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Abstract: In this work, we present a novel scheme for nonlinear hyperspherical estimation using the
von Mises–Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for
the efficient and informative representation of the underlying distribution in a geometrically adaptive
manner. The proposed deterministic sampling approach allows manually configurable sample
sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the
progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction
with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical
tracking scenario based on simulations. Numerical results show the evidently superior performance
of the proposed scheme over state-of-the-art von Mises–Fisher filters and the particle filter.

Keywords: sensor fusion; recursive Bayesian estimation; directional statistics; unscented transform;
nonlinear hyperspherical filtering

1. Introduction

The use of inferences on (hyper-)spherical states is ubiquitous in a large variety of
application scenarios, such as protein structure prediction [1], rigid-body motion esti-
mation [2,3], remote sensing [4], omnidirectional robotic perception [5,6] and scene seg-
mentation and understanding [7,8]. In most of these tasks, quantifying uncertainties in
hyperspherical domains is crucial (for brevity, the word “hypersphere” is used to denote
spheres of any dimension in unspecified cases throughout the paper) . Therefore, the von
Mises–Fisher distribution [9,10] has become a popular probabilistic model defined on the
unit hypersphere Sd−1 =

{
x ∈ Rd : ‖x‖ = 1

}
.

The recursive estimation of hyperspherical random variables using the von Mises–
Fisher distribution is nontrivial due to its nonlinear and periodic nature on directional
manifolds [10]. Samples generated from the underlying distribution are typically employed
to propagate estimates through system dynamics or to evaluate the likelihoods given
certain measurements. In [11,12], rejection sampling-based approaches were proposed to
generate random samples for von Mises–Fisher distributions in arbitrary dimensions with
an unbounded runtime. A deterministic runtime without resorting to rejection schemes
is achievable, although only for specific numbers of dimensions; e.g., using the methods
proposed in [13] on the unit sphere S2 or that given in [14] for odd numbers of dimensions.

Although a random sampling-based von Mises–Fisher filter is effective for nonlinear
hyperspherical estimation, it cannot deliver reproducible results and may lack runtime
efficiency (especially under strong nonlinearities or in high-dimensional state spaces).
Therefore, deterministic sample sets are desired for an efficient and accurate representation
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of the underlying distribution. Reminiscent of the unscented Kalman filter (UKF) for
linear domains, the so-called unscented von Mises–Fisher filter (UvMFF) was proposed
in [15] on unit hyperspheres Sd−1 ∈ Rd. Following the idea of the unscented transform
(UT), 2 d− 1 deterministic samples are drawn in a way that preserves the mean resultant
vector of the underlying von Mises–Fisher distribution. Compared with confining a UKF
to the manifold structure, this approach delivers superior performance for nonlinear
hyperspherical tracking.

There remains considerable space for improvement for state-of-the-art von Mises–
Fisher filtering schemes in the area of high-performance hyperspherical estimation. The
deterministic sampling method used in the current UvMFF [15] only allows fixed numbers
of hyperspherical samples (i.e., 2 d− 1 samples on Sd−1) in accordance with the unscented
transform. Moreover, the current UvMFF only allows identity measurement models with
the measurement still confined to hyperspheres, and the measurement noise must be von
Mises–Fisher-distributed. Thus, its practical deployment to arbitrary sensor modalities
requires reapproximating the measurement model and the noise term [16], leading to
additional preprocessing and errors. For arbitrary measurement models, directly reweight-
ing the samples and fitting a posterior von Mises–Fisher to them is theoretically feasible.
However, a limited number of deterministic samples is prone to degeneration, which is
particularly risky under strong nonlinearities or with peaky likelihood functions. Therefore,
it is important to enable deterministic sample sets of flexible sizes to better represent the
underlying distribution while satisfying the condition of the unscented transform.

Generating deterministic sample sets of configurable sizes for continuous distributions
was originally investigated in Euclidean spaces. In [17], deterministic samples were gener-
ated from a multivariate Gaussian distribution by minimizing the statistical divergence
between its supporting Dirac mixture and the underlying continuous densities. For this,
the Cramér–von Mises distance was generalized to the multivariate case based on the
so-called localized cumulative distribution (LCD) to quantify the statistical divergence.
This Dirac mixture approximation (DMA)-based method was further improved in [18] for
better efficiency and extended in [19] for Gaussian mixtures.

