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ABSTRACT

In this paper, nonlinear Bayesian filtering techniques are applied to the localization of mobile radio communica-
tion devices. The application of this approach is demonstrated for the localization of DECT mobile telephones in
a scenario with several base stations and a mobile handset. The received signal power, measured by the mobile
handsets, is related to their position by nonlinear measurement equations. These consist of a deterministic part,
modeling the received signal power as a function of the position, and a stochastic part, describing model errors
and measurement noise. Additionally, user models are considered, which express knowledge about the motion
of the user of the handset. The new Prior Density Splitting Mixture Estimator (PDSME), a Gaussian mixture
filtering algorithm, significantly improves the localization quality compared to standard filtering techniques as
the Extended Kalman Filter (EKF).

Keywords: Localization, Gaussian mixture densities, nonlinear filtering, Bayesian state estimation, nonlinear
state estimation

1. INTRODUCTION

Localization of mobile radio communication devices is studied in various applications, which provide location-
based services for users of mobile receivers. Therefore, developers of these services are interested in efficient
approaches for the estimation of the position of the receiver, also called handset or mobile part. Typical exam-
ples are localization in WLAN, GSM or DECT networks. The estimation of the position should be based on
information which is already available during normal operation of the phone for communication purposes.

A localization approach for GSM networks1 relies on the location-dependant received signal power that is
characteristic for the position of a receiver relative to the base stations (transmitters, fixed parts) and hence
for the position of the user. During normal operation, the received signal power of all receivable transmitters
is already measured by the mobile parts to permit a handover between different transmitters. Based on these
measurements, localization algorithms can be developed to estimate the position of the mobile parts with respect
to the transmitters. In various other publications,2–6 applications of nonlinear state estimation techniques in the
field of localization are presented.

In this paper, nonlinear filtering techniques are applied to the localization of DECT mobile telephones. To
enable the localization of the mobile parts, an approximate stochastic model of the propagation of the radio waves
or the received signal power is identified in the localization environment7. In principle, this information could
be obtained from physical modeling of the propagation of the electromagnetic waves. However, in real-world
environments, this is very complicated, since attenuation, reflexion, interference, and other phenomena yield very
complicated distributions of the received signal power. As the exact parameters describing the electromagnetic
properties of the environment where the handset is to be localized (localization environment) are almost always
only partially known, physical modeling is prohibitive from a practical point of view. Therefore, a propagation
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model, relying on the measurement of the logarithmic received signal power in the localization environment, is
preferred over deriving a detailed physical model theoretically.

For that purpose, a receiver is moved to various positions, e.g. gained by placing a grid on the localization
area during preparatory work. At each position, the received signal power of the individual base stations is
measured and stored in a map of the localization environment. Thus, distributions of the received signal power
are gained for each base station.

Based on this model information, the position of the receiver can be estimated. In the localization phase, the
easiest approach is the comparison of the received signal power of each receivable transmitter to the measured
distributions of the received signal power, which have been stored during the model generation phase. The
coordinates of the position with the smallest deviation between the model and the measured value are determined.
Obviously, only a point estimate can be obtained by this next-neighbor-estimation. By this procedure, detailed
information about the uncertainty of the estimated position cannot be obtained. Furthermore, the estimation
quality is rapidly decreasing, if the distance between the reference points of the model is increased, e.g. if the
precision of the grid is reduced during model generation. Additionally, the position estimate becomes worse, if
less transmitters are receivable. Then, small variations of the measured received signal power or small variations
of the positions of the receiver may lead to large variations in the estimated position. A further problem of this
approach is that information about the motion of the user cannot be incorporated adequately in the estimation.
Hence, by this simple procedure, localization is restricted to the determination of the position of the receiver by
one single measurement of all receivable transmitters without taking into account previous measurements.

In this paper, a stochastic measurement model is identified in the model generation phase. This stochastic
measurement model consists of an analytic, deterministic measurement function describing the logarithmic re-
ceived signal power in terms of the position coordinates. Furthermore, a stochastic component is identified to
take model uncertainties as well as measurement noise into account.

In contrast to the next-neighbor-estimation summarized above, a stochastic localization approach yields
probability density functions representing the uncertainty of the estimated position. Besides considering the
measurement of the received signal power, user models describing knowledge about the motion of a user of the
receiver can furthermore be used to improve the localization quality. These user models e.g. express that the
maximum “step length” of the user between the points of time corresponding to two different measurements of
the received signal power is limited. Additional improvement of the estimation quality results from recursive
position estimation by combining several subsequent measurements.

