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Calculating Moments of Exponential Densities
Using Differential Algebraic Equations

Andreas Rauh and Uwe D. Hanebeck, Member, IEEE

Abstract—This letter introduces an efficient approach for
calculating moments of exponential densities. Usually, the de-
sired moments are obtained by means of numerical integration,
which is impractical due to its computational complexity and
the underlying infinite integration intervals. The new approach
relies on an exact conversion of these integrals into a system of
ordinary differential equations with algebraic constraints. The
desired moments are then obtained by solving this system of
differential algebraic equations over a finite “time” interval. The
resulting procedure is simple to implement and typically reduces
the computatmnal burden by one order of magnitude.

Index Terms—Differential algebraic equations (DAEs),

exponential densities, moment calculation, Runge—Kutta.

I. INTRODUCTION

ALCULATING moments of exponential- densities is a

central problem in nonlinear filtering and state estimation
[1]. This letter is concerned with the efficient calculation of
moments of exponential densities with polynomial exponents
(2], 3.

Analytic_expressions for the required moments are only
available for a few special cases, e.g., Gaussian densities
[41-[6]. Hence, standard approaches to calculating moments of
exponential densities rely on numerical integration techniques.
Numerical integration is of high computational complexity
and is impractical for higher dimensional problems. Further-
more, moments are defined by infinite integration intervals.
This introduces additional difficulties, as the support of an
exponential density in general cannot be simply deduced from
its parameters.

The new approach converts the set of infinite integrals into
a system of ordinary differential equations with algebraic
constraints. The desired moments are obtained' by solving
the system of differential algebraic equations (DAEs) over
a finite interval with a suitable vector of initial values. The
implementation of the new approach is simple and typically
reduces the computational burden by one order of magnitude.
It is especially efficient for the simultaneous ‘calculation of
several moments of different orders for the same set of density
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parameters. In contrast to numerical integration, the computa-
tional complexity of the new approach is mainly influenced by
the number of density parameters.

In Section II, the moment calculation problem is formulated.
The new solution is derived in Section III, where attention is
restricted tothe case of one-dimensional (1-D) densities. Ex-
tension to the vector case is straightforward. Moment varia-
tions caused by small parameter modifications are discussed in
Section ITI-A. For large parameter modifications, a DAE-based
approach is derived in Section III-B. An efficient solution of the
DAE system is given in Section IV. Its performance is demon-
strated by means of an example. Finally, conclusions are given
in Section V.

II. PROBLEM FOR.M!JLATION
We ¢onsider unnormalized 1-D exponential densities of the
form '

f(z) = exp (o + ma’ + - + n2az") = exp (n"z)

characterized by the parameter vector n = [0o, 1, - -, N2n]"
with z = [1,z,2%,...,22"]7 and n € N. A negative param-
eter 72, guarantees finite moments. Moments of order ¢ of the
density are defined by

M= [~

For a given parameter vector denoted by 7. we desire to calcu-
late arbitrary moments M;(n, ) for i € NU {0}.

Analytic expressions for the moments of exponential densi-
ties are only available for some special cases such as Gaussian
densities

. _ 2

a

z' f(z)dz. (1)

with no = —p2/(20%), m = p/o?, and nz = —1/(20°)
Hence, the moments corresponding to a general parameter
vector 7, must be calculated numerically.

III. EFFICIENT MOMENT CALCULATION

The new approach is based on calculating moment variations
caused by modification of the parameter vector. For that pur-
pose, we assume another parameter vector 7, With known cor-
responding moments to be available. When m is close to Ng»
the moments corresponding to 7, can be expressed in terms of
moments corresponding to 7, by means of a linear perturbation
analysis.
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In the case of large parameter modifications, the key idea
is to construct a system of ordinary differential equations de-
scribing the moment variation. Solving this sysfcm over a finite
interval with the moments M;(n,), 1 = ,2n — 1, as initial
values gives the desired moments M; {n ) 1=0,...,2n - 1.
However, the system of differential equamns for calculaung
the moments M;(n, ) requires higher order moments. These are
obtained from addltnonal algebraic constraints that relate the
higher order moments to the set of desired moments.

