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Static Output-Feedback Control of
Markov Jump Linear Systems

without Mode Observation
Maxim Dolgov and Uwe D. Hanebeck

Abstract—In this paper, we address infinite-horizon optimal
control of Markov Jump Linear Systems (MJLS) via static output
feedback. Because the jump parameter is assumed not to be
observed, the optimal control law is nonlinear and intractable.
Therefore, we assume the regulator to be linear. Under this
assumption, we first present sufficient feasibility conditions for
static output-feedback stabilization of MJLS with non-observed
mode in the mean square sense in terms of linear matrix
inequalities (LMIs). However, these conditions depend on the
particular state-space representation, i.e., a coordinate transform
can make the LMIs feasible, while the original LMIs are
infeasible. To avoid the issues with the ambiguity of the state-
space representation, we therefore present an iterative algorithm
for the computation of the regulator gain. The algorithm is shown
to converge if the MJLS is stabilizable via mode-independent
static output feedback. However, convergence of the algorithm
is not sufficient for stability of the closed loop, which requires
an additional stability check after the regulator gains have been
computed. A numerical example demonstrates the application of
the presented results.

I. INTRODUCTION
Although many systems can be described by linear dynamical

models, there are systems whose dynamics are subject to
abrupt changes or jumps that cannot be captured by smooth
continuous-valued differential or difference equations. Thus,
a convenient approach is to model these jumps as a discrete-
valued state, denoted as the mode of the system. In literature,
such systems are referred to as Hybrid Systems [1]. In many
applications, the discrete-valued state can be modeled as a
Markov chain that is independent of the continuous-valued
dynamics. These systems are then referred to as Markov
Jump Systems (MJS) or as Markov Jump Linear Systems
(MJLS), if the continuous-valued dynamics are linear [2].
The interaction between the continuous-valued and discrete-
valued dynamics allows to model component failures [3], [4],
economic processes [5], [6], or networked control systems [7],
[8]. More applications of MJLS are discussed in [2].

Even though an MJLS is a nonlinear system due to the dis-
continuities in the dynamics, the optimal Linear Quadratic (LQ)
and Linear Quadratic Gaussian (LQG) control laws are linear
in the state and even in its estimate if the mode is perfectly
observed [9], [10]. However, if the mode cannot be observed,
there is a dual effect and the separation between control and

The authors are with the Intelligent Sensor-Actuator-Systems Labora-
tory (ISAS), Institute for Anthropomatics and Robotics, Karlsruhe Institute
of Technology (KIT), Germany. E-Mail: maxim.dolgov@kit.edu,
uwe.hanebeck@ieee.org

Manuscript received September 13, 2016.

estimation does not hold [11]. This yields a nonlinear control
law whose derivation is not tractable due to the curse of
dimensionality [12]. Thus, suboptimal control strategies are of
interest, particularly strategies that are closed-loop.

An important class of suboptimal control laws for MJLS
without mode observation are the linear optimal regulators [3],
[4], [6], [13], [14]. These regulators are derived under the
assumption that the control law is linear in the state or
output feedback. By doing so, it is possible to reformulate the
considered cost function in terms of the closed-loop dynamics.
This reformulated cost function is then minimized with respect
to the regulator gains. Do Val et al. applied the described
procedure to finite-horizon control of MJLS without process
noise via state-feedback [6]. The authors assume time-variant
regulator gains that are computed using a variational approach.
This work was extended to MJLS with process noise in [3]. A
finite-horizon control approach for MJLS without process noise
and a constant regulator gain is presented in [4], where the
authors also evaluate different optimization algorithms that can
be used for the minimization of the cost function. In [14], we
derived an infinite-horizon algorithm for state-feedback average
cost per stage control of stochastic MJLS. To this end, we
formulate a nonlinear optimization problem that is solved using
Lagrange multipliers and an iterative procedure. H2 control of
MJLS with clustered mode observations is addressed in [13],
where the case of no mode observation is recovered when the
cluster of observed modes is empty. The regulator gain for a
particular observation structure is obtained via a Linear Matrix
Inequality (LMI). Our regulator gain computation algorithm
from [14] is an alternative computation method to [13]. The
authors of [15] address the same problem as we do in this
paper, i.e., output-feedback control without mode observation.
However, they assume a time-variant controller, whose gains
are computed using a variational approach similar to that in [6],
[4]. Finally, a very related work on infinite-horizon static output
feedback is presented in [16]. However, the authors of [16]
consider MJLS dynamics without process noise.

