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ABSTRACT 

This paper presents a new approach for estimating 
the state of a linear dynamic system when two differ- 
ent types of uncertainties are present simultaneously. 
The first type of uncertainty is a stochastic process 
with given distribution. The second type of uncer- 
tainty is only known to be bounded, the exact under- 
lying distribution is unknown. This includes inequal- 
ity constraints between state variables, geometric tol- 
erances, and bounded noise sources which are possibly 
correlated. For this generalized uncertainty model, a 
new recursive estimator has been developed compris- 
ing time and measurement update. The new estimator 
unifies Kalman filtering and set theoretic filtering. It 
converges to a Kalman filter, when the bounded un- 
certainty goes to zero, and it converges to a set theo- 
retic filter, when the stochastic noise vanishes. In the 
case of mixed uncertainties, the new estimator provides 
solution sets that are uncertain in a statistical sense. 

1 INTRODUCTION 

We consider the problem of determining the state of a 
discrete-time system according to 

- x k + l  = A k ' c k  + B k g k  

with scalar measurement equation 

where :k denotes the state vector at time step k ,  &k 

denotes the system input at time step I C ,  and 1Jk de- 
notes the observation at  time step k. When the system 
is fully observable, the state z k  can be reconstructed 
in the noisefree case based on a sufficient number of 
observations up to time step k using for example a 
Luenberger observer [13]. 

In general, however, system states and observations 
are corrupted by uncertainties according to 
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where t& denotes the additive input uncertainties and 
Uk denotes the additive output uncertainties. 

These uncertainties can, for example, be described 
in a stochastic setting. A stochastic model is, for ex- 
ample, appropriate for describing thermal noise. In 
that case, a Kalman filter can be used for estimating 
the system state [12]. 

On the other hand, the uncertainties can be mod- 
eled as being bounded with no underlying distribution 
assumed l .  This is useful for including inequality con- 
straints between state variables, geometric tolerances, 
and bounded noise sources which are possibly corre- 
lated. For the case of bounded uncertainties, a set 
theoretic filter is the appropriate tool for estimating 
the system state [15]. 

Many real-world problems can be described by a 
combination of the two types of uncertainties, i.e., of 
stochastic and set theoretic uncertainties. This is es- 
sential when including noisy constraints or when con- 
sidering the additive combination of noise with known 
distribution and noise with known bounds. 

In [5, 81, a concept for state estimation in the pres- 
ence of both set theoretic and stochastic uncertainties 
has been introduced. The proposed algorithm for the 
case of a scalar state is exact, but computationally 
complex. In [6 ,  71, an approximate solution for the 
case of a scalar state has been derived, that is com- 
putationally attractive. Furthermore, a generalization 
towards arbitrary dimensional states and observations 
of the same dimension has been proposed in [9]. 

This paper is concerned with arbitrary dimensional 
states and scalar observations Y k .  For this very rele- 
vant case, a new, approximate solution is derived, that 
is computationally attractive. Nevertheless, it com- 
bines both stochastic and set theoretic estimation in a 
rigorous manner. It bridges the gap between both es- 
timation schemes, because a Kalman filter is attained, 

'This is different from assuming uniformly distributed ran- 
dom variables! 
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when the bounded error goes to zero, and a set the- 
oretic estimator is attained, when the stochastic er- 
ror vanishes. When both types of uncertainty are 
present, the new estimator provides solution sets that 
are uncertain in a statistical sense. 

In Section 2, the Kalman filter for recursively esti- 
mating the system state in the presence of stochastic 
uncertainties is reviewed for the case of a linear sys- 
tem and scalar observations. Section 3 presents a re- 
view of the set theoretic filter for state estimation with 
bounded uncertainties also for the case of a linear sys- 
tem and scalar observations. The new filter is then in- 
troduced in Section 4. In Section 5 ,  a two-dimensional 
simulative example is presented that further clarifies 
the conveyed concepts. 

2 KALMAN FILTER 

When a stochastic noise model is adopted, a Kalman 
filter is appropriate for estimating the system state. 
Here, we have 

w k = c ;  I 

u k  = c: , 

where e;, c: are assumed to be 

1) zero mean 

2) independent 

3) Gaussian .distributed 

random variables with known covariances according to 

e; - N(O, c;), c: - W O ,  C,") . 
Of course, it is possible to drop the independence as- 
sumption and just call for known correlation between 

and c:. Furthermore, it is also possible to drop the 
Gaussian assumption and assume given moments up 
to second order. 

