
Software Impacts 9 (2021) 100109

I
2

f
r
i
i
a
p
a
a
w
r
i
o

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

RTCF: A framework for seamless and modular real-time control with ROS
Michael Fennel ∗, Stefan Geyer, Uwe D. Hanebeck
ntelligent Sensor-Actuator-Systems Laboratory (ISAS), Institute for Anthropomatics and Robotics (IAR), Karlsruhe Institute of Technology (KIT), Adenauerring
, 76131 Karlsruhe, Germany

A R T I C L E I N F O

Keywords:
Robotics
Real-time
Control
Robot Operating System
Linux

A B S T R A C T

Owing to the steady progress in the field of Linux kernel development, high-performance control applications
are no longer a rarity on general-purpose computing platforms. However, many real-time control libraries
lack important properties such as modularity, effortless integration, and encapsulation. These are key design
features of the popular Robot Operating System (ROS) that is, however, not real-time capable. We aim to solve
this issue by introducing the Real-Time Control Framework (RTCF), which offers high modularity, ROS-related
concepts leading to seamless interoperability with ROS, and high performance. To demonstrate the capabilities
of the RTCF, we provide several examples and exemplary performance data.

Code metadata

Current code version v1.1.0
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2021-74
Permanent link to Reproducible Capsule
Legal Code License MIT license
Code versioning system used github
Software code languages, tools, and services used Robot Operating System, OROCOS toolchain, Preempt-RT
Compilation requirements, operating environments & dependencies Linux with ROS, optionally with Preempt-RT patch
If available Link to developer documentation/manual https://github.com/KIT-ISAS/RTCF/blob/master/README.md
Support email for questions michael.fennel@kit.edu

1. Introduction

In recent years, Robot Operating System (ROS) [1] has become a de-
acto standard in the area of robotics research and development. The
easons for its popularity include the separation of functions through
nterfaces, resulting in modular and flexible architectures, and a set of
ntegrated tools for standard tasks such as data logging, visualization,
nd parameterization. When ROS was developed, its main focus was
ut on performing higher-level algorithms and as a consequence, its
synchronous architecture is neither real-time safe nor does it provide
built-in option for synchronous operation. This becomes a limitation
hen mid-level or even low-level control algorithms with strict timing

equirements are implemented in ROS, as the achievable performance
s very limited and depends on external factors. Nevertheless, devel-
pments such as the Xenomai [2] or the Preempt-RT [3] kernel patch

∗ Corresponding author.
E-mail addresses: michael.fennel@kit.edu (M. Fennel), mail@stefan-geyer.org (S. Geyer), uwe.hanebeck@kit.edu (U.D. Hanebeck).

have proven that it is possible to deploy applications under real-time
constraints on a general-purpose computer running Linux.

While a standalone application with real-time capabilities can be
easily implemented in such systems, it is much more difficult to create
a complex application that still integrates well into an existing robotic
software project. Several attempts to simplify the integration of real-
time capabilities into ROS have been made in the past. The library
ros_control [4] encapsulates the control tasks for a specific hardware
device in a ROS node, resulting in limited modularity for complex
scenarios (e.g., controller cascades and multiple hardware devices). As
an alternative with a large number of features, OROCOS [5] can be
used in conjunction with the rtt_ros_integration-package [6]. Despite its
functional superiority, OROCOS is rarely applied in practice due to a
steep learning curve and complex concepts. With the arrival of ROS 2,
real-time capabilities are finally taken into account in the design of
https://doi.org/10.1016/j.simpa.2021.100109
Received 5 July 2021; Received in revised form 9 July 2021; Accepted 14 July 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2021.100109
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100109&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-74
https://github.com/KIT-ISAS/RTCF/blob/master/README.md
mailto:michael.fennel@kit.edu
mailto:michael.fennel@kit.edu
mailto:mail@stefan-geyer.org
mailto:uwe.hanebeck@kit.edu
https://doi.org/10.1016/j.simpa.2021.100109
http://creativecommons.org/licenses/by/4.0/


M. Fennel, S. Geyer and U.D. Hanebeck Software Impacts 9 (2021) 100109

2

w

2

u
c
p
a
m

Fig. 1. An exemplary structure of a desired real-time architecture with ROS integration
as it might occur in real-world robotic applications. In this example, a hardware
interface (H1), a state estimation filter (F1), and three controllers (R1–R3) are real-time
components, that are interwoven with some standard ROS nodes (G1–G2).

