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Abstract
The computation of an estimate for the unknown state of a dynamical system is a central challenge
in many disciplines and applications. In general, the estimation quality is directly tied to the amount
of sensor data available to the state estimation system. However, insights from virtual or missing ob-
servations may also convey exploitable information on the system’s state. Such virtual measurement
information may relate to constraints to which the state is subject. For instance, constraints to accelera-
tion and turn rate of a mobile robot may apply and can be exploited. Analogously, missing observations
that are attributable to obstacles can be translated into usable information, which is often referred to as
negative sensor evidence. Such implicit information has to be reformulated into virtual measurement
data in order to take advantage of it. As the Kalman filter and its derivatives are most widely used in
state estimation applications, specific measurement and noise models for virtual observations are to be
derived that can easily be integrated into the prediction-correction cycle of the Kalman filter. In this work,
a set-membership representation of virtual measurement information is discussed.
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1. Introduction

State estimation has become a widely studied
and applied research discipline and refers to the
task of deriving an estimate of an unknown state
from noisy and erroneous sensor data. In many
applications, also virtual or even missing obser-
vations may convey information on the system’s
state that can be exploited. The core question
in this regard is how to identify and model vir-
tual sensor evidence.

In order to translate virtual sensor evidence
into exploitable information, additional knowl-
edge about the studied phenomenon, its envi-
ronment, or infrastructure can be utilized. Typi-
cal types of virtual sensor evidence are:
State constraints directly apply to the process
dynamics of the considered system. For in-
stance, kinematic constraints on velocity and
acceleration can be exploited to enhance the
performance of target tracking systems [1]. For
industrial process monitoring, constraints on the
heat transfer can be used in order to improve es-
timation quality [2].
Environmental constraints can relate to a
map that provides prior information about geo-
graphical constraints. An important example in
target tracking is a road map [3], which can be
modeled as a constraint on the target’s position.

Missing observations can, for instance, be
exploited in robot mapping if prior knowledge
about the probability of detecting a landmark is
available. In this case, landmarks being not in
sensor range also contribute to estimating the
robot’s position [4]. In event-based state esti-
mation, sensor readings are typically transmit-
ted when a certain threshold is exceeded. Be-
tween events, virtual measurements can be de-
rived from the event-triggering criterion [5]. An-
other example is a ground moving target indi-
cator radar [6, 7], where missing observations
imply that targets do not reach the minimum de-
tectable velocity, i.e., they can be viewed as in-
direct velocity measurements.

The concept of virtual measurements requires
special care and involves considerable difficul-
ties concerning the design of appropriate mod-
els as well as the interpretation of missing ob-
servations. For instance, the estimation system
cannot discern whether the state to be moni-
tored is out of range or the sensors simply fail to
detect it. The use of an adequate model is cru-
cial but typically raises the complexity of the fil-
tering method. In particular, equality constraints
on the state have been widely studied as they
can easily be integrated into the Kalman filter al-
gorithm. These constraints can be modeled as



error-free pseudo measurements of state com-
ponents, and the Kalman filter can be extended
by an according update step. However, equality
constraints are often difficult to justify in practice
and can be too restrictive. By contrast, inequal-
ity constraints are practically more relevant but
may lead to complicated optimization problems.
Similarly, models for missing observations of-
ten require the design of non-Gaussian likeli-
hoods and lead to nonlinear estimation prob-
lems. In many applications, implicit information
can rather be associated with a set-membership
representation than with a stochastic charac-
terization. For instance, an obstacle that pre-
vents a mobile object to be detected is related
an occluded area, which may serve as nega-
tive sensor evidence, or the detection thresh-
old of a ground moving target indicator trans-
lates to a set of velocity values. Accordingly,
constraints such as a road can be modeled
with a set in order to take their width or extend
into account. Such set-membership information
can easily be integrated into the Kalman filter-
ing scheme when being modeled as ellipsoidal
set. In particular, the application to ellipsoidal
constraints on the state and the exploitation of
negative sensor evidence are discussed in this
work.