In the context of recursive estimation based on distributions from directional statis-
tics [10], deterministic samples are typically drawn by preserving moments up to a certain
order. In [20], five deterministic samples were generated for distributions on circular
domains; e.g., for the wrapped normal or the von Mises distribution [21]. For this, a
sample set was scaled to match the first and the second trigonometric moments of the
distribution. Sample sets for different scaling factors can then be merged to a larger set via
superposition. In [22], a DMA-like sampling scheme was proposed to generate arbitrary
numbers of deterministic samples while preserving the circular moments via optimization.
In [23], deterministic samples were drawn from typical circular distributions via optimal
quadratic quantification based on the Voronoi cells. For unit hyperspheres, major efforts
have been dedicated to the Bingham distribution, where the basic UT-based sampling
scheme in [24] (2 d− 1 samples as for Sd−1 ∈ Rd) was extended for arbitrary sample sizes,
first in the principal directions [25] and then for the entire hyperspherical domain [26].
The sampling paradigm was DMA-based, with an on-manifold optimizer minimizing the
statistical divergence of the samples to the underlying distribution under the moment
constraints up to the second order. Based on this, improved filtering performance has been
shown for quaternion-based orientation estimation.

Although non-identity measurement models can be handled by enlarging the sizes of
deterministic samples in the update step, considerably large sample sizes are still desired
in the face of degeneration issues (e.g., due to strong nonlinearities or peaky likelihoods).
Thus, there remains the necessity to improve sample utilization. In [27], a novel progressive
update scheme was proposed for nonlinear Gaussian filtering by decomposing the like-
lihood into a product of likelihoods with exponents adaptively determined by confining
sample weight ratios within a pre-given threshold. Consequently, deterministic samples
of small sizes are less likely to degenerate and become more deployable for nonlinear
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estimation. Similar schemes have also been proposed for estimating angular systems [28]
and Bingham-based hyperspherical filtering [29] with non-identity measurement models.

To date, there exists no flexible deterministic sampling scheme for von Mises–Fisher
distributions. Existing optimization-based paradigms may have undesirable properties,
such as local minima or a deteriorated runtime, for large sample sizes, which prohibit
their deployment to online estimation tasks. Furthermore, no sample-efficient method is
available for von Mises–Fisher filtering with non-identity measurement models.

In consideration of the state-of-the-art approaches above, we propose a novel algo-
rithm for von Mises–Fisher distributions in arbitrary dimensions to obtain deterministic
sample sets with manually configurable sizes. Based on hyperspherical geometries, sam-
ples are drawn coherently to the isotropic dispersion of the underlying distribution without
optimization while satisfying the requirement of the unscented transform. Moreover, a
novel progressive update scheme is developed in conjunction with the proposed sampling
approach for nonlinear von Mises–Fisher filtering. Furthermore, an extensive evaluation
of nonlinear spherical estimation is provided. Compared with existing von Mises–Fisher
filtering schemes and the particle filter, the proposed progressive von Mises–Fisher filter
using isotropic sample sets delivers superior performance with regard to tracking accuracy,
runtime and memory efficiency.

The remainder of the paper is structured as follows. Preliminaries for the von Mises–
Fisher distributions and the corresponding hyperspherical geometry are given in Section 2.
Based on this, the novel isotropic deterministic sampling scheme is introduced in Section 3.
In Section 4, the proposed progressive deterministic update for von Mises–Fisher filtering
is provided, followed by a simulation-based benchmark of nonlinear spherical tracking in
Section 5. The work is concluded in Section 6.

2. Preliminaries
2.1. General Conventions of Notations

We use underlined lowercase variables x ∈ Rd to denote vectors. Random variables
are denoted by lowercase boldface letters x. Uppercase boldface letters B are used to denote
matrices. Sd−1 ⊂ Rd denotes the unit (d − 1)-sphere embedded in the d-dimensional
Euclidean space. In the context of recursive Bayesian estimation, we denote the posterior
density of the state at time step t, which relates to all measurements up to time step t, by
f e
t . f p

t+1 is used for the predicted density of the state at time step t + 1 with regard to all
measurements up to t. The rest of the symbols used are explained in the course of the
following pages.

2.2. The von Mises–Fisher Distribution

Defined on the unit hypersphere Sd−1 ⊂ Rd, the von Mises–Fisher distribution
x ∼ VMF (ν, κ) is parameterized by the mode location ν ∈ Sd−1 ⊂ Rd and the con-
centration parameter κ ≥ 0. Its probability density function is given in the form

fvMF(x) = Nd(κ) · exp(κ ν>x), x ∈ Sd−1 , (1)

with the normalization constant

Nd(κ) =

( ∫

Sd−1
exp(κ ν>x)dx

)−1

=
κd/2−1

(2π)d/2 Id/2−1(κ)
(2)

depending on the concentration κ and the dimension d. Id/2−1(κ) denotes the modified
Bessel function of the first kind and order d/2− 1. Note that the von Mises–Fisher distri-
bution quantifies uncertainties using an arc length-based metric, which is coherent to the
hyperspherical manifold structure. The distribution is unimodal and exhibits an isotropic
dispersion. By generalizing the trigonometric moment from the circular to the hyper-
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spherical domain, we obtain the mean resultant vector of the von Mises–Fisher distribution
as follows

α = E(x) =
∫

Sd−1
x fvMF(x)dx = Ad(κ) ν , withAd(κ) =

Id/2(κ)