2.1 Time Update 

Given a state estimate & at time k - 1, the system 
model (1) is used to perform the so-called time update 

f gi = A k - 1 : k - l  f B k - - 1 Z k - l  7 

with covariance matrix 

ci = A k - i C { - 1 A r - 1  + B k - i C ; - 1 B r - 1  . 
The time update is started with an initial noisy state 
described by xi, Ci . 

2.2 Measurement Update  

Subsequently, the observation y k  at time k is used to 
perform the measurement update according to 

with the following recursion for the covariance matrix 

3 SET THEORETIC FILTER 

In the case of a bounded uncertainty model, a set the- 
oretic filter is appropriate for estimating the system 
state. Here, we have 

w k  = 7 

V k  =e: , 
where we assume no prior information about $, e: 
besides that they are bounded according to 

(E;.>T (E;)-' g; I 1 , (.:I2 I E; . 
Essentially, this means that the underlying distribu- 
tions of the individual variables E;, e: and their joint 
distribution are completely unknown. Hence, this class 
of uncertainties includes systematic, correlated, and 
fully dependent errors. 

3.1 Time Update 

Given a state estimate 
model (1) is used to perform the time update 

at time IC - 1 ,  the system 

tck E (-0.5,0.5) is selected in such a way, that the size 
of E: is minimized [ 5 ] .  The time update is started with 
an initial set of states described by d, E;. 

3.2 Measurement Update  

Subsequently, the observation y k  at time k is used to 
perform the measurement update according to 

and 

x k  E [O,  CO) is chosen to minimize the size of EL [5]. 
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4 THE NEW FILTER 

Now, we consider a combined uncertainty model [2, 31 
with 

wk=ez+c;  7 

Vk = e; + c; , 

where $, e; are bounded according to 

( ! $ ) T ( E ~ ) - l ~ ~  5 7 (ek)  Y 2 < E Y ,  - k 

and where cz, c; are assumed to be 

1) zero mean 

2) independent 

3) Gaussian distributed 

random variables with known covariances according to 

c: cz>, c; - N O ,  C,”) . 

4.1 Time Update 

The time update for a combined uncertainty model 
can be performed by superposition. Hence, the result 
is simply given by 

Z i  = &-iZ{-l + Bk-1Gk-1 . 

For the covariance of the predicted state gi we have 

ci = Ak-iCk-lAr-l f + Bk-icz-1Br-I . 

Its set theoretic uncertainty is calculated according to 

wall 1 

Figure 1: Setup for simulative example. 

with an associated covariance matrix 

ci = w;c; ( w y  + K; (Ki)T ck” 
- (WiCi& - Kgc,”) (3) 

are 

T (wEci& - KLc,”) F2 (Yk - H z g i )  7 

where WE, E;, ~1 (Yk - &‘zi), ~2 (Yk - 
given in the appendix. For the set theoretic uncer- 
tainty we have 

which defines the size and orientation of the ellip- 
soidal set. x k  E [o, co) is chosen to minimize a certain 
function of C{ and EL. 

5 SIMULATIVE EXAMPLE 

Again, fik E (-0.5,0.5) is selected in such a way, that 
the size of E: is minimized. The time update is started 
with an initial noisy set of states described by d, Ci,  
E;. 

4.2 Measurement Update 

In contrast to the time update, the generalization of 
the measurement update is not simply a combination 
of the update formulae of Kalman filter and set theo- 
retic filter. The update step conceptually is performed 
by intersecting two sets with random position. Of 
course, the update result is a complicated set with ran- 
dom size, orientation, and position. This exact result 
is approximated to second order, i.e., by an ellipsoidal 
set with a Gaussian distributed random midpoint. The 
mean of the midpoint is given by 