2. Notations

The following notations are used. Real-valued
vectors are denoted by underlined variables x,
and boldface, lowercase letters x represent ran-
dom quantities. Matrices C ∈ Rn×n are writ-
ten in uppercase boldface letters. The matri-
ces C−1 and CT are the inverse and trans-
pose, respectively. The vector x̂ is used for
the mean of a random variable, an estimate
of an uncertain quantity, or an observation.
The matrix I is the identity matrix of appro-
priate dimension. By N (x̂,C), the normal
distribution with mean x̂ and covariance ma-
trix C is denoted. An ellipsoid with center c
and shape matrix X is defined by E(c,X) ={
x ∈ Rn | (c− x)TX−1(c− x) ≤ 1

}
. An element

of E(c,X) is denoted by c.

3. Physical and Virtual Measurements

In state estimation theory, uncertain quantities
are typically characterized by random variables.
As such, measurement uncertainty is commonly
modeled as an additive white noise term vk af-
fecting an observation

zk = Hkxk + vk , (1)

where xk ∈ Rnx is the state to be estimated
and Hk ∈ Rnz×nx is the measurement ma-
trix at the discrete time step k. The statistics

of vk are defined by the error covariance matrix
Cv

k = Cov(vk) ∈ Rnz×nz . Such a probabilistic
representation is generally employed to model
the measurement uncertainty involved in physi-
cal sensor readings.

In many situations, further knowledge about the
system state can be exploited. Against the back-
ground of target tracking applications, several
examples have been discussed in [7]. In group
tracking, specific models can be derived that
take into account unresolved targets in a group
of closely spaced targets. Accordingly, mutual
occlusions among multiple extended targets can
be represented by an occlusion likelihood [8] so
that the position of occluded targets can still be
updated. For this type of virtual measurement
information, the term negative information has
been established [9, 10]. Negative sensor ev-
idence is based on prior knowledge about the
likelihood of not observing the state or compo-
nents of the state. The named examples utilize
probabilistic characterizations of negative infor-
mation which implies that a stochastic model
such as (1) is applied. However, the defini-
tion and computation of the measurement likeli-
hoods is a common problem.

An alternative direction is a set-membership ap-
proach to modeling negative information. The
intuition behind this approach is that constraints
or occlusions often refer to bounded regions, to
which the system’s state belongs. For instance,
occluded targets are located in the area behind
an obstacle. Similarly, the extend of a road may
serve as a constraint on the position of wheeled
vehicles. In order to attain a simple estimation
scheme in the subsequent section, ellipsoidal
sets are employed to model virtual information,
and the virtual measurement equation is defined
by

H∗
kxk ∈ E (z∗k,X∗

k) , (2a)

where z∗k and X∗
k are the center and the shape

matrix of the ellipsoid,respectively. By exploiting
the symmetry of the ellipsoid, the measurement
equation can be reformulated to

z∗k = H∗
kxk + ek (2b)

with the set-membership term ek ∈ E (0,X∗
k).

This representation bears a strong resemblance
with (1), and the term ek has the same param-
eterization as vk. It must be noticed that an el-
lipsoidal representation of uncertainty does nei-
ther correspond to a Gaussian distribution nor a
uniform distribution. It is one major advantage of
set-membership representations that no prob-
abilities need to be assigned, which can sig-
nificantly ease the modeling of virtual informa-



tion. The particular advantage of ellipsoidal rep-
resentations is that the model (2) for virtual mea-
surement information can easily be integrated
into the widely used Kalman filtering scheme.

4. Kalman Filtering with Physical and Virtual
Measurements

The standard Kalman filter computes an esti-
mate x̂e

k that is designed to minimize the mean
squared error, which complies with minimizing
the trace of the error covariance matrix Ce

k =
Cov(x̃k) with

x̃k = x̂e
k − xk . (3)

For the purpose of incorporating set-mem-
bership measurement information, the Kalman
filter is generalized based on the concepts
in [11] and [12]. Due to the ellipsoidal repre-
sentation (2) of virtual measurements, the es-
timation error (3) is not only composed of a
random variable x̃k but also comprises a set-
membership component xk, i.e.,

x̃k + xk = x̂e
k − xk .

The error of an estimate x̂e
k is therefore charac-

terized by a covariance matrix Ce
k = Cov(x̃k)

and an ellipsoidal shape matrix Xe
k with xk ∈

E(0,Xe
k). The objective is then to minimize the

squared error

E[‖x̂e
k − xk‖22] = E[(x̂e

k − xk)
T(x̂e

k − xk)]

= E
[
(x̃k)

T(x̃k)
]
+ (xk)

T(xk)

≤ trace(Ce
k) + trace(Xe

k) ,

(4)

with E
[
(x̃k)

T(x̃k)
]
= trace(Ce

k) and (xk)
T(xk) ≤

trace(Xe
k). The latter inequality holds for every

element in the ellipsoid E(0,Xe
k). Additionally,

the errors x̃k and xk are assumed to be uncor-
related. In a first step, the generalization of the
Kalman filter is reviewed. In the second step, its
application to virtual measurement information
is discussed.