Other approaches to control of MJLS without mode observa-
tion are, for example, methods based on separation assumption
that implement a filter for the mode [17], [18] or model-
predictive methods, see, e.g., [19]. Furthermore, research also
concentrates on systems where the mode is available only
with a delay [20] and systems with partially-known transition
matrices [21], [22].

In this work, we generalize our previous results from [14],
where we only considered the state-feedback control problem.
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The contribution of this paper consists of (i) the derivation of
sufficient LMI conditions for mean square stabilizability of
MJLS with non-observed mode via static output feedback and
(ii) the presentation of an iterative algorithm that allows to
compute a regulator gain for static output-feedback control of
MJLS without mode observation that minimizes an infinite-
horizon cost function. The algorithm is given as a recursion
whose fixed point yields the regulator gain. However, conver-
gence of the algorithm is not sufficient for stability. Thus, it is
necessary to check stability of the closed-loop system after the
regulator gain has been computed. We demonstrate this issue
in a numerical example.

Outline. The remainder of the paper is organized as follows.
In the next section, we formulate the considered problem. The
main results of the paper are presented in Sec. III. We provide
a numerical example that demonstrates the proposed algorithm
in Sec. IV and conclude the paper in Sec. V.

II. PROBLEM FORMULATION
AND BASIC CONCEPTS

We consider the MJLS with dynamics

xk+1 = Aθk
xk +Bθk

uk +Hθk
wk ,

y
k
= Cθk

xk ,
(1)

where xk ∈ Rn denotes the system state, uk ∈ Rm the control
input, y

k
∈ Rp the output, and wk ∈ Rq is an independent

and identically distributed stationary second-order noise with
mean 0 and covariance I. The matrices Aθk

, Bθk
, Hθk

, and
Cθk

are selected at each time step k from time-invariant
sets {A1, . . . ,AM}, {B1, . . . ,BM}, {H1, . . . ,HM}, and
{C1, . . . ,CM}, according to the value of the random variable
θk ∈ {1, 2, . . . ,M}, M ∈ N, referred to as mode. The dynam-
ics of θk are modeled as a time-homogeneous regular Markov
chain [23] with transition probability matrix T = (pij)M×M ,
pij = P(θk+1 = j|θk = i). Finally, we assume that the
matrices Cθk

have full row rank.
For system (1), we will design a static output-feedback

control law of the form

uk = Ly
k

(2)

that is independent of the initial condition {x0,θ0}, and the
modes θk for k > 0, i.e., the mode is not observed. The control
law shall minimize the infinite-horizon cost function

J = lim
K→∞

1

K
E

{∑K

k=0

[
x>k Qθk

xk +u>k Rθk
uk
]}

, (3)

where the cost matrices Qθk
and Rθk

are positive semidefinite
and positive definite, respectively, and the expectation E {·} is
taken with respect to wk and θk. In (3), the costs are averaged
over the horizon length K that goes to infinity. By plugging (2)
into (3), we can summarize the considered problem as

inf
L

lim
K→∞

1

K
E

{∑K

k=0
x>k (Qθk

+C>θk
L>Rθk

LCθk
)xk

}
s. t. xk+1 = (Aθk

+Bθk
LCθk

)xk +Hθk
wk . (4)

In the next section, we first provide sufficient feasibility
conditions for the optimization problem (4). Then, we de-
rive necessary optimality conditions and provide an iterative
algorithm for evaluation of these conditions.

III. MAIN RESULTS
In this section, we present the main results of the paper.

First, feasibility of (4) can be checked using the following
theorem.