The stochastic localization approach presented in this paper leads to nonlinear, multi-dimensional mea-
surement equations. The exact solution of this Bayesian filtering problem yields complicated, non-Gaussian
probability densities describing the position estimate together with its uncertainty. These probability density
functions are efficiently approximated by Gaussian mixture densities.8,9 This approximation is done by the
so-called Prior Density Splitting Mixture Estimator (PDSME), which has been developed to achieve an estima-
tion quality, which can — in contrast to common filtering techniques for nonlinear systems (e.g. the Extended
Kalman Filter10) — be specified by the user. However, specifying an upper bound for the computational effort
by limiting the number of Gaussian mixture components may reduce the estimation quality. Furthermore, the
representation of the densities by Gaussian mixtures enables recursive estimation for both nonlinear prediction
and nonlinear filter steps.

In Section 2, the stochastic localization problem is formulated. In Section 3, the deterministic and stochastic
components of the measurement model are explained. The application of a Bayesian filtering algorithm, based
on a Gaussian mixture approximation of the exact probability densities using the new Prior Density Splitting
Mixture Estimator (PDSME), is described in Section 4. Experimental results for the localization of radio
communication devices are given in Section 5 for the localization of DECT receivers. The estimation quality of
the PDSME is compared to the application of an Extended Kalman Filter (EKF). Finally, in Section 6 the paper
is concluded.

2. PROBLEM FORMULATION
The localization of radio communication devices can be divided into two subproblems. The first subproblem is
the identification of a measurement model — consisting of a deterministic and a stochastic part — in a model



generation phase. Second, in the localization phase, the probability density of the estimated position is calculated
by a Bayesian filter step.

The measurement model
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describes the measurement of the logarithmic received signal power
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)

of the ζ-th transmitter, ζ = 1, . . . , N , as a deterministic, nonlinear function hζ (xk) of the position coordinates
xk =

[
x1,k x2,k

]T for each of the N different transmitters. The stochastic part vk of the measurement model
is represented by an additive uncertainty. Additive uncertainties in the measurement model of the logarithmic
received signal power correspond to multiplicative uncertainties of the signal power Pk,ζ , which are caused by
the influence of uncertain attenuation. Each transmitter can be identified by a unique ID, that is transmitted by
the base stations during communication. Therefore, the estimation problem is simplified significantly, because
each measured value can directly be assigned to the corresponding nonlinear measurement equation.

In the localization phase, nonlinear filtering algorithms are applied in each time-step k. Even without additive
uncertainties vk, the implicit, nonlinear relations between the vector of the measured logarithmic received signal
power ŷ

k
of the transmitters and the position xk of the receiver can only be solved numerically, e.g. by a least-

squares approach. Considering uncertainties, the measurement equations of the logarithmic received signal power
are used to update the estimated position in a Bayesian filter step.

The localization approach presented in this paper is based on the approximation of the exact solution of the
Bayesian filter step by Gaussian mixture densities
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If a measured value ŷk,ζ is available, the exact solution of the Bayesian filter step11,12 is given by

fe
x (xk|ŷk,ζ) = c fp

x (xk) fv,ζ (ŷk,ζ − hζ (xk)) ,

with the nonlinear measurement function hζ (xk), the additive uncertainty’s density function fv,ζ (vζ) and a
normalization constant c. Prior knowledge about the estimated position is represented by the density function
fp

x (xk). For each new measurement the preceding posterior density fe
x (xk|ŷk,ζ) is interpreted as the new prior

density, so that the estimated position can be updated recursively.

Analogously to the Bayesian filter step, a prediction step, which is considered to describe nonlinear user
models

xk+1 = ak (xk) + wk , (2)

is also treated by approximating the exact densities by Gaussian mixtures. The nonlinear function ak (xk) is a
deterministic model of the motion of the user. Uncertainties are again expressed by additive noise wk.



3. STOCHASTIC MODELING APPROACH

In this Section, a measurement model is identified by measuring the logarithmic received signal power of each
transmitter on a grid covering the localization area. The deterministic component h (xk) ∈ R

N and the stochastic
component vk of the measurement model (1) have to be identified before localization. The deterministic, analytic
part h (xk) is a measurement equation that describes the received power as a function of the position coordinates
xk. The stochastic part vk is a model of the uncertainties of the deterministic component. These uncertainties
consist of both spatial uncertainties corresponding to model errors and temporal measurement noise.