4.1. Generalized Kalman Filter

The generalized Kalman filter [12] is designed
for process and sensor models that are si-
multaneously affected by stochastic and set-
membership uncertainties. In particular, sensor
models in the form of

zk = Hkxk + vk + ek (5)

with vk ∼ N (0,Cv
k) and ek ∈ E(0,Xv

k) are con-
sidered. Accordingly, the process model has the
form

xk+1 = Akxk +Bkuk +wk + dk (6)

with the system matrix Ak ∈ Rnx×nx and pro-
cess noise terms wk ∼ N (0,Cw

k ) and dk ∈
E(0,Xw

k ). The vector uk ∈ Rnu is a possible
control input with control matrix Bk ∈ Rnx×nu .
The measurement update and the prediction
step are carried out by means of the following
recursive formulas. The parameters are initial-
ized with the prior estimate x̂p

0 and error matri-
ces Cp

0 and Xp
0 .

Update Step: For the filtering step, the gain
is computed to account for both stochastic and
set-membership measurement uncertainties in
sensor data and yields

Kk(ω) =
( 1

ω
Xp

kH
T
k +Cp

kH
T
k

)
·( 1

ω
HkX

p
kH

T
k +

1

1− ω
Xv

k +HkC
p
kH

T +Cv
k

)−1

,

(7)
which can be derived by minimizing the right-
hand side of the inequality (4). Evidently, the
gain also depends on the weighting parame-
ter ω ∈ (0, 1). Estimate and covariance matrix
are updated according to

x̂e
k(ω) =

(
I−Kk(ω)Hk

)
x̂p
k +Kk(ω)ẑk , (8a)

and

Ce
k(ω) =

(
I−Kk(ω)Hk

)
Cp

k

(
I−Kk(ω)Hk

)T
+Kk(ω)C

v
kKk(ω)

T ,
(8b)

respectively. These formulas correspond to the
standard Kalman filter if set-membership errors
are absent, i.e, Xp

k = 0 and Xv
k = 0. In

this case, the matrix (7) reduces to the stan-
dard Kalman gain. In the presence of set-
membership uncertainties, the shape matrix
has to be updated according to

Xe
k(ω) =

1

ω
(I−Kk(ω)Hk)X

p
k(I−Kk(ω)Hk)

T

+
1

1− ω
Kk(ω)X

v
kKk(ω)

T ,

(8c)
which is the shape matrix of an enclos-
ing ellipsoid for the set-membership estima-
tion error. More precisely, E(0,Xe

k) is an
outer ellipsoidal bound of the Minkowski sum
(I−Kk(ω)Hk)E(x̂p

k,X
p
k)⊕KkE(0,Xv

k). Each
ω ∈ (0, 1) is admissible, but the parameter is
typically determined to minimize trace

(
Ce

k(ω) +

Xe
k(ω)

)
, which is the upper bound in (4). A sim-

ple bisection method can be used to solve the
convex optimization problem for calculating the
trace-minimal ω.

Prediction Step: In order to model the tem-
poral evolution of the state vector xk, a predic-
tion step is carried out by means of the process



model (6). The predicted estimate is obtained
by

x̂p
k+1 = Akx

e
k +Bkuk .

The error covariance matrix of the predicted es-
timate yields

Cp
k+1 = AkC

e
kAk +Cw

k ,

and the shape matrix of the set-membership er-
ror is given by

Xp
k+1(ω) =

1

ω
AkX

e
kA

T
k +

1

1− ω
Xw

k ,

respectively. In contrast to the filtering step,
the parameter ω ∈ (0, 1) can be determined in
closed form in order to minimize the trace, i.e.,
the bound on the mean squared error.

4.2. Switching Filtering Scheme

The generalized Kalman filter has been devel-
oped to deal with random and set-bounded er-
ror terms simultaneously. For the considered
problem of incorporating virtual measurement
information into the standard Kalman filtering
scheme, the full potential and complexity of the
generalized filter does not need to be exploited,
and a simplified version can be derived. For
physical sensor data, a common stochastic sen-
sor model in the form of (1) is utilized. Set-
membership error models like (2) are only uti-
lized for virtual sensor data. This means only
special cases of the general sensor model (5)
need to be considered.