Consider a vehicle equipped with range sensors that 
measure the distances to two walls i, i = 1 , 2 ,  Figure 1. 
The wall positions are known within a given geometric 
tolerance, i.e., 

d i  = & + A d i  , with IAdiI 5 bi , 
where & denotes the unknown true (signed) distance 
of the wall to the origin and A d i  is the unknown but 
bounded deviation of the nominal value di .  The cor- 
responding unit normal vector is assumed to be 
known. The range measurements are corrupted by ad- 
ditive white Gaussian noise with zero mean and a vari- 
ance U: which depends on the surface characteristics 
of wall i. The measurement equation is thus given by 

d i + D k = I € ; z + A d z + c $  , 
where cf - N(O,ui ) ,  z denotes the vehicle position, 
and Di is the measured distance. A true vehicle po- 
sition z = [2000,2000]T is assumed. The remaining 
parameters are given in Tab. 1. 
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Wall 
-I I ,  L .( I I .  , I 1  1 Nominal distance d; II 0 1  -6000 I 

11 2 

True distance di 
Bound bi 
Standard deviation ai 

Table 1: Parameters of localization experiment. 

-40 -6030 
50 50 

100 100 

The initial predicted position is given by = 
[1900, 2100IT with E: = diag (20002, 20002) and Cg = 
diag (20002, 20002). At each time instant k, the dis- 
tances to both walls are measured. 

The proposed new estimator is evaluated by recur- 
sively updating the position estimate using the equa- 
tion for gh in (2), EL in (4), and CL in (4) twice: 
Once for wall 1 with E: = bf and C: = af, which 
yields an intermediate estimate, and once for wall 2 
with E: = b; and C,Y = ai ,  which yields the es- 
timate gh that incorporates all measurements avail- 
able up to time k. The parameter XI, is chosen such 
that [E{[ + ICi! is minimized. Figure 2 depicts how 
the resulting estimate evolves over time. Please note, 
that the state is kept constant for this problem to 
make interpretation easy. Hence, no time update is 
necessary. 

The confidence set, i.e., the Minkowski sum of 
EL and 9C,f centered at g i ,  is given for k = 
1,2,3,10,1000. The optimal estimate for an infinite 
number of measurements would be the set resulting 
from intersecting the two strips that correspond to 
the uncertainty of the two walls. The exact state 
- E = [2000,2000]T is marked by a dot. Note: The 
confidence set for k -+ 00 bounds the exact set from 
above and hence contains the true state. 

To compare these results with standard Kalman fil- 
tering, we view the wall uncertainty as an additional 
uncorrelated noise term with zero mean and variance 
E:, which results in a total measurement variance of 
C: +El .  The evolution of the resulting confidence set 
is depicted in Figure 3. Here, the confidence set has 
been calculated based on 9 times the Kalman filter co- 
variance matrix centered at  gf.  Note: The confidence 
set for k -+ 00 does not contain the true state. 

Due to limited space, the result of applying purely 
set theoretic filtering to this problem is not presented. 
Of course, the result is too pessimistic, since indepen- 
dence of the range measurements is not exploited. 

6 CONCLUSIONS 

A vast class of estimation problems can be attacked 
as a mixed noise problem, i.e., the arising uncertain- 
ties can be modeled as being additively composed of 
both 1) noise with known distribution and 2) noise with 
known bounds. For these problems, a new estimator 
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Figure 2: Results of applying the new estimator: Evo- 
lution of confidence sets over time. 
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Figure 3: Results of Kalman filtering: Evolution of 
confidence sets over time. 

has been derived for the important case of linear sys- 
tems with arbitrary dimensional states and scalar mea- 
surements. The estimator provides solution sets with 
Gaussian distributed random positions. Of course, the 
new estimator contains the Kalman filter and the set 
theoretic filter as border cases. 

The new estimator provides a computationally at- 
tractive means for solving mixed uncertainty problems 
in a rigorous manner. 
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For the weighting factors Wi, we have 

T P  The nonlinear functions ~1 (yk - & z k ) ,  

given by 
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F2 (Yk  - zfz i )  Of the innovation Y k  - Elgi are 

with functions Go and G I  

1 ( X  - B)2  1 ( x  + B)2  

G o ( x , B , o )  = - 
&U erf{ G} -erf{ T} , 

1 ( x  + B)2  
G ~ ( x , B , u )  = - 1 ( X - B )  e x p { - : v }  - ( x + B )  exp { -5 T }  

erf { y} - erf { +} 6 0  
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