3.1. Deterministic measurement model of the logarithmic received signal power
In Fig. 1 it can be seen that the decrease of the logarithmic received signal power over a large-scale distance of
several meters is approximately linear. In other publications, similar assumptions on the measurement model are
either called “linear-loss-model”13 or “linear-slope-model”7. Mathematically, for 2-dimensional position coordi-
nates xk a direction-dependant linear decrease of the logarithmic received power is described by N independent
measurement equations

hζ (xk) = −
√∥∥xk − mζ

∥∥2

P−1
ζ

+ ∆ζ . (3)

The parameters mζ and Pζ of the positive semidefinite quadratic form
∥∥xk − mζ

∥∥2

P−1
ζ

and the additive offset ∆ζ

have to be identified for each transmitter ζ = 1, . . . , N .
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Figure 1. Assumed linear approximation of the measured logarithmic received signal power and uncertainties of the
approximate measurement model caused by deviations between the measurements and the assumed measurement model.

For two-dimensional position coordinates xk =
[
x1,k x2,k

]T , the 6N parameters mζ , Pζ and ∆ζ are de-
termined by a least-squares-method, which minimizes the deviation between the approximated measurement
model and the logarithmic received power on the grid points measured during the model generation phase. To
reduce temporal measurement noise, the mean of several measurements at each grid point is used to calculate
the average of the measured values.

3.2. Stochastic modeling of uncertainties
The stochastic uncertainty model has to consider both deviations between the approximated model derived in
Subsection 3.1 and the true distribution of the logarithmic received signal power measured on the grid, and
temporal measurement noise.
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3.2.1. Model uncertainties

In this localization approach, the deviation between the true logarithmic received signal power and the determin-
istic measurement model h (xk) is described by a Gaussian noise density with mean µ

〈1〉
v,ζ and standard deviation

σ
〈1〉
v,ζ for each transmitter. This Gaussian uncertainty is a representation for the approximation error of the de-

terministic component of the measurement model over the whole localization environment. First, it represents
the mean deviation over the localization environment between the model and the true received power, because of
incorrect assumptions for the deterministic part of the measurement equation. The uncertainties resulting from
large-scale deviations between the true received signal power and the measurement model are depicted in Fig. 1.
Second, measurements have also shown that there exist local deviations, that might be caused by reflexion,
non-homogenous propagation of the radio waves and interference. These spatial variations of the logarithmic
received signal power can be seen in Fig. 2, where measurements have been collected with a distance of 2 cm.

3.2.2. Measurement noise

In addition to spatial variations of the received signal power, temporal measurement noise can be determined by
analyzing a series of several different measurements at a fixed position. This temporal measurement noise is also
shown in Fig. 2, for three different measurements of the logarithmic received signal power at each measurement
position. This noise is again approximated by a Gaussian density with mean µ

〈2〉
v,ζ and standard deviation σ

〈2〉
v,ζ .

3.2.3. Combination of model uncertainties and measurement noise

To obtain a simple model comprising both uncertainties described in 3.2.1 and 3.2.2, it is further assumed, that
both uncertainties are independent. Therefore, they can be modeled by a single Gaussian density fv,ζ (vζ) for
each transmitter ζ = 1, . . . , N , defined by the mean

µv,ζ = µ
〈1〉
v,ζ + µ

〈2〉
v,ζ

and the standard deviation

σv,ζ =

√(
σ
〈1〉
v,ζ

)2

+
(
σ
〈2〉
v,ζ

)2

.

This model not only implies independent uncertainties, but it is also assumed that both uncertainties can be
described without considering any position dependency.



4. FILTERING ALGORITHM

In this Section, a brief overview of the Prior Density Splitting Mixture Estimator (PDSME) used for the lo-
calization of radio communication devices is given. Additionally, an adaptation of the measurement equations
h (xk) derived in Section 3 is introduced to simplify the calculation of the PDSME. Furthermore, a prediction
step for a simple user model is presented.