The standard Kalman filter is initialized with a
prior estimate x̂e

0 with covariance matrix Ce
0. For

its generalization, also a prior ellipsoid matrix
Xe

0 has to be defined. However, it can be cho-
sen to be initially zero, i.e., Xe

0 = 0. In the
Kalman filtering scheme, the estimate is dynam-
ically computed in update and prediction steps.
In the former step, different formulas for physi-
cal and virtual measurements need to be con-
sidered. The general structure of the filtering
scheme is depicted in Fig. 1. The gain is de-
pendent upon whether actual or virtual sensor
evidence is to be incorporated.

Update Step: In order to incorporate physical
measurement information ẑk, the probabilistic
model (1) has to be considered. Due to the ab-
sence of unknown but bounded measurement
noise, the gain (7) can be considerably simpli-
fied to

Kk =
(
Xp

kH
T
k +Cp

kH
T
k

)
·(

HkX
p
kH

T
k +HkC

p
kH

T +Cv
k

)−1

.

Kk

+

I − KkHk

+

x̂p
k

Prior
Estimate x̂e

k
Updated
Estimate

set-m
em

bership
stochastic

ẑk
Physical
Information
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k
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Fig. 1: Structure of filtering scheme with physical
and virtual sensor evidence.

The update formulas (8) for the estimate and the
covariance matrix become

x̂e
k = (I−KkHk)x̂

p
k +Kkẑk

and

Ce
k = (I−KkHk)C

p
k(I−KkHk)

T

+KkC
v
kK

T
k ,

and, in particular, the ellipsoidal shape matrix
reduces to

Xe
k = (I−KkHk)X

p
k(I−KkHk)

T .

Apparently, the update with physical measure-
ment information does not require a minimiza-
tion over the parameter ω.

For virtual measurement information that can be
represented as a bounded set, the model (2)
is utilized. The required gain, in this case, be-
comes

K∗
k(ω) =

( 1

ω
Xp

k(H
∗
k)

T +Cp
k(H

∗
k)

T
)
·( 1

ω
H∗

kX
p
k(H

∗
k)

T+
1

1−ω
X∗

k+H
∗
kC

p
k(H

∗)T
)−1

,

which is due to the vanishing covariance matrix
Cv

k = 0. This gain is is employed to compute the
updated mean

x̂e
k(ω) =

(
I−K∗

k(ω)Hk

)
x̂p
k +K∗

k(ω)z
∗
k ,



the updated covariance matrix

Ce
k(ω) =

(
I−K∗

k(ω)H
∗
k

)
Cp

k

(
I−K∗

k(ω)H
∗
k

)T
,

and the updated ellipsoid shape matrix

Xe
k(ω)=

1

ω

(
I−K∗

k(ω)Hk

)
Xp

k

(
I−K∗

k(ω)Hk

)T
+

1

1− ω
K∗

k(ω)X
∗
kK

∗
k(ω)

T .

As stated before, the parameter ω is to be cho-
sen from the interval (0, 1). Consequently, in or-
der to obtain a trace-minimal result, a numerical
optimization has to be performed. In contrast to
the previous subsection, this procedure is only
required if virtual information is to be incorpo-
rated.

Prediction Step: In many applications,
discrete-time models are derived from stochas-
tic processes. The prediction step of the
standard Kalman filter relies on a purely
stochastic system model

xk+1 = Akxk +Bkuk +wk

in order to compute the current state estimate
according to

x̂p
k+1 = Ak x̂

e
k +Bk uk (10a)

and
Cp

k+1 = AkC
e
kA

T
k +Cw

k (10b)

for the conditional mean and the error covari-
ance matrix, respectively. The shape matrix of
the ellipsoidal error bound is propagated in time
by

Xp
k+1 = AkX

e
kA

T
k , (10c)

and no weighting parameter needs to be de-
termined. Hence, in applications where purely
stochastic process models are considered, the
calculation of Xp

k+1 reduces to the simple trans-
formation (10c). The formulas (10a) and (10b)
for the mean and covariance matrix still corre-
spond to the standard Kalman filter.

