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Abstract: Information fusion in networked systems poses challenges with respect to both theory
and implementation. Limited available bandwidth can become a bottleneck when high-dimensional
estimates and associated error covariance matrices need to be transmitted. Compression of estimates
and covariance matrices can endanger desirable properties like unbiasedness and may lead to
unreliable fusion results. In this work, quantization methods for estimates and covariance matrices
are presented and their usage with the optimal fusion formulas and covariance intersection is
demonstrated. The proposed quantization methods significantly reduce the bandwidth required
for data transmission while retaining unbiasedness and conservativeness of the considered fusion
methods. Their performance is evaluated using simulations, showing their effectiveness even
in the case of substantial data reduction.

Keywords: covariance quantization; decentralized estimation; conservative fusion; covariance inter-
section; optimal fusion

1. Introduction

Interconnected sensor systems can gather more data, are more robust to faults and
outliers, and can cover larger regions than a single sensor system. Such networked systems
can also benefit from heterogeneous sensing modalities and parameterizations. Typical
examples are wireless sensor networks which are used, for instance, in environmental
monitoring [1–3], building automation [4,5], or moving object tracking [6,7]. A single node
in a wireless sensor network often has limited energy, processing, and storage resources,
and the wireless transmission of data is the most energy-intensive operation performed by
the node while processing sensor data exhibits relatively low energy demands [8]. Even for
networked systems that do not use wireless data transmission or that have sufficient energy
resources, communication can be a limiting factor when nodes need to transmit large-scale
estimates, which may occur in cooperative map building [9], cooperative localization [10,11],
or multi-object tracking [12].

From the accruing sensor data, the interconnected devices can compute state es-
timates locally, e.g., by employing Kalman filter methods. Such estimates are typically
supplied with error covariance matrices, which need to be transmitted and stored alongside
the estimates, to be able to assess their uncertainty and combine them reliably. Therefore,
reducing the amount of transmitted data through prior compression is key to meeting
bandwidth limitations when high-dimensional state estimates are exchanged and to ensure
long operating times of battery-driven sensor nodes when wireless data transmission
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is used. A comprehensive survey of lossless and lossy compression methods that are
suitable for wireless sensor networks is given in [13]. The surveyed methods include
multiple probabilistic quantization-based approaches [14–17] tailored to estimation prob-
lems. However, only scalar estimates are considered and their respective variances are
assumed to be known to the receiver. Quantization as a means of data reduction has
also been applied to Kalman filtering, a prominent example being the sign of innovations
Kalman filter [18,19]. Again, the required covariance matrices are assumed to be known to
the receiver. In contrast to the previous works, it is assumed in [20] that the receiver has
no prior knowledge of the covariance matrices, which therefore need to be transmitted
via the network. The authors develop data reduction methods for covariance matrices
based on conservative diagonal approximations and, in [21], they investigate techniques to
select subsets of the information to be transmitted. These methods assess how the selected
information contributes to the receiver’s estimation quality.

In this paper, similarly to [20], we assume that the receiver has no knowledge about
the covariance matrix at the transmitter. Hence, the sender has to prepare both its estimate
and covariance matrix for transmission. In general, the covariance matrix will not be
diagonal and dominates the amount of data that needs to be transmitted as its number of
elements grows quadratically with the dimension of the estimate. The individual quantiza-
tion of each coefficient constitutes a promising approach to reduce the data. However, such
a quantized covariance matrix, in general, does not reliably account for the uncertainty
of the estimate and can even violate the positive definiteness of the covariance matrix.
For this reason, we study and compare two different approaches to compute a quantized
covariance matrix that conservatively bounds the actual error covariance matrix. The first
scheme employs a quantization based on diagonal dominance while the second scheme
relies on a modified Cholesky decomposition. To further compress the data to be trans-
mitted, we also investigate a quantization of the estimates. As typical fusion algorithms
rely on unbiasedness, we employ a quantizer that preserves this property. The proposed
quantization schemes yield conservative estimates that reliably assess the estimation error
and can be further processed at the receiver.

At the receiver, the estimates are typically fed to a fusion algorithm to combine them
with other estimates and to improve the estimation accuracy. Fusion algorithms that
strive to minimize the error of the fusion result need access to the covariance matrices of
the input estimates. Optimal fusion algorithms [22,23] can be designed if cross-correlations
between the estimates are also known. They typically require the transmission of additional
information [24] or specific communication strategies [25,26]. In the case where correlations
are unknown, conservative fusion algorithms compute a bound on the actual but unknown
error covariance matrix of the fusion results. Examples of such algorithms are covariance
intersection (CI) [27], fast covariance intersection (FCI) [28,29], and inverse covariance
intersection (ICI) [30,31], which are guaranteed to produce results with a conservative
uncertainty quantification in the form of a covariance matrix. Other algorithms such
as ellipsoidal intersection (EI) [32,33] provide no such guarantee but are typically less
conservative. In this paper, we study how the proposed quantization schemes integrate
with fusion algorithms and consider both optimal fusion and covariance intersection.

This paper is an extended version of [34], which proposed a quantization technique
for covariance intersection. Here, we study the use of quantization in a broader sense to
cover different fusion algorithms, and we propose an additional quantization scheme for
covariance matrices that provides tighter bounds at the expense of higher computational
demand. In total, this paper’s contributions address three different aspects:

Estimate Quantization. We extend the probabilistic quantization method from [15,35]
to vector-valued correlated random variables in order to generate unbiased quantized
estimates [34] and conservative bounds on their error covariance matrices.
Covariance Quantization. We propose two approaches to the conservative quantization
of covariance matrices. The first scheme uses diagonal dominance [34]. As an alternative,
we study a modified Cholesky decomposition and compare it to the first approach.
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Fusion of Estimates. We apply the quantization schemes to both an optimal fusion algo-
rithm and covariance intersection in order to demonstrate that reliable estimates are attained.

Implementations of the proposed quantization schemes, written in Python, are pro-
vided as supplementary material, the link to which can be found at the end of the paper.