A. Small Parameter Modifications

When the parameter modification An = 7, — 1, is small, the
moments corresponding to 7, can be apprommated by

(1) =34 a1 80)= [

—oC

zt f (,.n:, M, +Aﬂ) dx
T

= M (n,) +AM; M; (n, ) + An.

aM; ‘

Tl

The partial derivative of the ith moment (1) with respect to the
density parameter vector 7 is expressed in terms of moments of
up to order 7 + 2n according to

' 2n
dexp | 3 n;a?
M, _ [* (j=o g
an Y

on
1
o | & 2n _
=/ x| . |exp ana:-’ dx
oo : e
xZn J
= [M,‘ Mi+i Mi+2n ]T (2)

B. Moments of Arbitrary Exponential Densities

Now large scale modifications of the parameter vector
are considered. Continuous variations of the corresponding
moments M;(n(v)) are achieved by a continumis modification
of the parameter vector according to 1 () = 1, + '}r(vq1 7,)-
For that purpose, a scalar “time” variable v € [0 1] is defined.

1) System of Ordinary Differential Equations: Ordinary
differential equations for the moment variation are derived by
calculating the partial derivative M; = 8/9vM; (n()) of the
ith-order moment with respect to v, With (2) we obtain

OM;(n(v))
ay .
oM, on(x)
82 =n(v) by _
[Ma? ( (_ )) M;i1 (ﬂ(’Y)) M2, _(_?1(’1’))]
- (n, —n,) 3

which relates moment variations to moments of up to order
i + 2n.

Appropriate initial parameter vectors 7, are characterized by
the fact that the moments of the corres‘poﬁgmg density are given.
A convenient parameter vector 1, corresponding to a Gaussian
density yields a time-variant probabnllty density

2
f(z,7) =exp (—-(1 L) % (x—;—“) +7 ?ﬁ"z) :

Without loss of generality, a standard normal density, i.e., 1 = 0
and ¢ = 1, corresponding to

=00 - 0 ... @)

b=

o

is used to simplify the following expressions. With (3) we obtain

____%(L)) = % w2 (0(0) + D meMisx (n(7))
k=0

where 1, k = 0, ..., 2n from now on denote the components
of the parameter vector ;-

Example I11.1: For n = 2, the following system of differen-
tial equations is obtained:

"Dio:2n-1,0:2n-1)
-

M M M2 +% 3 ;
(v 0 m m Mmt3 (v
Moz-=|o 0 n m | Moy
0 0 0 io
3 4 0 0 ™
it m om0 | M ©

Lom  mt+z m md

Dfl}:2n—-l.2ﬂ:4n—1}

where M. }2’1) is the vector of moments of orders i to j de-
pending on +. The variations of the desired 2n moments of
orders zero to 2n — 1 depend on moments of up to order dn—1
that are split up into lower order moments M ; = =M M, 2n 1y =
[Mo(n(7)), - - Mgn_l(g( ))]* and higher order moments

My = MO, b = [Man (@), Mans (D]
The coefficient matrices D() correspondmg to the respective
moment vectors do not depend on 7. - m

2) System of Algebraic Constraints: The system of differen-
tial equations (5) for calculating the lower order moments M;
also involves higher order moments M ;. Hence, additional al-
gebraic constraints are required that are obtained by integration
by parts of (1) with respect to ©

M; (n(r)) = (f :1, f(m)) rm B fi

i+1 Ox
=0
oo i+l [ 2n
=.—/ ::_'_1 (-—(I—w)x+72knmk'l)
=8 k=1 '
- f(z,y)dz
= Fr M) - 3 kaM;H (am) -
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Fig. I. Trajectories of the moments M, ..., My calculated by the proposed DAE approach with initial moments marked by “*" and final moments marked by

o,

Example II1.2: For n = 2, the following system

A%;:’Zn—l.ﬂﬂn—l]
T1 % 2msi=)  om
2ym2 —(1—7)
- g (1] 1%& mﬁl Mgg:)m-l)
3
0 0 0 1
£ 0 0 0
3yma 4yna
_ 2 2 0 0 M(T)
= 2132;[1""!! i‘gj‘; 413_1'_14I 0 ==(2n:4n—1)
AE;:)Qn—],iﬂ:iu—ll
(6)
of algebraic constraints is obtained. |

The algebraic constraints relate higher order moments M
. to lower order moments M . In contrast to the matrices D,

in the system of differential equations, the matrices AS") of the
algebraic constraints explicitly depend on . For an exponen-
tial density of order 2n, the algebraic constraints can be used to
recursively calculate all required higher order moments on the
basis of the parameter vector uN and the given lower order mo-
ments of up to order 2n — 1 [3].