4.1. The PDSME measurement update

The PDSME algorithm for the localization of radio communication devices presented in this paper is based on
the calculation of a linearized measurement update for Gaussian mixture densities. The measurement update
step of this filtering algorithm is shown in a block diagram in the upper part of Fig. 3. Splitting is based on the
calculation of the linearization error
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dxk (4)

for each component of the posterior Gaussian mixture density. This criterion is very similar to the Kullback-
Leibler distance14
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between the exact posterior density fe,i
x (xk|ŷk,ζ) and its approximation f

e,i

x (xk|ŷk,ζ) by replacing the nonlinear
measurement equation h (xk) by its linearization h (xk) at the mean of the i-th component of the prior density
function. Calculating the linearization error (4), the prior Gaussian mixture components which contribute most to
the approximation error of the posterior density are identified. To reduce this linearization error, these Gaussian
mixture components are replaced by splitting them into several mixture components with smaller covariances
using splitting libraries, which have been optimized off-line (see Fig. 4 in15).

After this “analytic resampling” of the prior density, the filter step can be calculated by a bank of EKFs,
linearizing the measurement equation at the mean of each component of the Gaussian mixture representation of
the prior density.

Afterwards, a merging step reduces redundancy by combining several Gaussian mixture components to a
single Gaussian with negligible approximation error.

4.2. Adaptation of the measurement model for simplifications of the linearization error
criterion

For Gaussian measurement noise, the linearization error (4) can be calculated analytically as a linear combina-
tion of moments of the density f

e,i

x (xk|ŷk,ζ) for polynomial measurement equations hζ (xk). Therefore, in this
Subsection, an adaptation of the measurement equation (3) is derived. After some algebraic conversions, the
squared measurement equation

(ŷk,ζ − ∆ζ)
2︸ ︷︷ ︸

=ẑk,ζ

=
∥∥xk − mζ

∥∥2

P−1
ζ

+
(
2 (ŷk,ζ − ∆ζ) vζ − v2

ζ

)︸ ︷︷ ︸
=ṽζ

(5)

can be re-written as a polynomial function with a modified “measured value” ẑk,ζ and the transformed uncertainty
ṽζ . Because of the nonlinear transformation of the random variable vζ , the probability density function fṽ,ζ (ṽζ)
is no longer Gaussian. In the localization experiment in Section 5, the exact first and second order moments
of ṽζ are computed to determine a Gaussian approximation of fṽ,ζ (ṽζ). Note, that the moments of ṽζ are
depending upon the measured value ŷk,ζ . Therefore, they have to be re-computed for each new measurement of
the logarithmic received signal power and are not time-invariant as the parameters µv,ζ and σv,ζ described in
Section 3.
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Figure 3. Overview of the PDSME algorithm: The PDSME consists of a linearized filter step (upper part) and linearized
prediction step (lower part).

4.3. User modeling by PDSME prediction step
Similarly to the filter step, the PDSME can also be applied to the calculation of nonlinear prediction steps.
Analogously to nonlinear filter steps, the calculation of an approximated prediction step also consists of the
evaluation of a linearization error, a bank of linearized prediction steps and the reduction of the number of
Gaussian mixture components in a merging step (see the lower part of Fig. 3). In this paper, only a linear user
model is considered. Therefore, the prediction step can be calculated analytically, since the posterior density has
been approximated by a Gaussian mixture density in the filter step.

The prediction model consists of the linear state equation

xk+1 = xk + wk ,



where the mean µ
w

of the additive system noise wk represents knowledge about possible directions and mean
step lengths of the user’s movement. The covariance matrix Cw of wk specifies an estimate for the distribution of
the user’s step lengths. For each component i = 1, . . . , L of the Gaussian mixture density, the predicted Gaussian
mixture component is then described by the mean

µi
k+1

= µi
k

+ µ
w

and the covariance
Ci

k+1 = Ci
k + Cw .

The estimated position can then be calculated as a weighted superposition
L∑

i=1

ωi
k+1µ

i
k+1

L∑
i=1

ωi
k+1

of the means of all Gaussian mixture components.

5. LOCALIZATION EXPERIMENT
In this Section, a real-world localization experiment is presented for the validation of the described localization
approach for DECT mobile telephones. In the Subsections 5.2 and 5.3, the superior performance of the PDSME
compared to the Extended Kalman Filter (EKF),16 a widely used standard approach for the state estimation of
nonlinear systems, is shown.

5.1. Evaluation scenario
In this localization experiment, N = 10 transmitters have been placed in an indoor area of approximately
30 m × 30 m in one floor of a building. In the model generation phase, the logarithmic received signal power
of each transmitter has been measured on a grid with 1m distance between grid points. N = 10 measurement
equations hζ (xk), altogether consisting of 60 parameters for the deterministic components and 20 parameters
for the stochastic components vk, have been identified. Except for a few areas, influenced by high attenuation
of the radio waves because of ferroconcrete walls, the assumed model is an appropriate approximation of the
distribution of the received signal power.