2. Notation

Lower case letters x ∈ R denote scalar quantities and additional underlining x ∈ Rn

indicates n-dimensional vector-valued quantities. The standard basis vectors of Rn are
e1, . . . , en and 0n denotes the n-dimensional zero vector. Bold uppercase letters indicate
n× n-matrices such as X ∈ Rn×n. The ith coefficient of a vector and the i, jth coefficient
of a matrix are xi and Xi,j, respectively. In addition, index ranges such as i : j, i :, and : i
are used to extract subvectors and submatrices. As an example, xi:j is the subvector
containing the ith to the jth coefficient of x and X:i,j are the first i coefficients of the jth
column of X. The use of boldface as in x ∈ R and x ∈ Rn indicates random scalars and
random vectors, respectively. Uppercase calligraphic letters A indicate sets. In particular,
Sn is used to denote the set of symmetric matrices in Rn×n and Sn

+ to denote the set
of symmetric positive semi-definite (PSD) matrices in Rn×n. For X ∈ Sn

+ and Y ∈ Sn
+,

the notation X � Y signifies that Y− X ∈ Sn
+. If X � Y then Y ∈ Sn

+ is called an upper
bound for X ∈ Sn

+. For (conditional) expectations the symbols E(·) and E(·|·) are used.
The unconditional covariance between two random quantities is designated by C(·, ·) or
by C(·) if the arguments are identical. Similarly, the conditional covariance is denoted by
C(·, ·|·) or C(·|·).

3. Considered Problem

The process of quantization approximates a continuous quantity using a discrete
one. In this work, we consider the quantization of covariance matrices and estimates with
the goal of reducing the bandwidth and storage requirements on an interconnected sensor
system. We demonstrate how optimal fusion and covariance intersection can be applied to
quantized data while retaining some of their desirable properties.

For our purposes, a quantizer is a map q : D → C, where the domain D is a closed,
coefficient-wise bounded subset of either Rn or Rn×n, and the codomain C, the so-called
codebook, is a finite set. Quantizing covariance matrices for use in fusion methods is not
straightforward. Naive coefficient-wise quantization of a covariance matrix can lead to
a result that underestimates the uncertainty encoded in the original covariance matrix,
or even worse, is not a valid covariance matrix anymore. This can cause divergence in cer-
tain estimation algorithms [27]. Ideally, the quantized covariance matrix q(X) should be an
upper bound on a conservative estimate of the original matrix X in the sense that q(X) � X
holds. This averts divergence and guarantees that the confidence ellipsoid induced by q(X)
contains the one induced by X [27]. The described situation is illustrated on the left side of
Figure 1. Conservative quantization of covariance matrices can be achieved by enforcing
certain conditions on the quantization error, as will be discussed in Section 4.

Similarly to quantizing covariance matrices, quantizing estimates for use in fusion
methods creates certain challenges. Deterministic quantization of an estimate can introduce
bias and additional noise, which (1) biases the results obtained from fusion methods and
(2) invalidates the covariance matrix associated with the estimate. This is visualized on
the right side of Figure 1. Both of the aforementioned issues can be addressed by using
randomized quantizers, which will be discussed in Section 5 in the context of applying
fusion methods to quantized data.
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Figure 1. (Left): Confidence ellipsoids of a covariance matrix (dark blue), its naively quantized
version (light blue), and its conservatively quantized version (orange). (Right): Density of a Gaussian
random variable (dark blue), histogram (light blue), and mean (orange) of its quantized version.

4. Conservative Quantization of Covariance Matrices

In the following, conservative quantizers for covariance matrices, i.e., symmetric
positive semi-definite (PSD) matrices, are derived. To that end, let qc : Dc → Cc be a
quantizer that maps PSD matrices from an coefficient-wise bounded and closed setDc ⊂ Sn

+

to a finite codebook Cc ⊂ Rn×n. The quantizer qc should satisfy the condition

∀X ∈ Dc : qc(X) � X , (1)

to ensure that the quantized matrix qc(X) is an upper bound on the original matrix X. With
the quantization error defined as ∆(X) = qc(X)− X, this can also be expressed as

∀X ∈ Dc : ∆(X) � 0 . (2)

In other words, the quantization error must always be PSD for the quantized matrix to
be an upper bound on the original matrix. Ideally, the quantizer should not only produce
conservative results but should also minimize the total quantization error ‖∆(X)‖F. This
requires enumerating all elements in Cc in the worst case and is thus not computationally
feasible, even for relatively small matrices. Practical quantizers will therefore not be able
to minimize the total quantization error exactly. To remain computationally tractable,
the quantizers considered in this work operate in two steps: First, the off-diagonal coeffi-
cients are individually rounded to the nearest codeword in some off-diagonal codebook
Co ⊂ R. Then, the diagonal coefficients are individually rounded up to a codeword in some
diagonal codebook Cd ⊂ R so as to make the quantization error PSD.

4.1. Covariance Quantization Based on Diagonal Dominance

The rounding method for diagonal coefficients considered in this section is based on
the notion of diagonal dominance. Diagonal dominance is a simple sufficient condition for
a symmetric matrix, such as the quantization error matrix ∆(X), to be PSD. A symmetric
matrix X ∈ Sn is said to be diagonally dominant if

Xi,i ≥
n

∑
j=1 6=i

∣∣∣Xi,j
∣∣∣ (3)

holds for each row i = 1, . . . , n. The connection between diagonal dominance and positive
semi-definiteness is obtained immediately by applying the Gershgorin circle theorem [36]
to a diagonally dominant matrix to lower bound its eigenvalues.

Theorem 1. Let X ∈ Sn be diagonally dominant, then X � 0 holds.
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The approach to conservative quantization of a PSD matrix X ∈ Dc pursued here is
to first quantize the off-diagonal coefficients of X using a codebook Co ⊂ R and to then
quantize the diagonal coefficients using a codebook Cd ⊂ R such that (3) is satisfied for
the quantization error ∆(X). This leads to the quantizer

qc(X)i,j =

{⌈
Xi,j + ∑n

k=1 6=i

∣∣∣rd(Xi,k)− Xi,k
∣∣∣⌉ , i = j

rd(Xi,j) , i 6= j
, (4)

where rd(·) rounds to the nearest codeword in the off-diagonal codebook Co and d·e rounds
up to the nearest codeword in the diagonal codebook Cd. The codebooks are

Co = {xmax − kδo | 0 ≤ k < 2b} , (5)

Cd = {xmax + (n− 1)δo/2− kδd | 0 ≤ k < 2b} , (6)

where xmax is the maximum off-diagonal codeword, and δo = xmax/2b−1,
δd = (xmax + (n− 1)δo/2)/(2b − 1) are quantization resolutions, with b the number of bits
per codeword. This choice enables the following theorem regarding well definedness.