ROS [7]. However, at the current state, the real-time support of ROS 2
requires significant amounts of boilerplate code and the connections
between nodes are hard-coded, which contradicts some of the core ROS
principles. Moreover, many users still rely on ROS 1. Beyond that, there
exist several less well-known frameworks that combine ROS with real-
time control [8–10]. The disadvantages of these are limited modularity
and incomplete integration of popular ROS workflows.

For this reason, we introduce the Real-Time Control Frame-
work (RTCF) as a new way to seamlessly build modular and high-
performance controller architectures within a ROS ecosystem. For
robotic systems, this means that complex low- and mid-level controller
architectures, e.g., with nested control-loops or controllers that are
contributed by different teams, can be realized on a single general-
purpose computer without sacrificing simplicity, performance, and
reusability. This is achieved by choosing OROCOS as a base and adding
the following requirements, which are derived from our experience
with the above-mentioned frameworks and the example in Fig. 1.

• Modularity: Components are reusable, interfaces are well-defined,
and the configuration is conducted at runtime. Regarding Fig. 1,
this means that the connections between the blocks are not hard-
coded.

• Interoperability: Existing ROS tools (e.g., launch files, topics, pa-
rameter server, logging) are fully compatible. In the example,
the connections between the RTCF and ROS must be handled
transparently.

• Performance: A real-time safe execution with low overhead is
guaranteed. The desired overhead and jitter are in the range of
10 μs to facilitate control frequencies up to several kilohertz.

• Ease of use: The framework is easy to learn for existing ROS users
due to similar concepts.

. Design

In the following, the main features and design concepts of the RTCF
ill be discussed briefly.

.1. Components

Since the RTCF is built on top of OROCOS, the smallest functional
nit is a so-called component. Each component has a pre-defined lifecy-
le as well as input and output interfaces that are called ports. These
orts are very similar to the publisher–subscriber mechanism in ROS,
nd thus components are conceptually very similar to ROS nodes. A

2.2. Dependency resolution

A major difference between the RTCF, ROS, and OROCOS is the way
components are executed. Both ROS and OROCOS execute the loaded
nodes or components in concurrent threads by default. This is inap-
propriate for the targeted control applications, where a deterministic
behavior and minimal overhead are desired.

For this reason, the RTCF executes all loaded components sequen-
tially in a single, real-time capable thread. The determination of the or-
der is done through an automated dependency resolution using Kahn’s
algorithm [11] and the list of predecessors and successors of each
component. To break possibly occurring loops (e.g., in hardware in-
terfaces with sensors and actuators), some connections can be man-
ually excluded. The resulting order for the example in Fig. 1 is then
H1–F1–R1–R2–R3.

2.3. Interoperability with ROS

A major feature of the RTCF is its seamless interoperability with
ROS, which utilizes parts of the rtt_ros_integration [6].

Launch Files: To launch a whole controller architecture with nu-
merous components, two ROS nodes, rt_runner and rt_launcher, are
available. While the first node is responsible for holding, managing, and
executing the actual payload similar to a ROS nodelet_manager [12], the
latter allows the convenient loading of components through standard
ROS commands and launch files. As a result, there is no need to learn
anything new, such as the OROCOS scripting language, for a ROS
developer. Listing 2 shows an exemplary RTCF launch file. Except for
the package name and the component type, which are moved to the
args-attribute, this completely works like any normal launch file.

Topics: The RTCF provides an option to transparently map con-
nections from real-time components to ROS topics and vice versa. The
setup of this is achieved through a simple whitelist regular expression.
Possible not real-time capable side channels are automatically detected
and avoided.

Parameters: In contrast to existing solutions, the RTCF facilitates
easy access to ROS parameters from component context at configura-
tion time by providing a standard ROS node handle. Beyond that, a
real-time safe wrapper for dynamic_reconfigure [13] is provided. This
means that real-time controllers can be tuned at run-time with existing
ROS tools.