Id/2−1(κ)

denoting the ratio of two Bessel functions. Therefore, the mean resultant vector is essen-
tially a re-scaled hyperspherical mean ν, with a length of ‖α‖ = Ad(κ). Given a set of
weighted samples {(xi, ωi)}n

i=1 ⊂ Sd−1 with the weights ∑n
i=1 ωi = 1, a von Mises–Fisher

distribution can be fitted to the sample mean α̂ = ∑n
i=1 ωi xi via

ν̂ = α̂/||α̂|| and κ̂ = A−1
d (α̂) . (3)

To obtain the concentration κ̂, one needs to solve the inverse of the Bessel function ratio
in Equation (2), which can be efficiently obtained using the algorithm introduced in [30].
Moment matching to the mean resultant vector has been proven to be equivalent to maxi-
mum likelihood estimation (MLE) [31] (Section A.1) for the von Mises–Fisher distribution.
Moreover, this also guarantees minimal information loss (quantified by the Kullback–
Leibler divergence) when fitting a von Mises–Fisher to an arbitrary distribution [32] for
stochastic filtering.

2.3. Geometric Structure of Hyperspherical Manifolds

The von Mises–Fisher distribution quantifies hyperspherical uncertainty in relation
to the geodesic curve length on the manifold to the mode. To establish the proposed
deterministic sampling scheme, we first investigate the hyperspherical domain from the
perspective of Riemannian geometry [33]. Any point x ∈ Sd−1 can be mapped to the
tangent space at ν ∈ Sd−1 via the logarithm map

x̃ = Logν(x) =
(
x− cos(γ) ν

) γ

sin(γ)
∈ TνSd−1 , with γ = arccos(ν>x) ,

while preserving its geodesic distance to ν; i.e., |γ| = ‖Logν(x)‖. Inversely, any point
x̃ ∈ TνSd−1 can be retracted to the unit hypersphere via the exponential map

x = Expν(x̃) = cos
(
‖x̃‖

)
ν +

sin
(
‖x̃‖

)

‖x̃‖ x̃ ∈ Sd−1 .

When expressing logarithm-mapped points x̃ ∈ TνSd−1 with regard to an orthonormal
basis of the tangent space, their local coordinates x̃l essentially form a (d − 1)-ball of
radius π—i.e., x̃l ∈ Bd−1

π ⊂ Rd−1—which is bounded by the hypersphere Sd−2
π of radius

π. To avoid ambiguities, we denote the logarithm and exponential maps defined for
hyperspherical geometry above with capitalized first letters to distinguish them from the
common logarithmic and exponential functions used in algebra [33].

3. Isotropic Deterministic Sampling

Considering the isotropic dispersion of the von Mises–Fisher distribution, we design a
sample set layout with one sun sample at the mode surrounded by λ hyperspherical orbits
of interval ζ. On each orbit, τ planet samples are placed (quasi-)equidistantly, thereby
inducing a sample set X ⊂ Sd−1 of cardinality λτ + 1. All samples are equally weighted.
One has to determine the interval value ζ that ensures that the samples are confined to the
mean resultant vector of the underlying distribution, thereby preserving the unscented
von Mises–Fisher filtering paradigm. Based on the introduction in Section 2, details about
deriving the orbit interval follow.

The proposed isotropic deterministic sampling scheme is detailed in Algorithm 1 and
illustrated in Figure 1. Given a von Mises–Fisher distribution on Sd−1, we first place the sun
sample at its mode (Algorithm 1, line 1). The tangent space at the mode, TνSd−1, is bounded
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by the hypersphere Sd−2
π with regard to its local basis Bν (Algorithm 1, line 2). To obtain τ

planet samples on each hyperspherical orbit, we first generate equidistant grid points on the
unit hypersphere Sd−2 using the equal area partitioning algorithm from [34] (Algorithm 1,
line 3 and Figure 1A). Given the sampling configuration, the hyperspherical orbit interval ζ is
then computed in accordance with the requirement of the unscented transform (Algorithm 1,
line 4). Afterward, the obtained sample set {x̃ls }τ

s=1 ⊂ Sd−2 with regard to Bν is transformed
into global coordinates scaled by each orbit radius r ζ (r = 1, . . . , λ) and undergoes the
exponential map to land on the r-th orbit on Sd−1 (Algorithm 1, line 5–9, Figure 1B,C). In
order to determine the orbit interval ζ that guarantees the unscented transform for filtering,
we provide the following derivations.