Theorem 2. The quantizer qc : Dc → Cc proposed above is well defined if the coefficients of all
matrices X ∈ Dc are contained in the interval [min(Co), max(Co)].

Proof. The quantization error of an off-diagonal coefficient is δo/2 at most. Therefore

Xi,i +
n

∑
k=1 6=i

∣∣∣rd(Xi,k)− Xi,k
∣∣∣ ≤ max(Co) + (n− 1)

δo

2

holds for all diagonal coefficients. Since the right hand side equals max(Cd), rounding up
the perturbed diagonal coefficients is always possible, and the claim holds.

When not stated otherwise, the above conditions for well defined qc are implicitly
assumed to hold. The next theorem confirms that the output of qc is indeed an upper
bound for its input.

Theorem 3. The quantizer qc : Dc → Cc proposed above has PSD quantization error
∆(X) = qc(X) − X for all X ∈ Dc and is thus conservative, that is, qc(X) � X holds for all
X ∈ Dc.

Proof. In the following, we omit the dependence of ∆(X) on X for brevity. The off-diagonal
quantization errors are ∆i,j = rd(Xi,j)− Xi,j and the diagonal ones are

∆i,i =

⌈
Xi,i +

n

∑
j=1 6=i

∣∣∣∆i,j
∣∣∣⌉− Xi,i .

By the definition of d·e we have

∆i,i ≥
n

∑
j=1 6=i

∣∣∣∆i,j
∣∣∣

and the claim follows from Theorem 1.

Furthermore, the quantizer qc introduced above is optimal in the sense that, given
codebooks Cd/o, there is no quantizer with symmetric diagonally dominant quantization
error ∆(X) that has a smaller total quantization error ‖∆(X)‖F.
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Theorem 4. Let qc : Dc → Cc be defined by (4) with coefficient-wise codebooks Cd and Co defined
by (5) and (6). Given X ∈ Dc, the quantization error ∆(X) = qc(X)− X is the minimizer of

minimize
∆∈Sn

‖∆‖2
F (7)

subject to
n

∑
j=1 6=i

|∆i,j| ≤ ∆i,i ∀i = 1 . . . n (8)

Xi,i + ∆i,i ∈ Cd ∀i = 1 . . . n (9)

Xi,j + ∆i,j ∈ Co ∀i 6= j (10)

where the dependency of ∆(X) on X has been omitted for brevity.

Proof. The problem can be reformulated as a nested minimization, the inner one

minimize
∆i,i∈R, i=1,...,n

n

∑
i=1
|∆i,i|2

subject to
n

∑
j=1 6=i

|∆i,j| ≤ ∆i,i ∀i = 1 . . . n

Xi,i + ∆i,i ∈ Cd ∀i = 1 . . . n

being over the diagonal coefficients given the off-diagonal coefficients and the outer one

minimize
∆i,j∈R,i 6=j

n

∑
i=1
|∆i,i∗|2 +

n

∑
i=1

n

∑
j=1 6=i

|∆i,j|2

subject to Xi,j + ∆i,j ∈ Co ∀i 6= j

being over the off-diagonal coefficients given the solutions ∆i,i∗ of the inner optimization.
Furthermore, the inner minimization can be split into decoupled minimizations

minimize
∆i,i∈R

|∆i,i|2

subject to
n

∑
j=1 6=i

|∆i,j| ≤ ∆i,i

Xi,i + ∆i,i ∈ Cd

for i = 1, . . . , n. By definition of the d·e operation

∆i,i∗ =

⌈
Xi,i +

n

∑
j=1 6=i

∣∣∣∆i,j
∣∣∣⌉− Xi,i

are the optimal solutions to these subproblems. They exist because qc is well defined.
The minimum cost of each decoupled problem is thus

|∆i,i∗|2 =

∣∣∣∣∣
⌈

Xi,i +
n

∑
j=1 6=i

∣∣∣∆i,j
∣∣∣⌉− Xi,i

∣∣∣∣∣
2

,

which is non-decreasing in each
∣∣∆i,j

∣∣. Using this intermediate result, the outer minimiza-
tion problem can be seen to attain its minimum by separately minimizing the |∆i,j|2, as
due to the non-decreasing property, |∆i,i∗|2 is minimal if each |∆i,j|2 is minimal. Thus,
the minimum is, by definition of rd(·), attained by setting ∆i,j∗ = rd(Xi,j).
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Although the above quantizer minimizes the conservativeness of the quantized matrix
in the sense of Theorem 4, the inequalities (3) are only sufficient and not necessary for
the quantization error to be PSD. Hence, the results of this method are usually more
conservative than necessary. The proposed quantizer has a low computational complexity
of O(n2) because the matrix coefficients are quantized individually.

4.2. Covariance Quantization Based on Modified Cholesky Decomposition

The covariance matrix quantization approach presented in the previous section is
computationally efficient but can be overly conservative. An alternative quantizer that
is guaranteed to be less conservative at the cost of increased computational expense is
presented in this section. The basic approach of first quantizing the off-diagonal coefficients
and then finding quantized diagonal coefficients that make the overall quantization result
conservative is retained. However, instead of employing diagonal dominance to find
the quantized diagonal coefficients, a modified Cholesky factorization adopted from [37] is
leveraged. We motivate the proposed method by first introducing the Cholesky decompo-
sition in conjunction with a result relating its existence to positive semi-definiteness [36]
(Corollary 7.2.9).

Theorem 5. Let X ∈ Sn be a symmetric matrix and P ∈ Rn×n a permutation matrix (Permutation
matrices are orthogonal matrices that arise by permuting the rows and columns of an identity
matrix. Matrix multiplication with a permutation matrix permutes either the rows or the columns
of the other matrix, depending on the order of multiplication). Then there is a lower triangular
matrix L ∈ Rn×n with nonnegative diagonal coefficients such that

PXP> = LL> (11)

holds if and only if X is positive semi-definite. The above factorization is called a (pivoted) Cholesky
decomposition of X with Cholesky factor L.