Theorem 1 (Sufficient Feasibility Condition)
The optimization problem (4) is feasible, if there exist matrices
{W1, . . . ,WM}, {Y1, . . . ,YM}, F, M, and G such that the
LMIs[

Wi DiG+EiFCi

G>D>i +C>i F
>E>i G+G> − Ei(Y)

]
> 0[

Yi − µi∞HiH
>
i AiG+BiFCi

G>A>i +C>i F
>B>i G+G> − Ei(Y)

]
> 0

MCi = CiG i = 1, . . . ,M

are feasible, where µi∞ = limk→∞ P(θk = i) is the limit
distribution of the Markov chain {θk} and

Di =

[
Q

1
2
i

0

]
, Ei =

[
0

R
1
2
i

]
, Ei(Y) =

M∑
j=1

pijYj , (5)

where Q
1
2
i and R

1
2
i are obtained using, e.g., the Cholesky

decomposition1. The mean square stabilizing regulator gain is
given by L = FM−1.

Proof 1 To derive the LMI from Theorem 1, we convert the
infinite-horizon LQG problem of minimizing (3) subject to (1)
into an H2 problem by introducing the performance output

zk = Dθk
xk +Eθk

uk ,

where Dθk
and Eθk

are as in (5) so that D>θk
Eθk

= 0 holds.
From [13], we have that the minimum of the H2 norm of an
MJLS

xk+1 = Ãθk
xk +Hθk

wk ,

zk = D̃θk
xk

with non-observed mode is the solution of

inf
Pi

i=1,...,M

M∑
i=1

trace
[
D̃iPiD̃

>
i

]
(6)

s. t. Pi >

M∑
j=1

ÃjPjÃ
>
j + µj∞HjH

>
j , i = 1, . . . ,M .

According to [13], problem (6) can be bounded from above
with

inf
Wi,Yi,G
i=1,...,M

M∑
i=1

trace [Wi]

s. t.
[

Wi D̃iG

G>D̃>i G+G> − Ei(Y)

]
> 0[

Yi − µi∞HiH
>
i ÃiG

G>Ã>i G+G> − Ei(Y)

]
> 0 .

i = 1, . . . ,M .

1As can be seen later, matrices Yi can be interpreted as the costs-to-
go associated with the current system state and the operator Ei(Y) are the
backwards evolution of these costs.



3

Now, substituting Ãi = Ai+BiLCi and D̃i = Di+EiLCi,
we obtain the Bilinear Matrix Inequality (BMI)

inf
Wi,Yi,G,L
i=1,...,M

M∑
i=1

trace [Wi]

s. t.
[

Wi DiG+EiLCiG
G>D>i +G>C>i L

>E>i G+G> − Ei(Y)

]
> 0[

Yi − µi∞HiH
>
i AiG+BiLCiG

G>A>i +G>C>i L
>B>i G+G> − Ei(Y)

]
> 0

i = 1, . . . ,M .
(7)

Since we bound the initial H2 problem (6) with the BMI (7)
from above, a feasible solution to this BMI is also a feasible
solution to the original problem (4). Thus, feasibility of (4)
can be determined by checking the feasibility of (7). However,
it has been shown in [24] that solving a BMI is NP-hard and
thus (7) is impractical. For this reason, we convert the BMI into
an LMI by introducing additional constraints MCi = CiG
as it has been proposed for systems with deterministic system
matrices in [25]. Recall that Ci are assumed to have full row
rank. Consequently, it M is invertible and we can write

Ci = M−1CiG . (8)

Next, we define F = LM and substitute L = FM−1 in (7).
Finally, using (8) concludes the proof.