4.3. Discussion on Applications

The switching filtering scheme allows easily
incorporating virtual measurement information
that can be modeled as an ellipsoidal set.
Virtual measurement information that can still
be represented by normally distributed random
variables can be treated by means of the stan-
dard Kalman filter. However, many examples
can be identified where set-membership repre-
sentations are particularly well suited to treat vir-
tual information. The following examples shall
elucidate the use of set-membership models for
virtual measurements.

State constraints are, for example, bounds
on acceleration values of a mobile robot. In
case of a near-constant-acceleration model [13]
for target tracking in a plane, the state con-
sists of six components, of which two compo-
nents a = [ax1

, ax2
]T refer to the acceleration

values in each direction. An acceleration con-
straint can be modeled as a bound on the norm
‖a‖2 = ‖Hax‖2 ≤ b, where Ha selects the
acceleration vector of the state x and which is
equivalent to the ellipsoidal constraint

1

b2
‖a‖22 = (Hax)

TX−1
a (Hax) ≤ 1

with Xa = b2 I ∈ R2×2, i.e., a=Hax ∈ E(0,Xa).
Hence, this constraint can be reformulated as a
set-bounded measurement of the acceleration
components.

Environmental constraints relate to external
conditions to which the state is constrained. For
instance, the width of a street can be regarded
as a constraint on the position of a road vehicle
to be tracked [14]. This constraint can be repre-
sented by an interval, which is orthogonal to the
direction of the road, i.e., a straight road seg-
ment can be modeled with the aid the Hessian
normal form

nT · (Hpx) = d ,

where n is the unit normal vector being orthog-
onal to the direction of the road segment and d
is its distance to the origin. The matrix Hp maps
the state x to the components comprising the
position. Using the road width w as a constraint
corresponds to the interval |nT · (Hpx)−d| ≤ w,
which can directly be reformulated into an one-
dimensional ellipsoid

(Hsx− d)TX−1
s (Hsx− d) ≤ 1

with Xs = w2 and Hs = nTHp. This constraint
complies with the virtual measurement informa-
tion Hsx ∈ E(d,Xs).

Missing observations can often be trans-
lated into virtual measurement information if cer-
tain triggering thresholds are known and can be
exploited. For instance in case of a ground mov-
ing target indicator radar, a threshold with re-
spect to the radial velocity of the target to be
tracked needs to be reached in order to detect
the target [6]. As a simple model, the threshold
can be defined with respect to the normalized
direction of the line of sight nlos, and measure-
ments can be obtained if the velocity vector v
projected onto nlos exceeds the threshold t, i.e.,
nT
los v > t. Reversely, missing observations can



be translated into virtual sensor evidence. In
this case, the condition nT

los v ≤ t can be trans-
lated into the ellipsoidal constraint

(Hnx)
TX−1

n (Hnx) ≤ 1

with Xv = t2 and Hn = nlosHv, where the ma-
trix Hv selects the velocity components of the
state x. In line with (2a), the ellipsoidal mea-
surement Hnx ∈ E(0,Xv) can be defined.

5. Conclusions

Virtual measurements have been defined as
evidence that can be deduced from additional
background knowledge about the considered
phenomenon. In order to take advantage of
this type of information, specific measurement
models need to be derived. Different strate-
gies can be pursued in order to model and in-
corporate virtual measurement information. In
this work, a simple set-membership charac-
terization of virtual information has been pro-
posed that can easily be integrated into the
prediction-correction cycle of the Kalman filter.
The proposed technique encompasses an alter-
native to a purely stochastic approach, which re-
lies on the definition of specific likelihood func-
tions. Such a stochastic approach often suf-
fers from the problem that non-Gaussian den-
sity functions and nonlinear models need to be
considered. By contrast, if a set-membership
and, in particular, ellipsoidal representation of
virtual information can be attained, an easy-
to-implement generalization of the Kalman fil-
ter can be exploited. The attractiveness of the
proposed technique mainly lies in its simplicity.
In the filtering step, the algorithm switches be-
tween a stochastic sensor model for actual sen-
sor data and an ellipsoidal measurement model
for virtual information. Only the latter update
step requires the numerical computation of a
bounded scalar weighting parameter while the
former update step as well as the prediction
step correspond to the standard Kalman filter.
Consequently, the incorporation of virtual mea-
surement information has been boiled down to a
simple measurement update with an ellipsoidal
error representation.
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