Should X not be PSD, a so-called modified Cholesky decomposition can be per-
formed to find a diagonal nonnegative matrix D such that a Cholesky decomposition
P(X + D)P> = LL> exists [37–39]. In the following, the basic recursive approach to simul-
taneously compute the matrices D, P, and L is introduced, based on the exposition in [37].
The recursion begins by setting X1 = X. The computations

X̄k = PkXkP>k + skeke>k (12)

Xk+1 = X̄k − xkx>k (13)

are then performed for k = 1, . . . , n. Each Pk is a permutation matrix swapping two
rows and columns such that (PkXkP>k )

k,k = Xm,m
k with m ≥ k determined according to

some criterion. For now we will assume m = k so that Pk = I. The sk are nonnegative
perturbations applied to the kth diagonal coefficient of PkXkP>k . The vector xk ∈ Rn is
selected to cancel the kth row and column of X̄k. This is achieved by letting

x>k =


0>n , X̄k,k:

k = 0>n−k+1[
0>k−1

√
X̄k,k

k
X̄k,k+1:

k√
X̄k,k

k

]
, else

(14)

and results in the k − 1 upper-most/left-most rows and columns of Xk being zero.
For the recursion to terminate successfully, sk must either be such that X̄k,k

k is positive
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or such that X̄k,k:
k is zero. This is always possible, as sk can be arbitrarily large. Unraveling

the recursion up to Xn+1 and using the fact that Xn+1 = 0 gives

0 =

(
n

∏
k=1

Pn−k+1

)X +
n

∑
k=1

sk

(
k

∏
j=1

P>j ek

)(
k

∏
j=1

P>j ek

)>( n

∏
k=1

Pn−k+1

)>
(15)

−
n

∑
k=1

(
n−k

∏
j=1

Pn−j+1 xk

)(
n−k

∏
j=1

Pn−j+1 xk

)>
.

This can be written in the more condensed form

0 = P(X + D)P> − LL> (16)

by introducing P = ∏n
k=1 Pn−k+1, L =

[
l1 · · · ln

]
with lk = ∏n−k

j=1 Pn−j+1 xk, and

D =
n

∑
k=1

sk

(
k

∏
j=1

P>j ek

)(
k

∏
j=1

P>j ek

)>
. (17)

It can be shown that P is a permutation matrix, L is lower triangular with nonnegative
diagonal coefficients, and D has its diagonal populated with the sk and is otherwise zero.
Hence, (16) is a Cholesky decomposition of X + D and according to Theorem 5, X + D
must be positive semi-definite. Note that the above recursion can be computed in-place es-
sentially like an ordinary Cholesky decomposition (see for instance [40] (Algorithm 4.2.2)),
the main differences being the diagonal shifts sk and allowing xk = 0n.

We will now describe how the above approach can be applied to finding quantized
diagonal coefficients that make the overall quantization result conservative. For that, first
quantize each off-diagonal coefficient of the given PSD matrix X ∈ Dc by rounding it
to the nearest codeword in Co = {xmax − kδo | 0 ≤ k < 2b} (see Section 4.1) resulting
in the preliminary quantized matrix and preliminary quantization error

Xo(X) =

{
Xi,j , i = j
rd(Xi,j) , i 6= j

, ∆o(X) = Xo − X . (18)

Note that in the remainder of this section we will omit the dependence of Xo(X)
and ∆o(X) on X for brevity. Since the diagonal elements of ∆o are zero, ∆o cannot be
PSD unless it is zero, as can be easily verified. Then the modified Cholesky decom-
position of ∆o is computed, giving a diagonal matrix D such that ∆o + D � 0 holds.
Adding D to Xo and rounding the diagonal coefficients up to the nearest codeword in
Cd = {xmax + (n− 1)δo/2− kδd | 0 ≤ k < 2b} (see Section 4.1) then gives the final quanti-
zation result

qc(X) =


⌈

Xi,j
o + Di,j

⌉
, i = j

Xi,j
o , i 6= j

. (19)

Assume for the moment that the quantizer defined above is well-defined, i.e., that
there always are codewords in Cd that the perturbed diagonal elements can be rounded up
to. In that case, the following theorem applies.

Theorem 6. The quantizer qc : Dc → Cc as defined above is conservative.

Proof. Due to the modified Cholesky decomposition, it holds that Xo − X + D = ∆o + D � 0.
By rounding the diagonal of Xo + D up, we get Xo + D + ∆d where ∆d is diagonal and
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nonnegative and thus ∆d � 0. Therefore, Xo +D+∆d−X � Xo +D−X � 0 or equivalently
qc(X) � X holds.

So far, the diagonal perturbations sk have been assumed to be almost arbitrary. In order
to guarantee that the quantizer is well-defined, we adopt the specific choice

sk = max
{

0,
∥∥∥∥(PkXkP>k

)k+1:,k
∥∥∥∥

1
−
(

PkXkP>k
)k,k
}

, (20)

described in [37]. This has several advantageous implications as can be seen from
Theorem 7 [37] (Theorem 5.1.2) and the subsequent corollaries.

Theorem 7. If sk is chosen as in (20) to compute the modified Cholesky decomposition of some
X ∈ Sn, then X + D is positive semi-definite (it can be rank-deficient) and the upper bound

sk ≤ max

{
0, max

j

(
−Xj,j +

n

∑
i=1 6=j

∣∣∣Xi,j
∣∣∣)} (21)

holds for k = 1, . . . , n. The result is valid, provided each Pk swaps the kth row and column only
with some subsequent row and column.

Applying the above theorem to the quantizer proposed in this section, it is evident
that with the given choice of sk, the diagonal perturbations are always smaller than or equal
to the maximum perturbation required by the quantization approach from Section 4.1.
Inspecting the proof in [37], it can indeed be deduced that every sk is smaller than or
equal to its corresponding perturbation (after permutation using the Pk) in the diagonal
dominance based approach.

Corollary 1. The quantizer qc : Dc → Cc proposed in this section is well defined if the coefficients
of all matrices in Dc are in the interval [min(Co), max(Co)].