Algorithm 1: Isotropic Deterministic Sampling
Input: VMF (ν, κ), number of orbits λ, per-orbit resolution τ
Output: deterministic sample set X

1 X← ν ;
2 Bν ← getBasis (ν) ;
3 {x̃ls }τ

s=1 ←equalPartition (Sd−2, τ) ;
4 ζ ← computeInterval (λ, τ) ;
5 for r ← 1 to λ do
6 for s← 1 to τ do
7 xr,s ← Expν(r ζ Bν x̃ls ) ;
8 X← X ∪ xr,s ;
9 end

10 end
11 return X ;

(A) (B) (C)

Figure 1. Illustration of isotropic deterministic sampling with (λ, τ) = (3, 10) for a von Mises–Fisher
distribution (κ = 4) on S2. (A) Equal partitioning in TνS2 with regard to its local basis. (B) Scaling
with the UT-preserving interval in TνS2. (C) Exponential map from TνS2 to S2 for placing planet
samples on hyperspherical orbits.

We map each point x̃ls generated by the equal area partitioning algorithm [34] with
regard to Bν to Sd−1 according to Algorithm 1, line 7, and obtain

xr,s = Expν(r ζ Bν x̃ls ) = cos(r ζ) ν + sin(r ζ)Bν x̃ls ∈ Sd−1 ,

with xr,s denoting the s-th planet sample on the r-th hyperspherical orbit. The bold letter
Bν ∈ Rd×(d−1) denotes the matrix transforming coordinates from the local basis Bν to the
global one. Then, the hyperspherical mean of the whole sample set (including the sun
sample) is
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α =
1

λτ + 1

(
ν +

λ

∑
r=1

τ

∑
s=1

xr,s

)

=
1

λτ + 1

(
ν + τ

λ

∑
r=1

cos(r ζ) ν +
λ

∑
r=1

τ

∑
s=1

sin(r ζ)Bν x̃ls

)
.

(4)

For typical configurations of the equal area partitioning algorithm for unit hyper-
spheres [34], the sample set {x̃ls }τ

s=1 is zero-centered. Therefore, the formula in Equation (4)
can be further simplified as

α =
1

λτ + 1

(
1 + τ

λ

∑
r=1

cos(r ζ)

)
ν .

By constraining the sample set mean to be identical to the mean resultant vector of the
underlying distribution—i.e., α = Ad(κ) ν—the hyperspherical moment in Equation (3) is
maintained, thereby satisfying the requirement of the unscented transform. Consequently,
we have

λ

∑
r=1

cos(r ζ) =
(λτ + 1)Ad(κ)− 1

τ
.

By exploiting Lagrange’s trigonometric identity [35] (Section 2.4.1.6), the finite series
in the equation above can be further simplified, and we obtain

sin
(
(λ + 0.5)ζ

)

2 sin(0.5 ζ)
=

(λτ + 1)Ad(κ)− 1
τ

+
1
2

.

The left-hand side fits the form of the (scaled) Dirichlet kernel [36] Dλ(ζ) and the
desired orbit interval ζ is obtained by solving the equation

Dλ(ζ) =
(λτ + 1)Ad(κ)− 1

τ
+

1
2

, withDλ(ζ) =
sin
(
(λ + 0.5)ζ

)

2 sin(0.5 ζ)
, ζ ∈

[
0,

π

τ

]
. (5)

Note that Equation (5) does not have a closed-form solution. It is trivial to prove that
the maximum of the Dirichlet kernel is obtained at ζ = 0 withDmax

λ (ζ) = Dλ(0) = λ + 0.5.
Meanwhile, the constant on the right-hand side of Equation (5) is smaller than Dmax

λ (ζ)
given the Bessel function ratio Ad(κ) ∈ (0, 1) for κ > 0. Therefore, Equation (5) is solvable
for ζ ∈ [ 0, π/τ ].

3.1. Numerical Solution for Equation (5)

Instead of deploying a universal numerical solver (e.g., the function solve in Matlab)
to solve Equation (5) as in our preceding work [37], we now provide a tailored Newton’s
method with iterative steps of a closed form. For that, the first derivative of the Dirichlet
kernel is provided as follows:

D ′λ(ζ) =
(λ + 0.5) cos

(
(λ + 0.5)ζ

)
sin(0.5 ζ)− 0.5 sin

(
(λ + 0.5)ζ

)
cos(0.5 ζ)

2
(

sin(0.5 ζ)
)2

= 0.5 (λ + 0.5) cos
(
(λ + 0.5)ζ

)
csc(0.5 ζ)− 0.5Dλ(ζ) cot(0.5 ζ) .

Then, the (k + 1)-th Newton step for updating ζk is given as

ζk+1 = ζk −
Dλ(ζk)−

(
(λτ + 1)Ad(κ)− 1

)
/τ − 0.5

0.5 (λ + 0.5) cos
(
(λ + 0.5)ζk

)
csc(0.5 ζk)− 0.5Dλ(ζk) cot(0.5 ζk)

.