Remark 1 In case the mode is observed, the optimization
problem (4) via static output feedback is feasible if there exist
matrices {W1, . . . ,WM}, {Y1, . . . ,YM}, {F1, . . . ,FM},
{M1, . . . ,MM}, and {G1, . . . ,GM} such that the LMI[

Wi DiGi +EiFiCi

G>i D
>
i +C>i F

>
i E
>
i Gi +G>i − Ei(Y)

]
> 0[

Yi − µi∞HiH
>
i AiGi +BiFiCi

G>i A
>
i +C>i F

>
i B
>
i Gi +G>i − Ei(Y)

]
> 0

MiCi = CiGi i = 1, . . . ,M

is feasible. The corresponding regulator gains are determined
by Li = FiM

−1
i . The proof is similar to the proof of Theo-

rem 1. Furthermore, the case of cluster mode observations [13]
can be recovered by searching for matrices {Fj1, . . . ,FjS},
{Mj1, . . . ,MjS}, and {Gj1, . . . ,GjS}, where j1, . . . , jS are
the indexes of the S ∈ {0, 1, . . . ,M} observed modes.

Please note that the results of Theorem 1 show how the
generally non-convex problem of static output-feedback stabi-
lization of MJLS without mode observation can be convexified.
However, the feasibility condition from Theorem 1 are derived
by bounding the H2 problem that corresponds to (4) from
above. Thus, the results from Theorem 1 are sufficient but not
necessary. Furthermore, as pointed out in [25], the feasibility of
the conditions from Theorem 1 depends on the particular state-
space representation. Nevertheless, if the system parameters are
deterministic, there exist similarity transformation, although
they may be hard to find, such that the LMIs become feasible
if the initial system is stabilizable via static output feedback.

It needs to be verified, if this property also holds for MJLS. In
what follows, we first derive the necessary optimality conditions
for problem (4) in the next theorem and then propose an
iterative algorithm for the computation of the regulator gain L,
in order to avoid the issues with the ambiguity of the state-space
representation.

Theorem 2 (Necessary Optimality Conditions)
Consider the MJLS (1) and assume that this system is
stabilizable via static output-feedback (2). Then, the optimal
linear static output regulator gain that minimizes the cost
function (3) is determined by the nonlinear coupled equations

M∑
i=1

(Ri +B>i Ei(P∞)Bi)LCiX
i
∞C>i

+B>i Ei(P∞)AiX
i
∞C>i = 0 , (9)

M∑
i=1

pij (Ai +BiLCi)X
i
∞ (Ai +BiLCi)

>

+ µi∞HiH
>
i −Xj

∞ = 0 , (10)

−Pi∞ +Qi +C>i L
>RiLCi

+ (Ai +BiLCi)
> Ei(P∞) (Ai +BiLCi) = 0 , (11)

where the matrices Xi
∞ and Pi∞ are positive definite.

Proof 2 Using the notation from [2], we define the second-
moment system state

Xi
k = E

{
xkx

>
k 1θk=i

}
,

where 1A = 1 if A is true and 0 otherwise. Plugging (2)
into (1), we obtain the closed-loop dynamics of the second
moment

Xj
k+1 =

M∑
i=1

pij

[
µi
k
HiH

>
i

+(Ai +BiLCi)X
i
k(Ai +BiLCi)

>] ,
where µi

k
= P(θk = i) (see Proposition 3.35 in [2] for a more

detailed derivation). Now, we can rewrite (4) in terms of the
second moment as

inf
L

M∑
i=1

trace
[
(Qi +C>i L

>RiLCi)X
i
∞
]

s. t. Xj
∞ =

M∑
i=1

pij

[
µi∞HiH

>
i

+(Ai +BiLCi)X
i
∞(Ai +BiLCi)

>] ,
where we already took the limit K → ∞ (see Ch. 4.4.3
in [2]). Introducing the positive definite Lagrange multiplier
{P1
∞, . . . ,P

M
∞} allows us to construct the Hamiltonian

H =

M∑
i=1

trace
[
(Qi +C>i L

>RiLCi)X
i
∞ −Pi∞Xi

∞

+Ei(P∞)(Ai +BiLCi)X
i
∞(Ai +BiLCi)

>

+µi∞Ei(P∞)HiH
>
i

]
.
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From the necessary optimality conditions

∂H
∂L

= 0 ,
∂H
∂Xi
∞

= 0 , and
∂H
∂Pi∞

= 0 ,

we obtain the set of nonlinear coupled equations (9)-(11).