Proof. By applying Theorem 7 to ∆o, it follows that sk ≤ maxj ∑n
i=1 6=j

∣∣∣∆i,j
o

∣∣∣ holds for
k = 1, . . . , n. Comparing to (4), sk can be seen to be smaller than the maximum amount
added to diagonal coefficients by the quantizer from Section 4.1. Hence, following the same
argument as for Theorem 2 and using the bound on sk, the claim follows.

Corollary 2. The quantizer qc : Dc → Cc proposed in this section has lower or identical total
quantization error ‖∆‖F compared to the quantizer from Section 4.1.

Proof. By the discussion above, the diagonal perturbations sk are smaller than or equal to
those used by the quantizer based on diagonal dominance. This translates into a reduced
absolute deviation from the original diagonal elements, also after rounding up. The off-
diagonal quantization errors are identical. Hence, the total quantization error is less than
or equal to that of the quantizer based on diagonal dominance.

The final ingredient in the above quantization approach is the choice of the permuta-
tion matrices Pk which, up to now, have been assumed to be identity matrices. We adopt
the choice of Pk proposed in [37], which greatly improved performance in our exper-
iments. Each matrix Pk is chosen in order to swap two rows and columns such that
(PkXkP>k )

k,k = Xm,m
k with m = arg maxk≤i≤n gi

k
where g

k
is a recursively computed vector

initialized at k = 1 using

gi
1
= Xi,i −

n

∑
j=1 6=i

∣∣∣Xi,j
∣∣∣ , i = 1, . . . , n (22)
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and recursively updated for each k = 1, . . . , n according to

gi
k+1

=
(

Pkg
k

)i
+
∣∣∣(PkXkP>k )

k,i
∣∣∣(1− ‖(PkXkP>k )

k,k+1:‖1

X̄k,k
k

)
, i = k + 1, . . . , n (23)

after choosing the respective Pk and sk. These changes do not affect the theoretical results,
as they only pertain to the strategy of choosing Pk. We do not take into account the remain-
ing modifications proposed in [37], as they do not seem to improve performance in our case.
Due to the modified Cholesky decomposition, the quantizer introduced in this section has
computational complexity of O(n3), compared to the O(n2) complexity of the quantizer
from Section 4.1.

5. Applications to Information Fusion

The goal of any fusion algorithm is to combine estimates xa ∈ Rn and xb ∈ Rn of
the same random quantity x ∈ Rn to obtain an, in some sense, improved estimate x f ∈ Rn

of x. Typically, the estimates xa and xb are provided in conjunction with error covariance
matrix estimates Caa ≈ C(xa − x) and Cbb ≈ C(xb − x) and the fusion method uses them
to compute an error covariance estimate C f f ≈ C(x f − x) for the fused estimate x f .

In the following, two fusion methods from the literature that are unbiased (E(x f ) = E(x))
and conservative (C f f � C(x f − x)) under certain conditions, are introduced and their appli-
cation with quantized error covariance matrices and estimate vectors is considered. In that
context, a quantizer for unbiased estimate vectors is derived, that retains their unbiasedness
and provides a conservative estimate of the error covariance matrix of the quantization re-
sult. Finally, it is demonstrated how the covariance quantization methods from Section 4 can
be applied in conjunction with the unbiased estimate quantizer to retain unbiasedness and
conservativeness of the fusion methods.

5.1. Optimal Fusion and Covariance Intersection

In the following, let xa ∈ Rn and xb ∈ Rn be unbiased estimates of some random
vector x ∈ Rn and let

Ccc = C

([
xa − x
xb − x

])
=

[
Caa Cab
Cba Cbb

]
(24)

be their joint error covariance matrix. The fused estimate and its associated estimated error
covariance matrix will be denoted by x f and C f f , respectively. Note that C f f need not
necessarily be identical to the actual error covariance matrix C(x f − x). In case the cross-
covariance Cab is known, the optimal fusion result in the BLUE (best linear unbiased
estimator) sense is given by the Bar-Shalom–Campo formulas [22]

x f = xa + (Caa − Cab)(Caa + Cbb − Cab − Cba)
−1(xb − xa) , (25)

C f f = Caa − (Caa − Cab)(Caa + Cbb − Cab − Cba)
−1(Caa − Cba) . (26)

The estimated error covariance matrix computed using the Bar-Shalom–Campo for-
mulas is exact, i.e., C f f = C(x f − x) holds [22]. The cross-covariance Cab required by (25)
and (26) can be tracked, e.g., using samples [41] to encode the cross-correlations or by
a square-root decomposition [24] of the noise covariance matrices. Both approaches re-
quire additional data to be transmitted. If the error covariance matrices Caa and Cbb
are not known, but upper bounds Ĉaa � Caa and Ĉbb � Cbb are available, apply-
ing (25) and (26) using the estimates yields a conservative error covariance matrix estimate
C f f � C(x f − x) [42].

In the common case where the cross-covariance is unknown but not negligible, setting
Cab = 0 in (25) and (26) generally does not produce a conservative error covariance matrix
estimate, i.e., C f f � C(x f − x). This means that the confidence ellipsoid induced by C f f
does not contain the confidence ellipsoid induced by C(x f − x) for any ε > 0. An example
of this behavior is illustrated on the left side of Figure 2.
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Figure 2. Confidence ellipsoids of Caa and Cbb (blue), C(x f − x) (orange, solid), and C f f (orange,
dashed) when Cab 6= 0. The result obtained using optimal fusion with the erroneous assumption
Cab = 0 is shown on the left. The result achieved using CI is shown on the right.

The covariance intersection (CI) algorithm, originally devised by Julier and Uhlmann [27],
enables the conservative and unbiased fusion of the estimates xa and xb, regardless of their
generally unknown cross-covariance, as long as conservative error covariance matrix estimates
Ĉaa � Caa and Ĉbb � Cbb are available. The CI algorithm itself is defined by

C−1
f f = ωĈ−1

aa + (1−ω)Ĉ−1
bb , (27)

C−1
f f x f = ωĈ−1

aa xa + (1−ω)Ĉ−1
bb xb , (28)

where any ω ∈ [0, 1] gives an unbiased estimate x f and an upper bound C f f on its error
covariance matrix C(x f − x). The weight ω is determined numerically by minimizing
either the trace or the determinant of C f f . The right side of Figure 2 shows that using CI,
the confidence ellipsoid induced by C f f contains the one induced by C(x f − x).