To initialize ζ of the Newton’s method, we perform a linear interpolation between 0
and the first non-negative zero of the Dirichlet kernel, π/(λ + 0.5), with regard to their
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function values Dλ(0) = λ + 0.5 and Dλ(π/(λ + 0.5)) = 0, respectively. We substitute the
right-hand side of Equation (5) with c = (λτ + 1)Ad(κ)/τ − 1/τ + 0.5 and obtain

ζ0 =
π (λ + 0.5− c)

(λ + 0.5)2 =
π(λ + 1/τ)(1−Ad(κ))

(λ + 0.5)2 .

In practice, the Newton’s method specified above with the proposed initialization
results in convergence below the error threshold 10−7 within five steps, which is faster than
our implementation in [37] by two orders of magnitude, thereby guaranteeing efficient
sampling performance for online estimation. We now consider the following example
to illustrate the efficacy of the proposed isotropic sampling scheme on von Mises–Fisher
distributions of various configurations.

3.2. Example

We parameterize the von Mises–Fisher distribution on the unit sphere S2 with three
concentration values κ = {0.5, 2, 4}. Without loss of generality, the three distributions are
given the same mode ν = [ 0, 0, 1 ]>. Five configurations are used for the proposed sampling
method; i.e., (λ, τ) = {(3, 10), (5, 10), (5, 20), (10, 10), (10, 20)}. As shown in Figure 2, the
isotropic sample sets are adapted to the dispersions for various parameterizations and
configurations while preserving the mean resultant vector of the underlying distributions.

Version April 19, 2021 submitted to Sensors 7 of 16
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Figure 2. Illustration of the proposed isotropic deterministic sampling schemes with von Mises–Fisher distributions on S2 of different
parameterizations in Sec. 3.2. Samples (red dots) are uniformly weighted and dotted with sizes proportional to weights.
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4. Progressive Unscented von Mises–Fisher Filtering

The proposed sampling method yields isotropic deterministic sample sets of arbitrary
sizes that represent the underlying uncertainty more comprehensively for the unscented
transform. As shown in our preceding work [37], the current unscented von Mises–Fisher
filtering scheme is thus considerably enhanced for nonlinear estimation. However, for
nonlinear and non-identity measurement models, the current paradigm simply reweights
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prior samples based on the likelihoods for the moment-matching of the posterior estimates.
Although superior efficiency was shown over the approach using random samples, large
sizes of deterministic samples are still desirable under strong nonlinearity [37] or with
peaky likelihoods to avoid degeneration. To alleviate this issue, we propose the progressive
unscented von Mises–Fisher filter using isotropic sample sets.

4.1. Task Formulation

We consider the following hyperspherical estimation scenario. The system model is
assumed to be given as an equation of random variables:

xt+1 = a(xt, wt) ,

with xt, xt+1 ∈ Sd−1 ⊂ Rd representing the hyperspherical states and wt ∈W the system
noise. The transition function a : Sd−1 ×W→ Sd−1 maps the state from time step t to t + 1
under consideration of the noise term. The measurement model is given as

zt = h(xt, vt) ,

where zt ∈ Z, vt ∈ V are the measurement and the measurement noise, respectively.
h : Sd−1 ×V→ Z denotes the observation function.

4.2. Prediction Step for Nonlinear von Mises–Fisher Filtering

Given the setup above, one can use the Chapman–Kolmogorov equation to obtain the
prior density from the last posterior f e

t (xt):

f p
t+1(xt+1) =

∫

Sd−1
f e
t (xt)

∫

W
f (xt+1 |wt, xt) f w

t (wt)dwt dxt . (6)

We follow the generic framework of von Mises–Fisher filtering with samples facili-
tating the inference procedure. The estimates from the prediction and update steps are
thus expressed in the form of von Mises–Fisher distributions. We allow arbitrary motion
models. As explained in the following paragraphs, we use two different implementations
of the prediction step according to the forms of the transition density.

(1) For a generic transition density, we first represent the posterior density f e
t (xt) of the

previous step using a sample set generated from the von Mises–Fisher distribution; namely,

f e
t (xt) =

n

∑
i=1

ωe
t,i δ(xt − xe

t,i) . (7)

where δ(·) denotes the Dirac delta distribution and ωe
t,i represents the sample weights

satisfying ∑n
i=1 ωe

t,i = 1. The prediction step in Equation (6) now turns into

f p
t+1(xt+1) =

n

∑
i=1

ωe
t,i

∫

W
f (xt+1 |wt, xe

t,i) f w
t (wt)dwt . (8)

Similarly, the noise distribution f w
t (wt) of arbitrary form is also represented by a

sample set; i.e., f w
t (wt) = ∑m

j=1 ω
w
t,j δ(wt − wt,j), with the sample weights ∑n

j=1 ω
w
t,j = 1.