Logging: Logging from a real-time context needs special care due
to the required memory allocations. For this reason, the RTCF extends
the OROCOS real-time logging system with logging macros similar to
ROS. Furthermore, integration into the ROS logging system, including
rqt_console as well as rtq_logger_level, is provided.

Simulation: The compatibility with simulation tools such as Gazebo
is also given as the RTCF correctly handles the use_sim_time-
parameter.

3. Evaluation

To demonstrate the performance as well as the usability, the exam-
ple architecture as depicted in Fig. 1 was implemented. All components
are internally implemented as a simple sum operation to ensure an
evaluation that is decoupled from the actual controller payload.

3.1. Configuration

The example has two loop closures via H1, which means that the
incoming connections must be ignored for the dependency resolution.
This is reflected by setting the is_first-parameter for H1 in the
launch file. The three connections between the real-time components
and G1/G2 are enabled by setting the ros_mapping_whitelist-
parameter appropriately. Beyond that, no special configuration is re-
quired. The rt_runner will automatically start the control loop including
the dependency resolution as soon as all expected components are
inimal working example of such a component is shown in Listing 1. loaded.

2



M. Fennel, S. Geyer and U.D. Hanebeck Software Impacts 9 (2021) 100109

-
f
a
F
d
t
e
a
r
l
2

Fig. 2. Performance evaluation of the example scenario running with a frequency of 2 kHz for 3 h.

3.2. Real-time performance

The controller architecture was run with a frequency of 2 kHz
on an off-the-shelf desktop computer with an Intel Core i5-8600 CPU
(kernel version 5.4.44 with Preempt-RT [3]). For reproducible load
conditions, stress-ng was running in the background with the options
-cpu 48 --io 48. The scheduling jitter and the calculation duration

or each full RTCF controller iteration were captured over 3 h using
built-in performance measurement topic. From the histogram in

ig. 2(a), it can be seen that the 99.9 % quantile of the calculation
uration is 10.3 μs, while the maximal duration is 18.8 μs. This means
hat the proposed framework has low overhead and consistent delays,
ven for large controller architectures. In Fig. 2(b), the 99.9 % quantile
nd the maximum of the scheduling jitter are 1.8 μs and 6.1 μs,
espectively. This indicates that the Preempt-RT patch and the control
oop timing work as intended, allowing control frequencies far beyond

kHz.

4. Impact

To the best of our knowledge, the RTCF is the first framework
that enables high-performance control on general-purpose computers
in combination with broad compatibility with ROS and outstanding
modularity. Today, this already increases the speed and the flexibility
of robotic control research and development. For example, researchers
often use custom embedded systems for their low-level controllers and
hardware interfaces. The need for these is largely eliminated with the
arrival of the RTCF, especially if platforms such as the Raspberry Pi
are taken into account. In the case of ROS, the availability of a unified
framework has led to a large ecosystem of packages for standard tasks.
Similarly, we see this potential in the RTCF in the long run.

The first complex deployment will take place during the renovation
of the ISAS semi-mobile haptic interface [14]. In this case, the aim is
to replace the outdated and hard-to-maintain embedded system with
a flexible research platform without compromising the overall control
performance. Furthermore, the university group KITcar [15], which is
active in the field of autonomous driving, has signaled its interest in
using the RTCF as a substitute for its current control framework.

5. Outlook

Although the RTCF is already in a mature state some limitations still
exist. For example, all controllers need to run with the same frequency
and multiple instances of the rt_runner are currently not supported.
In addition, all components are executed sequentially even if parallel
paths in the controller architecture exist. Another limitation is that only
Preempt-RT is supported for the execution in real-time at the moment.

Future work will deal with these issues and examine how the
presented solution can be transitioned towards ROS 2. Beyond that,
we intend to incorporate user feedback to make the RTCF even more

versatile.

3



M. Fennel, S. Geyer and U.D. Hanebeck Software Impacts 9 (2021) 100109
Illustrative examples

See Listings 1 and 2.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.
Ng, ROS: An open-source robot operating system, in: ICRA Workshop on Open
Source Software, vol. 3, 2009.