5.2. Unbiased Conservative Quantization of Estimates

Applying the Bar-Shalom–Campo formulas (25) and (26) and the covariance inter-
section Equations (27) and (28) to quantized estimate vectors requires some consideration
as naively quantizing the unbiased estimate vectors xa and xb does not retain their unbi-
asedness which in turn leads to biased fused estimates x f . Moreover, quantizing estimate
vectors increases their error covariance matrices, which has to be accounted for in order
to retain conservativeness of the fusion algorithms. To address these issues we derive a
randomized quantizer for unbiased estimate vectors that produces unbiased quantized
estimate vectors and provides an upper bound on their error covariance matrices.

We begin by introducing a randomized quantizer qs : Ds → Cs with Ds ⊂ R and
Cs ⊂ R satisfying min(Ds), max(Ds) ∈ Cs, that has the desired unbiasedness property.
The quantizer was proposed for estimating quantization in a different but equivalent form
in [15] (see also [35,43]) and is defined by

qs(x̂) = rd(x̂ + n) , (29)

where x̂ ∈ R is an estimate of a random variable x ∈ R, rd(·) rounds to the nearest
codeword in Cs, and n ∈ R is independently uniformly distributed in the closed in-
terval [−δs/2, δs/2]. The quantizer therefore consists of rounding combined with addi-
tive dither [44]. The codebook is given by Cs = {xmax − kδs | 0 ≤ k < 2b}, where xmax
is the maximum codeword, δs = xmax/2b−1 is the increment between adjacent code-
words, and b is the number of bits required to represent a codeword. The assumption
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min(Ds), max(Ds) ∈ Cs guarantees a quantization error bounded by δs. It is shown in [15]
that qs satisfies

E(qs(x̂)) = E(x̂) , C(qs(x̂)) ≤ C(x̂) + δ2
s , (30)

that is, it does not add bias and provides an upper bound on the quantization result’s
variance. Undesirably, the upper bound is on the variance C(qs(x̂)), not the error variance
C(qs(x̂)− x) and the two quantities coincide only when x is deterministic.

We propose a randomized quantizer qm : Dm → Cm for coefficient-wise bounded
estimate vectors x̂ ∈ Dm ⊂ Rn of some random vector x ∈ Rn that is an coefficient-wise
version of the one given by (29) [34]. Its domain and codebook are the Cartesian products
Dm = Dn

s and Cm = Cn
s . The quantization process can thus be described by

qm(x̂) = rd(x̂ + n) (31)

where rd(·) now denotes coefficient-wise rounding and n ∈ Rn has independent co-
efficients uniformly distributed in the closed interval [−δs/2, δs/2]. As an immediate
consequence of (30) applied coefficient-wise to qm(x̂), we have the following corollary.

Corollary 3. Let qm : Dm → Cm be as in (31) and x̂ ∈ Dm, then E(qm(x̂)) = E(x̂) holds.

Due to rounding and dither, the quantized estimate’s error qm(x̂)− x contains addi-
tional noise compared to the original estimate’s error x̂− x. Consequently, the known error
covariance matrix C(x̂− x) of the original estimate must be adapted to reflect the increased
uncertainty. In general, computing the exact covariance matrix of qm(x̂)− x is infeasible
without knowledge of the distribution (if the distribution of x̂ was known, the approach
in [45] could be used to approximate C(qm(x̂) − x) arbitrarily well) of x̂. Therefore, a
conservative upper bound for C(qm(x̂)− x) in a similar vein as (30), is determined.

Theorem 8. Let qm : Dm → Cm be as in (31) and let x̂ ∈ Dm be an estimate of a random vector
x ∈ Rn, then C(qm(x̂)− x) � C(x̂− x) + δ2

s I holds.

Proof. The estimation error covariance matrix after quantization can be expanded into

C(qm(x̂)− x) = C(x̂− x) +C(qm(x̂)− x̂) +C(x̂− x, qm(x̂)− x̂) +C(qm(x̂)− x̂, x̂− x)

by adding and subtracting x̂. The cross-terms can be shown to be zero by using the defini-
tion of qm, unbiasedness, and the tower rule to obtain

C(x̂− x, qm(x̂)− x̂) = E
(
E
(
(x̂− x)(rd(x̂ + n)− x̂)>

∣∣∣x̂)) . (32)

Due to qm being unbiased (also conditionally), E(rd(x̂ + n)|x̂) = x̂ holds. Since x and
n are independent, we have E

(
xrd(x̂ + n)>

∣∣x̂) = E(x|x̂)E
(
rd(x̂ + n)>

∣∣x̂). Applying these
equations to the inner expectation of (32) shows that

C(x̂− x, qm(x̂)− x̂) = E
(

x̂x̂> − x̂x̂> −E(x|x̂)x̂> +E(x|x̂)x̂>
)
= 0 ,

as claimed. As C(x̂− x) is known, it only remains to bound C(qm(x̂) − x̂). Since qm is
(conditionally) unbiased and n has independent coefficients,

E
(
(qm(x̂)i − x̂i)(qm(x̂)j − x̂j)

∣∣∣x̂) = E
(

qm(x̂)i − x̂i
∣∣∣x̂)E(qm(x̂)j − x̂j

∣∣∣x̂) = 0

follows for i 6= j, which by the tower rule and unbiasedness results in

C(qm(x̂)i − x̂i, qm(x̂)j − x̂j) = E
(
(qm(x̂)i − x̂i)(qm(x̂)j − x̂j)

)
= 0
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for i 6= j. Furthermore, it holds that |qm(x̂)i − x̂i| ≤ δs and thus C(qm(x̂)i − x̂i) ≤ δ2
s for

i = 1, . . . , n. Combined, this means that C(qm(x̂)− x̂) � δ2
s I. The claimed upper bound

then follows immediately.

The upper bound given above is fast to compute and does not require any knowledge
of the distribution of either x or x̂, at the cost of being overly conservative, particularly if a
component of x̂ is concentrated between two codewords or for large δs.