Equation (6) is then reduced to

f p
t+1(xt+1) =

n

∑
i=1

m

∑
j=1

ωe
t,i ·ω

w
t,j · δ

(
xt+1 − a(xe

t,i, wt,j)
)

,

in which all elements of the Cartesian product of the posterior samples and the noise
samples are propagated through the system function. As also shown in [37], the predicted
von Mises–Fisher is fitted to the samples via moment matching.
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(2) When the noise term wt is additive and von Mises–Fisher-distributed, we obtain a
transition density in the form of a von Mises–Fisher distribution [15]; namely,

f T
t (xt+1 | xt) = fvMF(xt+1; at(xt), κ

w
t ) ,

with a(t) : Sd−1 → Sd−1 being a noise-invariant system function of arbitrary form and
κ

w
t denoting the concentration of the noise distribution. Then, the predicted density in

Equation (6) can be expressed as

f p
t+1(xt+1) =

∫

Sd−1
f T
t (xt+1 | xt) f e

t (xt)dxt

=
∫

Sd−1
fvMF(xt+1; at(xt), κ

w
t ) f e

t (xt)dxt .
(9)

To obtain the predicted density in Equation (9), we first propagate the posterior
sample set {xe

t,i}n
i=1 in Equation (7) through the motion model to obtain the propagated

sample set {at(xe
t,i)}n

i=1. To approximate the density after applying the system function,
a von Mises–Fisher distribution VMF (νt, κt) is then fitted to the propagated samples
α̂ = ∑n

i=1 ωt,i at(xe
t,i) via moment matching as introduced in Equation (3). By convolving

the fitted von Mises–Fisher distribution with that for the noise term, the predicted estimate
VMF (ν

p
t+1, κ

p
t+1) is obtained via ν

p
t+1 = νt and κ

p
t+1 = A−1

d
(Ad(κt)Ad(κ

w
t )
)
. A detailed

formulation of the method can be found in [15] (Algorithm 2).

4.3. Deterministic Progressive Update Using Isotropic Sample Sets

For nonlinear and non-identity measurement models, the posterior density can be
obtained by reweighting the prior samples {xp

t,i}n
i=1 using the likelihood f L

t (ẑt | xt) given
the measurement ẑt as follows:

f e
t (xt | ẑt) ∝ f L

t (ẑt | xt) f p
t (xt) =

n

∑
i=1

ω
p
i,t · f L

t (ẑt | xp
t,i) · δ(xt − xp

t,i) . (10)

The posterior distribution is obtained by fitting a von Mises–Fisher distribution to
the reweighted samples via moment matching. Directly applying the likelihood functions
to the sample weights can be risky (regardless of whether they are generated randomly
or deterministically) for strong nonlinearities or non-identity measurement models with
peaky likelihoods due to the sample degeneration.

Therefore, we develop a novel update approach by deploying the proposed isotropic
sampling to a progressive measurement update scheme [27]. More specifically, the likeli-
hood in Equation (10) is decomposed into a product of l components:

f e
t (xt | ẑt) ∝ f L

t (ẑt | xt) · f p
t (xt) =

( l

∏
k=1

(
f L
t (ẑt | xt)

)∆k

)
· f p

t (xt) , (11)

with ∑l
k=1 ∆k = 1. The exponent ∆k indicates the progression stride and is determined by a

prespecified threshold ε ∈ ( 0, 1 ] to bound the likelihood ratios among the deterministic
samples according to

(
min

(
{vk,i}λτ+1

i=1

)

max
(
{vk,i}λτ+1

i=1

)
)∆k

≥ ε , with vk,i = f L
t (ẑt | xp

k,i) (12)

which is the likelihood of the prior isotropic sample xp
k,i at the k-th progression step. Thus,

we obtain

∆k ≤
log(ε)

log(vmin
k )− log(vmax

k )
,
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with vmin
k = min

(
{vk,i}λτ+1

i=1

)
and vmax

k = max
(
{vk,i}λτ+1

i=1

)
, respectively. The progression

stride is thus adaptively determined based on the variance of the samples’ likelihoods at
the current progression step. We repeat this sampling–reweighting–fitting cycle based on
the density obtained from the previous progression step until the likelihood is fully fused
into the result (exponents ∆k sum to one).

The procedure above is detailed with pseudo-code in Algorithm 2. We first initialize the
posterior density with that obtained from the prediction step and set the remaining progression
horizon to ∆ = 1 (Algorithm 2, line 1–2). At each progression step, an isotropic deterministic
sample set is drawn from the current posterior density f e

t (xt) (Algorithm 2, line 3–4). For each
sample, we evaluate the likelihood for the measurement zt and determine the maximal and
minimal values of the likelihood values (Algorithm 2, line 5–7). Based on this, the current
progression stride ∆k is then computed according to Equation (12) (Algorithm 2, line 8). The
posterior density is then fitted to the samples with the weights re-scaled according to the
obtained progression stride ∆k, as shown in Equation (11) (Algorithm 2, line 9–10). We repeat the
progression step until ∆ reaches zero, which is when the entire likelihood has been incorporated
into the density (Algorithm 2, line 10–11).