Finding a solution to the equations (9)-(11) is not trivial. Thus,
we propose the following iterative algorithm that converges to
a solution of the equations from Theorem 2. The algorithm
proceeds as follows.

Step 1: Set the counter η = 0 and initialize Xi
[η] and Pi[η]

with random positive definite matrices.
Step 2: Compute L[η] either using

vec
(
L[η]

)
= −

(
M∑
i=1

CiX
i
∞C>i ⊗ (Ri +B>i Ei(P∞)Bi)

)†

× vec

(
M∑
i=1

B>i Ei(P∞)AiX
i
∞C>i

)
, (12)

where vec (·) denotes the vectorization operator, A† the Moore-
Penroe pseudoinverse of A, and ⊗ is the Kronecker product,
and inversing the vectorization, or by solving the semidefinite
program

min λ

s. t.
[
λI L[η]

L>[η] I

]
> 0

M∑
i=1

(Ri +B>i Ei(P[η])Bi)L[η]CiX
i
[η]C

>
i

+B>i Ei(P[η])AiX
i
[η]C

>
i = 0

(13)

that is slower but numerically more robust than (12) that
involves matrix inversions.

Step 3: Compute the updates Xi
[η+1] and Pi[η+1] according

to

Xj
[k+1] =

M∑
i=1

pij

[
µi∞HiH

>
i (14)

+(Ai +BiL[k]Ci)X
i
[k](Ai +BiL[k]Ci)

>
]
,

Pi[k+1] = Qi +C>i L
>
[k]RiL[k]Ci

+ (Ai +BiL[k]Ci)
>Ei(P[k])(Ai +BiL[k]Ci) .

Step 4: If the equations Xi
[η+1] ≈ Xi

[η], P
i
[η+1] ≈ Pi[η], and

L[η] ≈ L[η−1] hold with sufficient precision, stop the algorithm.
Otherwise, set η = η + 1 and return to Step 2.

Considering the implementation of the iterative algorithm,
we suggest to initialize Xi

[η] and Pi[η] in Step 1 with 1e−4 · I.
Although the algorithm converges for any initial positive
definite values, the convergence is usually faster for the
proposed value. Furthermore, computing the regulator gain
L[η] using the semidefinite program (13) is computationally
more stable than computing via (12). Finally, please note that
the convergence of the recursion (14) is not sufficient for
stability. Thus, it is necessary to check whether the closed-loop
system is stable using, e.g., Corollary 2.6 from [26]. The next

theorem finalizes the theoretical contribution of this section.
To this end, we will need the following lemma.

Lemma 1 Assume that MJLS (1) is mean square stabilizable
via mode-dependent static output-feedback uk = Lθky

k
with

observation of the mode θk. Then, the recursion

Xj
[k+1] =

M∑
i=1

pij

[
µi∞HiH

>
i (15)

+(Ai +BiL
i
[k]Ci)X

i
[k](Ai +BiL

i
[k]Ci)

>
]
,

Pi[k+1] = Qi +C>i (L
i
[k])
>RiL

i
[k]Ci

+ (Ai +BiL
i
[k]Ci)

>Ei(P[k])(Ai +BiL
i
[k]Ci) ,

where Li[η] are determined by

M∑
i=1

(Ri +B>i Ei(P[η])Bi)L
i
[η]CiX

i
[η]C

>
i

+B>i Ei(P[η])AiX
i
[η]C

>
i = 0 ,

converges to its unique solution (Xi
∞,P

i
∞) for η →∞.

Proof 3 To show the result of Lemma 1, construct a homotopy
by substituting Ci = (1 − α)I + αCi. Then, for α = 0,
we have a state-feedback control problem, for which the
recursion (15) converges to a unique solution [2]. Now, observe
that the assumption that the MJLS (1) is stabilizable via mode-
dependent static output feedback (α = 1) implies that the MJLS
is also stabilizable via state feedback because the latter require
weaker stabilizability assumptions. Furthermore, the problems
with α < 1 also have weaker conditions for mean square
stabilizability, which implies that the number of solutions of
the homotopy (15) remains constant as α goes from 0 to 1.