5.3. Quantized Optimal Fusion and Covariance Intersection

We are now in the position to formulate a process that allows to apply the Bar-Shalom–
Campo formulas or covariance intersection to quantized estimates and covariance matrices
while retaining unbiasedness and conservativeness of said fusion methods. The proposed
approach is as follows:

1. Quantize the estimates xa and xb so that the quantization results remain unbiased.
Account for the potential increase in uncertainty due to the quantization process.
Both goals are achieved by employing the unbiased, conservative estimate quantizer
introduced in the previous subsection.

2. Quantize the error covariance matrices of the quantized estimates conservatively.
This is done using either the quantizer from Section 4.1 or the one from Section 4.2.

3. Apply the Bar-Shalom–Campo formulas or covariance intersection to the quantized
estimates and quantized error covariance matrices. Since the quantized estimates are
unbiased and the quantized error covariance matrices are conservative the fusion
result will also be unbiased and conservative.

In the following, the above process using CI in conjunction with either the diago-
nal dominance (DD)-based quantizer from Section 4.1 or the modified Cholesky (MC)
decomposition-based quantizer from Section 4.2 will be referred to as DD-CI and MC-CI,
respectively. The methods obtained by replacing CI with the optimal (OPT) fusion formulas
in the DD-CI and MC-CI methods will be referred to as DD-OPT and MC-OPT.

6. Results and Discussion

The total quantization errors of the proposed covariance matrix quantizers are eval-
uated using randomly selected covariance matrices. In addition, the performance of
DD-CI/OPT and MC-CI/OPT relative to CI/optimal fusion is evaluated by applying
the methods to randomly generated data. Finally, the DD-CI and MC-CI approaches are
evaluated in a decentralized 2D target tracking scenario.

6.1. Evaluation of the Covariance Quantizers

The two proposed covariance matrix quantizers are applied to independent random
covariance matrices. The random matrices are generated as X = LL> where L ∈ Rn×n has
zero-mean, normally distributed elements with variance one. The Frobenius norms of the re-
sulting quantization error matrices are averaged over all samples. Figure 3 shows the aver-
aged Frobenius norm of the diagonal dominance based quantizer and the relative improve-
ment in average norm achieved by the modified Cholesky decomposition based quantizer
for varying numbers of bits per codeword b and matrix dimensions n. For the codebooks,
xmax = 50.0 was used and 10,000 samples were included in each average.

The quantization error increases monotonically as b decreases with larger n leading to
stronger deterioration of performance. The dependency on b is a result of the quantization
resolution decreasing exponentially for decreasing b. The dependency on n is due to
the fact that for increasing n the quantization error per element remains roughly the same,
whereas the number of matrix elements increases quadratically. Therefore the off-diagonal
quantization error increases for increasing n. The shift applied to the diagonal elements
to ensure conservativeness must then grow larger with increasing n, thereby increasing
the diagonal quantization error. The relative improvement in average norm can be seen to
be approximately constant over b, the notable exception being b ≤ 2 where there is little
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to no improvement. This behavior can be understood by considering the limiting case of
b = 1. In said case, each element of the quantized matrix is either zero or the maximum
codeword of the respective codebook. Since the off-diagonal elements are identical in both
approaches and the diagonal elements are always rounded up, the quantized matrix and
thus the quantization error are identical in both approaches.
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Figure 3. Average Frobenius norm of the quantization error matrix ∆dd of the diagonal dominance-
based quantization approach (top), and the relative improvement achieved by the modified Cholesky-
based quantization approach (bottom) for varying dimensions n and bits per codeword b.

6.2. Evaluation of Quantized Optimal Fusion and Quantized Covariance Intersection

The test data for this evaluation are generated by first drawing a zero mean Gaussian
random vector x ∈ Rn with covariance matrix C(x) = I. This vector represents the ground
truth. Then, a random vector z = [z>a , z>b ]

> ∈ R2n is drawn from a zero mean Gaussian dis-
tribution with covariance matrix LL>, where L ∈ R2n×2n has zero mean Gaussian elements
with variance one. Finally, two correlated estimates xa = x + za and xb = x + zb of x are
computed. Optimal fusion, covariance intersection and their quantized versions are applied
to the estimates xa and xb using their known conditional (cross-)covariance matrices

C(xa|L) = C(x) +C(za|L)
C(xb|L) = C(x) +C(zb|L)

C(xa, xb|L) = C(x) +C(za, zb|L).

The mean squared errors MSE f = E(‖x f − x‖2), where x f is the fused estimate with f
indicating the fusion approach, are computed by repeatedly generating test data, applying
the fusion approaches, and averaging the squared Euclidean norm of the resulting estimate
errors. The mean traces MTR f = E(tr(C f f )) of the error covariance estimates C f f , where
f indicates the fusion approach, are also computed using averaging. If any quantization
operation fails for any of the test data, the computed MSE and averaged trace are discarded.

Figure 4 shows the relative increase (MSEDD−OPT −MSEOPT)/MSEOPT of the MSE
and the relative increase (MTRDD−OPT −MTROPT)/MTROPT of the averaged trace when
using DD-OPT instead of OPT. Figure 5 shows the relative increase
(MSEMC−OPT −MSEDD−OPT)/MSEDD−OPT of the MSE and the relative increase of the av-
eraged trace (MTRMC−OPT −MTRDD−OPT)/MTRDD−OPT , when using MC-OPT instead
of DD-OPT. Figures 6 and 7 show the same quantities but compare DD-CI to CI and MC-
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CI to DD-CI, respectively. In all figures, varying dimensions n and numbers of bits per
codeword b are considered both with and without quantizing estimate vectors. The re-
sults are obtained by averaging over 1000 independent trials and using xmax = 65.0 for
the codebooks Cm, Cd, and Co.
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Figure 4. Relative increase of actual MSE (solid)/averaged trace (dashed) of DD-OPT with respect to
OPT for varying dimensions n and bits per codeword b. Top row with quantized estimate vector and
quantized error covariance, bottom row only with quantized error covariance.
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Figure 5. Relative increase of actual MSE (solid)/averaged trace (dashed) of MC-OPT with respect to
DD-OPT for varying dimensions n and bits per codeword b. Top row with quantized estimate vector
and quantized error covariance, bottom row only with quantized error covariance.
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Figure 6. Relative increase of actual MSE (solid)/averaged trace (dashed) of DD-CI with respect to
CI for varying dimensions n and bits per codeword b. Top row with quantized estimate vector and
quantized error covariance, bottom row only with quantized error covariance.
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Figure 7. Relative increase of actual MSE (solid)/averaged trace (dashed) of MC-CI with respect to
DD-CI for varying dimensions n and bits per codeword b. Top row with quantized estimate vector
and quantized error covariance, bottom row only with quantized error covariance.