Algorithm 2: Isotropic Progressive Update

Input: prior density f p
t (xt), measurement ẑt, likelihood f L

t (zt | xt), threshold ε
Output: posterior density f e

t (xt)

1 f e
t (xt)← f p

t (xt) ;
2 ∆← 1, k← 1 ;
3 while ∆ > 0 do
4 {xp

k,i}λτ+1
i=1 ←sampleIsoDeterministic

(
f e
t (xt), λ, τ

)
; // see Algorithm 1

5 {vk,i}λτ+1
i=1 ← { f L

t (ẑt | xp
k,i)}λτ+1

i=1 ; // element-wise assignment

6 vmin
k ← min

(
{vk,i}λτ+1

i=1

)
;

7 vmax
k ← max

(
{vk,i}λτ+1

i=1

)
;

8 ∆k ← min
(
∆, log(ε)/ log(vmin

k /vmax
k )

)
;

9 {vk,i}λτ+1
i=1 ← {(vk,i)

∆k}λτ+1 ; // element-wise assignment

10 f e
t (xt)← fitVMF

(
{xp

k,i}λτ+1
i=1 , {vk,i}λτ+1

i=1

)
;

11 ∆← ∆− ∆k ;
12 k← k + 1 ;
13 end
14 return f e

t (xt) ;

A full series of progression steps (for ε = 0.02) using isotropic sample sets is illustrated
in Figure 3 and compared with a conventional single-step update. For both approaches,
21 samples are used in the configuration (λ, τ) = (2, 10). As shown in Figure 3A, given
a prior von Mises–Fisher distribution on S2 and a relatively peaky likelihood function,
the single-step update deteriorates evidently due to sample degeneration. In contrast, the
progressive approach (Figure 3B–1 to 4) performs four progression steps and achieves a
superior fusion result.
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Figure 3. Illustration of the deterministic progressive update using isotropic sample sets. Sizes of red dots are proportional to their
weights. The same isotropic sampling configuration, (λ, τ) = (2, 10), is deployed for both the single-step and the progressive updates.

rent paradigm simply reweights prior samples based on the likelihoods for moment-236
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4.1. Task Formulation242

We consider the following hyperspherical estimation scenario. The system model is243

assumed to be given as an equation of random variables244
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zt = h(xt, vt) ,

where zt ∈ Z, vt ∈ V are the measurement and the measurement noise, respectively.248
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4.2. Prediction Step for Nonlinear von Mises–Fisher Filtering250

Given the setup above, one can use the Chapman–Kolmogorov equation to obtain251

the prior density from the last posterior f e
t (xt)252

f p
t+1(xt+1) =

∫

Sd−1
f e
t (xt)

∫

W
f (xt+1 |wt, xt) f w

t (wt)dwt dxt . (6)

We follow the generic framework of von Mises–Fisher filtering with samples facilitating253

the inference procedure. The estimates from the prediction and update steps are thus254

expressed in the form of von Mises–Fisher distributions. We allow arbitrary motion255

models. As explained in the following paragraphs, we use two different implementations256

of the prediction step according to the forms of the transition density.257

Figure 3. Illustration of the deterministic progressive update using isotropic sample sets. Sizes of red dots are proportional to their
weights. The same isotropic sampling configuration, (λ, τ) = (2, 10), is deployed for both the single-step and the progressive updates.

5. Evaluation

We evaluate the proposed Prog-UvMFF using isotropic sample sets for nonlinear
spherical estimation with a non-identity measurement model. To underline the merit
of isotropic sampling and its integration into the proposed progressive deterministic
update, we consider case 2 in Section 4.2 for the transition density with f T

t (xt+1 | xt) =
fvMF(xt+1; at(xt), κw), where xt, xt+1 ∈ S2. The system dynamics is given as

at(xt) =
sin(t/10) · xt +

(
1− sin(t/10)

)
· σ∥∥ sin(t/10) · xt +

(
1− sin(t/10)

)
· σ
∥∥ , with σ = [ 1, 1, 1 ]>/

√
3 ,

which corresponds to the normalized linear interpolation [38] with a time-invariant inter-
polation ratio. We set the concentration κ of the von Mises–Fisher-distributed transition
density to 50. Unlike the evaluation scenario in [37], the posterior of the previous step
is propagated using samples and the predicted von Mises–Fisher prior is obtained by
convolving the fitted density with the system noise as introduced in the second case of
Section 4.2.

The nonlinear and non-identity measurement model yields the spherical coordinates
(azimuth and elevation) of the state xt = [ xt,1, xt,2, xt,3 ]

>, i.e.,

zt = h(xt) + vt , with h(xt) =

[
arctan

(
xt,2
xt,1

)
, arctan

(
xt,3√

x2
t,1+x2

t,2

)]>
.