The initial probability density of the position is chosen as a Gaussian density with the initial mean

µp
0

=
[
15 m
15 m

]
and the initial covariance

Cp
0 =

[
152 0
0 152

]
m2 ,

i.e., almost no prior knowledge about the position is available.
In the localization phase, a measurement of each receivable transmitter is collected along a line as shown

in Fig. 4, with a distance of ∆τ = 0.5m between the true measurement positions P1, P2, . . . , P17. The position
coordinates of the measurements have been determined to compare the ground truth to the estimated positions.
Neither in the localization approach by the PDSME nor by the EKF, the exact measurement positions have been
used for the localization of the receiver. After the measurement update has been calculated for each receivable
transmitter in a fixed position Pi, i = 1, . . . , 17, a prediction step according to Subsection 4.3 has been calculated.
In this example, the simple user model is defined by the mean

µ
w

= 0 m

and the covariance

Cw =
[
1 0
0 1

]
m2 ,

i.e., no knowledge about a preferred direction of the motion of the user is available. Only the distribution of the
user’s step lengths is represented by the covariance matrix Cw.
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Figure 4. Evaluation scenario of the localization experiment.

5.2. Extended Kalman Filter (EKF)

Using the EKF, the measurement equation (5) is linearized at the mean of the prior density function. In Fig. 5,
the results of the EKF are presented for the first and the 170th filter step. In each filter step, the measurement
of the logarithmic received signal power of a single transmitter is used to update the estimated position.
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Figure 5. Localization with the EKF: First filter step (left) and 170th filter step (right).

It can be noticed, that there is a significant estimation error after the first filter step. The true position
of the receiver is not within the support of the estimated posterior density function depicted by its contour
plot. Furthermore, there is no intersection between the true measurement equation and the estimated density.
Therefore, it is not possible to apply data validation techniques to find out whether a measured value can be
“explained” by the estimated density.



5.3. Prior Density Splitting Mixture Estimator (PDSME)
In Fig. 6, the posterior densities estimated by the PDSME algorithm are also shown for the first and 170th filter
step. Obviously, the approximation of the non-Gaussian posterior density in the first filter step, which is very
close to the numerically calculated optimal Bayesian solution of the filter step, is much better than in the case
of the EKF. Hence, data validation techniques can now be successfully applied.
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Figure 6. Localization with the PDSME: First filter step (left) and 170th filter step (right).

In Fig. 7, the expected values of the posterior density functions calculated by the EKF and the PDSME
are compared to the true position. Comparing this figure to Fig. 8, it can be seen, that for almost linear
filtering problems, i.e., if the covariance of the estimated position is small compared to the nonlinearity of the
measurement equation after several filter steps, the EKF and the PDSME yield almost the same results. In
these cases, the PDSME only uses a moderate number of Gaussian mixture components, whereas for strong
nonlinearities at the beginning of the localization experiment a higher number of approximation components is
necessary to reduce the estimation error. The superior performance of the PDSME compared to the EKF is also
shown by the average estimation error

1
NF

NF∑
k=1

√∥∥xtrue
k − xestimated

k

∥∥2

2

over the NF = 170 filter steps, which is 3.30 m for the EKF and 1.22 m for the PDSME.

6. CONCLUSIONS
In this paper, a stochastic approach for the localization of radio communication devices has been presented,
which is based on measuring the logarithmic signal power of the receivable transmitters by a mobile part. A
stochastic measurement model, consisting of a deterministic and a stochastic component has been identified for
each transmitter. This measurement model has been used for the estimation of the position of the receiver by
a novel Gaussian mixture estimator, which is based on splitting the prior density according to a linearization
error criterion. This criterion is very similar to the Kullback-Leibler distance between the true and the approx-
imated posterior density, calculated by a linearization of the measurement equation. Applying this estimation
technique to the localization of DECT mobile telephones, significant improvements of the estimation quality
can be achieved, if the PDSME is used instead of standard approaches like the EKF. Further improvement
of the localization quality can be achieved by identifying better deterministic measurement models and more
precise characterizations of the measurement noise, which do not assume independence between the different
uncertainties mentioned in this paper.
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Figure 7. Comparison of the expected values of the estimated position calculated by the EKF (dashed lines) and the
PDSME (thin solid lines) to the exact position (thick solid lines) for the x1 and x2 coordinates.
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