Theorem 3 (Convergence of the Iterative Algorithm)
The recursion (14) with (12) or (13) converges to its unique
solution (Xi

∞,P
i
∞), if the MJLS (1) is stabilizable via static

output-feedback (2).

Proof 4 The proof follows the argumentation of the proof of
Theorem 3 in [27]. First, assume that (Xi

∞,P
i
∞) is a solution

of (10)-(9) for some fixed regulator gain L. Then, the set of the
solutions of (10)-(9) is not empty. Furthermore, the regulator
gain L determined by each solution (Xi

∞,P
i
∞) stabilizes the

MJLS in the mean square sense. This leaves us with necessity to
show that (10)-(9) has a unique solution to which it converges.
For this purpose, we define the homotopy

Xj
[α,k+1] =

M∑
i=1

pij

[
µi∞HiH

>
i (16)

+(Ai +BiL
i
[α,k]Ci)X

i
[α,k](Ai +BiL

i
[α,k]Ci)

>
]
,

Pi[α,k+1] = C>i (L
i
[α,k])

>RiL
i
[α,k]Ci +(Ai +BiL

i
[α,k]Ci)

>

× Ei(P[α,k])(Ai +BiL
i
[α,k]Ci) +Qi .

with Li[α] = (1 − α)L̃i[η] + αL[η], where L[η] is the solution
of (12) or (13), and limη→∞ L̃i[η] is the optimal regulator gain
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T1, x0 =
[
0 0

]>
T1, x0 =

[
3 0

]>
T2, x0 =

[
0 0

]>
T2, x0 =

[
3 0

]>

state
feedback

time-invariant optimal
with observed mode [2] 0.9718 24.1879 0.8280 24.5886

time-invariant with
non-observed mode [13] 0.9788 24.4780 1.0088 26.0436

time-variant with
non-observed mode [3] 0.9743 24.4031 0.8786 24.7490

proposed 0.9730 24.4808 0.8855 25.4265

output
feedback

time-variant with
non-observed observed mode [15] 1.5611 26.5108 1.0351 30.6060

proposed 1.5623 28.3532 1.0539 30.7562

TABLE I
MEDIAN COSTS OF THE MONTE CARLO SIMULATION

for the case that the mode θk is observed. From Lemma 1,
we have that the recursion (16) has a unique solution for
α = 0 to which it converges for η →∞. Because we assumed
that the MJLS (1) is stabilizable via static output feedback
without mode observation, i.e., α = 1, it is also stabilizable
for α = 0 and α < 1 since these cases constitute a weaker
stabilizability demands. From this property, we can conclude
using the topological degree theory [28] that the number of
solutions (Xi

α,∞,P
i
α,∞) = limη→∞(Xi

[α,η],P
i
[α,η]) remains

constant as α goes from 0 to 1. Thus, the initial recursion (14)
with (13) or (12) for α = 1 has a unique solution to which it
converges.

In the next section, we demonstrate the presented control law
in a numerical example.

Remark 2 As mentioned in the introduction, do Val et al.
addressed H2 state-feedback control of MJLS with clustered
observations in [13], where the case of no mode observation
is recovered if the cluster of observed modes is empty. This
problem can also be addressed with the proposed algorithm
because the state-feedback control problem, i.e., Cθk

= I, is a
special case of the considered problem. The proposed algorithm
yields regulator gains with better performance than [13]
because it directly minimizes the costs (3) instead of its bound
(see Sec. IV).

IV. NUMERICAL EXAMPLE

In this section, we first demonstrate that convergence of the
iterative algorithm from Sec. III is not sufficient for stability of
the closed loop. For this reason, we compute the regulator gain
using the proposed algorithm and check whether the controlled
MJLS is stable using Corollary 2.6 from [26]. To this end, we
need to compute the spectral radius ρ of the controlled system.
If it is smaller than 1, the controlled MJLS is stable in the
mean square sense.