IV. SOLUTION OF THE _DAE

The DAE system comprising the system of ordinary differen-
tial (5) and the system of algebraic constraints (6) is solved by

taking into account that the matrix Ag;’?z n—12n:4n—1) i8 ill-con-

ditioned for “small” values of «y and singular for v = 0. Hence,
inversion of this matrix must be avoided for v = 0.
A modified fourth-order Runge-Kutta method [7]

(vs4)  _ pagl)
Mgan"1) = Migion-1) + 84

(7

with step size s, = ~ A~ is proposed for calculating the mo-
ments M Eg:)gn_l ) for 7 € [Av;1]. The vector m is expressed as
a linear combination of moments of order zero to 10n — 1

m= NM—Eg:}lﬂn—l)

where the matrix IN only depends on the density parameters 7
and not on . N is obtained by isolating M Eg:)lﬂn—l) in

1i
m = E [E(an&njml + 2E(2nx6{t)m2
+2E(2nx4n)m3 + E(2n><2n)m4]

where E ) are identity matrices of appropriate dimensions. The
vectors m;, ¢ = 1;...,4, are defined as

my =D(0:8n—1,0:10'n—I)M‘.Eg:)l(}n_.l)

2 =M.§g:)gn_.1) i 0'5A7D(0:8‘n—1.0:1071—1}._M.__Eg¢)10ﬂ._1)
msy =D(0:6n—1,0:8n—1)§1

Z9 ':MES:)&PU = 0-5A7D(U:6n—1,0:8n—,1).§1

mg =D(G:4n—1,0:6n—-1)&2

23 =M§§Ln_1) = AYD(0:4n-1,0:6m—1)22

my =D(D:2n—1,0:4n-—1)g—3'

Substitution of m in (7) gives

MG = MO 1y~ DINM oy ®

Migian—1) = £

The moments M Eg?wn_l) are expressed in terms of M Eg:)%n—l)

by means of the algebraic constraints according to

E 2nx2n)
M(’Y? s _1( ey M_(T.) -
(0:10n-1) = (AM) A{g,-sﬂ—l,uzzn~1) (0:2n~1)

(©))
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Fig. 2. Relative error (in percent) between the true moments and the moments calculated by the proposed approach.

with the abbreviation

'Ah) (U 871 1,2n:10n-1)"

Finally, (8) can be solved for the moments M~ M, % ) to obtain
the update rule

() (y—A7)
-M(g 2n-1) — (P(T)) M(g 2n Tl) (10)
where P(?) is given by
Ef?,nx2n)
PO = Bgnxan) — AYN (
) _(A(v)) A(g&n 1,0:2n—1)

The initial moment vector is given by M gg:)?.n—-l)
M (0.2n-1)(n,)-

For an example parameter vector 7, = [0,1,1,—1, — 1] with

= 2 and i in (4), the moments of up to order 2n — 1 = 3 are
calculated by (10). Some higher order moments, in this case My
to My, are calculated recursively by (9).! The resulting trajecto-
ries of the moments M to My are shown in Fig. 1. The desired
moments are obtained for vy = 1,1i.e., M(.9)(1,) = _M(; g In
this example, the relative error between the true moments and
the moments calculated by the proposed approach is less than

1% (see Fig. 2).

V. CONCLUSION

An efficient procedure for calculating moments of exponen-
tial densities with polynomial exponents has been developed.
Rather than performing numerical integration, the new approach
relies on converting the original problem into a DAE system,

'Example code can be found at http://www.nonlinear-filters.com.

which is solved over a finite “time” interval to obtain the de-
sired moments.

The new procedure is simple to implement and, compared
to numerical integration, typically reduces the computational
burden significantly. Efficiency increases with the number of
moments calculated.

When moment vectors corresponding to several parameter
vectors n,,...,1, are required, the proposed approach can
easily be generahzed For that purpose, a DAE system is
constructed that modifies a convenient initial parameter vector
n, along a trajectory of intermediate parameter vectors n;
for i = 1,...,L — 1 resulting in the final parameter vector

. Hence, in addmon to M(n, ), the solution of the modi-
ﬁed DAE system also yields the moment vectors M(n,) for
1 = Liaasyli—=k

For real-time applications, it is important that the run time
of the proposed procedure does mainly depend on the problem
order and not upon specific values of the parameters or the actual
shape of the considered density.
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