Figure 6: Absolute localization experiment. 
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Figure 7: Absolute localization experiment (Zoom). 

8.2 Absolute position update 

Figure 6 shows an experimental setup with 4 known 
landmarks marked as diamonds, the trajectory the 
robot travelled and its estimated position using the 
absolute position update algorithm. In case of steady 
lighting conditions, any regions with sufficient con- 
trast, whose position is known, may be taken as land- 
marks. For the experiment, black rectangular paper 
landmarks fixed on a white wall and gray cupboards 
where chosen. For operation at night, or in rooms with 
varying illumination, the sensor can light the land- 
marks using its LED Ring. It can be seen from Figure 6 
that the robot position in the global frame displayed 
with the dotted line is estimated with a maximum error 
of 50 mm. 

9 CONCLUSIONS 

We have proposed a concept for self-localization of 
a service robot, that is reliable and robust, using 
measurements from both odometric sensors and a 
panoramic camera. 

A new fast algorithm for the computation of the nor- 
malized cross correlation has been derived, that uses 
a sum expansion of the given template function t and 

rectangular basis functions. The number of calcula- 
tions required depends linearly on the number of basis 
functions used, but not on the size of the template. It 
has been shown that it is possible to use this approxi- 
mation to track features in the operating space of the 
robot with up to 150 times less calculations compared 
to the use of a standard FFT algorithm. 

A linear solution for relative position update of the 
robot using angle measurements has been derived and 
validated in simulations. A single landmark is suffi- 
cient for a position update, if further information from 
other sensors is included. If three or more landmarks 
can be tracked, a relative position update can be cal- 
culated from the resulting system of linear equations 
directly. 

With the new set theoretic and stochastic estimator 
(SSI) derived in [3, 41 it is possible to  fuse the vari- 
ous sensor data of our localization system taking into 
account both systematic and stochastic errors in an op- 
timal way. Further investigations will concentrate on 
the question whether it is possible to use the proposed 
algorithms for simultaneous map building and local- 
ization and how relative and absolute position update 
can be combined in an optimal manner. 
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