From Figure 4, it can be seen that for DD-OPT the increase of the estimate MSE
and of the averaged trace of the error covariance estimate is moderate except for small
b. Moreover, the increase in the averaged trace is larger than the increase in MSE for all
n and b. This is to be expected, since the quantization process retains conservativeness.
The dimensionality of the test data has varying influence on the performance, depending on
b and on whether quantized estimates are being used. Using quantized estimate vectors is
seen to adversely affect performance. In fact, when quantizing the estimate vectors the error
covariance quantization fails below five bits per codeword, due to the excessively inflated
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error covariance estimate produced by the estimate quantization. Figure 5 shows that
the MC-OPT approach performs better than the DD-OPT approach in terms of the average
trace of the error covariance estimate and in most cases also in terms of actual MSE. Larger
n leads to larger improvements. The improved performance in terms of average trace is
guaranteed by the theoretical results from Section 4.2. Note that there is no guarantee that
the actual MSE reduces if the error covariance matrices are quantized more accurately.
It can also be seen that there is an optimal number of bits per codeword and that for small
b there is little to no improvement. The latter result is due to the phenomenon discussed
in Section 6.1. The results for CI, DD-CI, and MC-CI displayed in Figures 6 and 7 exhibit
the same general behavior as the results for OPT, DD-OPT, and MC-OPT discussed above,
also in terms of theoretical guarantees. One notable difference is the relative improvement
of actual MSE. In contrast to optimal fusion, the improvement does not seem to diminish
for large n and small b.

6.3. Evaluation of Quantized Covariance Intersection in 2D Tracking Scenario

This evaluation scenario considers two sensor nodes that cooperatively track an object.
The object is characterized by a discrete-time (nearly) constant acceleration model

xk+1 =

[
A 0
0 A

]
xk + wk , wk ∼ N

(
0,
[

Q 0
0 Q

])
,

affected by the zero-mean white Gaussian noise term wk ∈ R6. The six-dimensional state
xk ∈ R6 consists of position, velocity, and acceleration in both the x1- and x2-direction.
The corresponding matrices of the process model are given by

A =

1 τ 1
2 τ2

0 1 τ
0 0 1

 , Q = 0.5

 1
20 τ5 1

8 τ4 1
6 τ3

1
8 τ4 1

3 τ3 1
2 τ2

1
6 τ3 1

2 τ2 τ

 ,

where τ > 0 is the time step [46]. For the Monte Carlo simulation with 1000 runs, the initial
states x0 are drawn from

x0 ∼ N





0
0

0.2
0
0

0.3

,



0.5 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.05 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.05



 .

Two sensor nodes a and b are simulated that observe projections of position and
velocity according to

za,b
k =

[
cos(θa,b) sin(θa,b) 0 0 0 0

0 0 cos(θa,b) sin(θa,b) 0 0

]
xk + va,b

k

with θa = π
4 , θb = −π

8 . The zero-mean white Gaussian measurement noise terms
va

k , vb
k ∈ R2 have the covariance matrix

Ra = 0.5
[

1 0
0 0.1

]
, Rb = 0.8

[
1 0
0 0.5

]
,

respectively. Each sensor node uses a Kalman filter to compute estimates for 50 time steps.
Sensor node a transmits its state and error covariance estimate to sensor node b at every
5th time step. Prior to transmission, it quantizes the estimates with the proposed method
and codebook parameter xmax = 30.0. Node b fuses its own estimate with the received one
by employing CI. Every 11th time step, sensor node b quantizes and transmits its state and
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error covariance estimate to node a, which again fuses it with its own estimate using CI.
The receiving node in both cases reinitializes its own estimate with the fusion result.

Figures 8 and 9 compare DD-CI and MC-CI using different numbers of bits per
codeword, against CI using 64-bit floating point numbers. The results for higher numbers
of bits per codeword are close to the estimates obtained through CI with 64-bit floats.
However, even a 5-bit quantization still yields reasonable results. Quantization using less
than 5 bits per codeword leads to too conservative bounds on the error covariance matrices
that cannot be encoded using the given codebook. The estimate MSE exhibits an initial
transient peak. It is here, that the improved performance of MC-CI over DD-CI can be
observed most clearly.
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Figure 8. The estimate MSE of sensor node b plotted over time step k for varying bits per codeword
using DD-CI. ‘CI’ indicates the use of a 64 bit floating point representation for each scalar.
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Figure 9. The estimate MSE of sensor node b plotted over time step k for varying bits per codeword
using MC-CI. ‘CI’ indicates the use of a 64 bit floating point representation for each scalar.

7. Conclusions

Available bandwidth and energy budget can be limiting factors for the data transmis-
sion capabilities of interconnected sensor systems. Algorithms for decentralized informa-
tion fusion in networks require the exchange of estimates and, in some cases, covariance
matrices. If covariance matrices need to be transmitted, they dominate the amount of trans-
mitted data. In this paper, we have proposed two methods for the conservative quantization
of covariance matrices, a method for the unbiased conservative quantization of estimates,
and have applied them to optimal fusion and covariance intersection. The presented quan-
tization approaches retain unbiasedness and conservativeness of the considered fusion
methods while reducing the amount of data that must be transmitted. We have empirically
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demonstrated the effectiveness of the proposed covariance quantization methods, indi-
vidually and in conjunction with fusion methods. Further improvements in performance
could be achieved by using varying, possibly data-dependent quantization resolutions for
subsets of the coefficients of the considered covariance matrices. Moreover, the proposed
quantization schemes can also be applied to other sensor fusion algorithms like inverse
covariance intersection. For future work, theoretical results concerning the convergence
behavior of state and covariance estimates when using quantized data in a decentralized
setting are of interest. Conservative vector quantization for covariance matrices is also
worth consideration.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/9/3059/s1, Python implementations of the quantization approaches.
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