The additive measurement noise is zero-mean Gaussian-distributed; namely,
vt ∼ N (0, Σv), with 0 ∈ R2 and covariance Σv ∈ R2×2. Thus, the likelihood function is

f L
t (zt | xt) = fN

(
zt − h(xt)

)
. (13)

We set the covariance Σv = 0.002 · I2×2 to induce a peaky likelihood function.
Three variants from the von Mises–Fisher filtering framework are considered for

the evaluation: the plain von Mises–Fisher filter (vMFF) based on random sampling,
the unscented von Mises–Fisher filter (UvMFF) using deterministic sample sets and the
progressive UvMFF (Prog-UvMFF), which fuses the measurements via progressions. The
threshold ε controlling the progression stride in Equation (12) is set to 0.02. The random
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samples in the vMFF are drawn using the approach in [13]. To generate deterministic
samples in the UvMFF and the Prog-UvMFF, we involve both of the UT-based methods
with a fixed sample size (as for S2, n = 5) [15] and the proposed isotropic sampling with
configurable sizes. Furthermore, we run the particle filter (PF) with a typical sampling–
importance resampling approach as a baseline. All the filters are initialized using the same
prior von Mises–Fisher distributionVMF (ν0, κ0), where ν0 = [ 0, 0, 1 ]> and κ0 = 50. The
error between the ground truth x and the estimated state x̂ is quantified by the arc length
on S2 in radians; i.e.,

E(x, x̂) = acos(x> x̂) .

The scenario is simulated for 30 time steps in each run. A total of 1000 Monte Carlo
runs is used for the evaluation. A broad scale of sample sizes (from 5 to 104) is considered.
Deviations are summarized in the form of the root mean squared error (RMSE).

The evaluation results are plotted in Figures 4–6. As shown by the blue curve in
Figure 4, the proposed isotropic sampling method allows the ordinary UvMFF [15] to
deploy configurable sizes (any number larger than five) of deterministic samples, thereby
achieving a superior performance over the random sampling-based filters (vMFF and PF).
Due to the peaky likelihood function in Equation (13), however, its progressive variant
(Prog-vMFF) delivers much better tracking accuracy (with the same sample size) as well as
convergence. Figure 5 shows the runtime efficiency of the evaluated filters. As indicated by
the green and blue curves, the runtime of the proposed isotropic sampling method is similar
to that of the random one (as the two filters are based on the same filtering procedure) and
the two filters are faster than the PF with the same numbers of samples. For the proposed
Prog-UvMFF, the progressive measurement fusion induces slightly more runtime than the
fusion with a conventional single-step update (while still being faster than the PF). The cost-
efficiency (in terms of runtime) of different filters is displayed in Figure 6. Given the same
amount of processing time, the proposed isotropic sampling method facilitates the UvMFF
in delivering less error than the random counterpart. Furthermore, it enables the Prog-
UvMFF to achieve the best tracking accuracy in conjunction with the progressive update.

number of samples
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UvMFF

Prog-UvMFF

PF

Figure 4. Error over sample numbers (log scale) for the evaluated filters. The configurations with five
samples for UvMFF and Prog-UvMFF are based on the original UT-based sampling method in [15].
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Figure 5. Runtime for each time step in ms over sample size for the evaluated filters.
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Figure 6. Error over runtime for the evaluated filters.

6. Conclusions

In this work, we propose a new deterministic sampling method for generating equally
weighted sample sets of configurable sizes from von Mises–Fisher distributions in arbitrary
dimensions. Based on hyperspherical geometries, the sample sets are placed in isotropic
layouts adapted to the dispersion of the underlying distribution while satisfying the require-
ment of the unscented transform. To further enhance nonlinear von Mises–Fisher filtering
techniques, we propose a deterministic progressive update step to handle non-identity
measurement models. The final product, the Prog-UvMFF, is built upon the progressive fil-
tering scheme with isotropic sample sets and delivers evidently superior performance over
state-of-the-art von Mises–Fisher filters and the PF for nonlinear hyperspherical estimation.

Besides the theoretical contribution to recursive estimation for directional manifolds,
the presented progressive unscented von Mises–Fisher filter supports generic measurement
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models that are directly derived from the true sensor modalities. Thus, it is also of interest
to evaluate the filter’s performance in real-world tasks. Potential application scenarios
include orientation estimation using omnidirectional vision [5], visual tracking on unit
hyperspheres [39], bearing-only localization in sensor networks [40], wavefront orientation
estimation in the surveillance field [29] and sound source localization [41].

There are multiple directions for further research. In addition to only matching
the mean resultant vector, the higher-order shape information of a von Mises–Fisher
distribution can be considered, which may lead to further enhancements in the filter
performance. For this, deterministic samples can be non-uniformly weighted. Since
hyperspherical uncertainties can be of an arbitrary shape in practice, parametric filtering
can be error-prone in certain cases (e.g., in the presence of multimodality). Mixtures of von
Mises–Fisher distributions can be exploited for more exact modeling, and corresponding
recursive estimators are promising.
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