Consider the MJLS

A1 =

[
1.2 1.2
0 1

]
, A2 =

[
1 0.8
0 1

]
,
Q1 = Q2 = I ,

R1 = R2 = I ,

B1 =

[
0
1

]
, B2 =

[
0
0.2

]
, H1 = H2 =

[
0.2 0
0 0.1

]
,

and two different transition matrices

T1 =

[
0.7 0.3
0.6 0.4

]
and T2 =

[
0.9 0.1
0.1 0.9

]
.

The spectral radii of the MJLS are ρ = 1.2970 for T1 and
ρ = 1.3295 for T2, respectively. Thus, the uncontrolled MJLS
are unstable.

We set the observation matrices to

C1 = C2 =
[
1 0

]
.

The LMI from Theorem 1 is infeasible for both transition
matrices T1 and T2. The algorithm from Theorem 2 converges
with the gains L1 = −0.0089 for T1 and L2 = −0.0122 for
T2. However, evaluation of the spectral radii yields ρ = 1.1463
for L1 and ρ = 1.1548 for L2. Thus, the controlled MJLS are
still unstable.

Now, we choose the observation matrices to

C1 =
[
1 2

]
and C2 =

[
2 1

]
.

With these observation matrices, the LMI from Theorem 1 is
feasible for both transition matrices, i.e., the corresponding
MJLS are stabilizable via mode-independent static output
feedback. Computation of the regulator gains using the pro-
posed iterative algorithm yields L1 = −0.6350 for T1 and
L2 = −0.4404 for T2. The spectral radii of the controlled
MJLS are ρ = 0.817760 and ρ = 0.987110, respectively.

For this setup, we conducted a Monte Carlo simulation
with 1e4 runs à 100 time steps each. For comparison, we
included the optimal state-feedback controller with mode
observation from [2] and the time-variant output-feedback
controller with non-observed mode presented by Vargas et al.
in [15]. For completeness, we also compared our controller
with the controller from [13] for the state-feedback scenario.
The results of this simulation are depicted in Table I. The
median costs for the transition matrices T1 and T2, and
the initial states x[1]

0 =
[
0 0

]>
and x[2]

0 =
[
3 0

]>
are

depicted in Table I. It can be seen that the proposed time-
invariant regulator gain computed using the iterative algorithm
shows the same performance as the algorithm from [15] in
the stationary scenario (x0 = x

[1]
0 ) and is only slightly worse

in the transient scenario where the state has to be driven
from x0 = x

[2]
0 to the origin. However, the proposed iterative

algorithm needed only 0.025s to compute the regulator gain
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for T1 and 0.03s for T2, while Vargas’ algorithm from [3]
took 194.12s for T1 and 277.68s for T2 in Matlab 2013b on
a PC with Intel Core i5-3320M and 8 GB RAM. Also note that
the suboptimality compared to the state-feedback controller
from [2] depends on the transition matrix T. Considering the
state-feedback scenario, the regulator gains computed using
the iterative algorithm slightly outperform the gains computed
using the method from [13] presented by do Val et al.

A reference implementation of the presented algorithm is
available on GitHub [29].

V. CONCLUSION

In this paper, we addressed the problem of infinite-horizon
static output-feedback optimal control of Markov Jump Linear
Systems without mode observation. Because the optimal control
law is nonlinear and intractable, we assumed a linear controller.
Under this assumption, we first derived sufficient feasibility
conditions for static output-feedback stabilization of MJLS
with non-observed mode in form of LMIs. For this purpose,
we converted the optimal control problem into an H2 problem
and bounded the minimum of the corresponding H2 norm
from above. Because the derived conditions depend on the
particular state-space representation, we proposed an iterative
algorithm for the computation of the regulator gain and proved
its convergence. In the numerical example, we compared the
performance of the regulator gain computed using the presented
methods and elaborated on the fact that the convergence of the
proposed regulator gain computation algorithm is not sufficient
for the stability of the controlled MJLS. Thus, it is necessary
either to check stability using the provided LMI conditions or
the standard conditions from [26].
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