[2] Xenomai Wiki, 2021, https://source.denx.de/Xenomai/xenomai/-/wikis/home.
(Accessed 28 June 2021).

[3] Real-Time Linux Wiki, 2021, https://rt.wiki.kernel.org/index.php/Main_Page.
(Accessed 28 June 2021).

[4] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Ro-
dríguez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar, G. Raiola, M. Lüdtke,
E. Fernández Perdomo, ros_control: A generic and simple control framework for
ROS, J. Open Source Softw. (2017) http://dx.doi.org/10.21105/joss.00456.

[5] H. Bruyninckx, Open robot control software: the OROCOS project, in: Proceed-
ings of 2001 IEEE International Conference on Robotics and Automation, vol. 3,
2001, pp. 2523–2528, http://dx.doi.org/10.1109/ROBOT.2001.933002.

[6] Orocos RTT / ROS integration packages, 2021, https://github.com/orocos/rtt_
ros_integration. (Accessed 28 June 2021).

[7] ROS. 2 Documentation: Galactic, Real-time programming in ROS 2, 2021, https:
//docs.ros.org/en/galactic/Tutorials/Real-Time-Programming.html. (Accessed 28
June 2021).

[8] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan, Z. Shao, RT-ROS: A real-
time ROS architecture on multi-core processors, Future Gener. Comput. Syst. 56
(2016) 171–178, http://dx.doi.org/10.1016/j.future.2015.05.008.

[9] R. Delgado, B.-J. You, B.W. Choi, Real-time control architecture based on
Xenomai using ROS packages for a service robot, J. Syst. Softw. 151 (2019)
8–19, http://dx.doi.org/10.1016/j.jss.2019.01.052.

[10] micro-ROS, 2021, https://github.com/micro-ROS. (Accessed 28 June 2021).
[11] A.B. Kahn, Topological sorting of large networks, Commun. ACM 5 (11) (1962)

558–562, http://dx.doi.org/10.1145/368996.369025.
[12] ROS Wiki, nodelet, 2021, http://wiki.ros.org/nodelet. (Accessed 28 June 2021).
[13] ROS Wiki, dynamic_reconfigure, 2021, http://wiki.ros.org/dynamic_reconfigure.

(Accessed 28 June 2021).
[14] P. Rößler, T. Armstrong, O. Hessel, M. Mende, U. Hanebeck, A novel haptic inter-

face for free locomotion in extended range telepresence scenarios, in: Proceedings
of the Third International Conference on Informatics in Control, Automation and
Robotics, 2006, pp. 148–153, http://dx.doi.org/10.5220/0001214101480153.

[15] KITcar: Cognitive autonomous racing, 2021, https://kitcar-team.de/. (Accessed
28 June 2021).
4

https://source.denx.de/Xenomai/xenomai/-/wikis/home
https://rt.wiki.kernel.org/index.php/Main_Page
http://dx.doi.org/10.21105/joss.00456
http://dx.doi.org/10.1109/ROBOT.2001.933002
https://github.com/orocos/rtt_ros_integration
https://github.com/orocos/rtt_ros_integration
https://github.com/orocos/rtt_ros_integration
https://docs.ros.org/en/galactic/Tutorials/Real-Time-Programming.html
https://docs.ros.org/en/galactic/Tutorials/Real-Time-Programming.html
https://docs.ros.org/en/galactic/Tutorials/Real-Time-Programming.html
http://dx.doi.org/10.1016/j.future.2015.05.008
http://dx.doi.org/10.1016/j.jss.2019.01.052
https://github.com/micro-ROS
http://dx.doi.org/10.1145/368996.369025
http://wiki.ros.org/nodelet
http://wiki.ros.org/dynamic_reconfigure
http://dx.doi.org/10.5220/0001214101480153
https://kitcar-team.de/

	RTCF: A framework for seamless and modular real-time control with ROS
	Introduction
	Design
	Components
	Dependency resolution
	Interoperability with ROS

	Evaluation
	Configuration
	Real-time performance

	Impact
	Outlook
	Illustrative Examples
	Declaration of competing interest
	References


