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Abstract

In this paper, a novel approach for estimating the position and extent of an extended target is

presented. In contrast to existing approaches, no statistical assumptions about the location of the

measurement sources on the extended target object are made. As a consequence, a combined set-

theoretic and stochastic estimator is obtained that is robust to systematic errors in the target model.

The applicability of the new approach is demonstrated by means of circular shapes.

Index Terms

Tracking, extended objects, random sets, estimation.

I. INTRODUCTION

The standard target tracking problem considers the tracking of a point source based on noisy

measurements. In doing so, it is assumed that the object extension is negligible in comparison to

the sensor noise. If this is not the case, target tracking algorithms have to take into account that

measurements may stem from different locations on the extended target object. A major difficulty is

that the extent of the target object is unknown and has to be estimated in addition to the position

of the target. Scenarios for tracking extended objects often occur in military surveillance with radar

devices [1], [2]. For instance, a modern high-resolution radar device may receive measurements from

different scattering centers, called measurement sources, on the extended target. Such a scenario is

depicted in Figure 1, where several measurement sources per time step are resolved on an aircraft.

The measurements themselves are noisy observations of these measurement sources. The stochastic

measurement noise stems from the particular sensor, e.g., of a radar device, and its statistics are

usually given. However, the locations of the measurement sources are typically unknown. Extended
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object tracking methods are also useful for group target tracking [2] when resolution conflicts make

it impossible to track each single group member (see Figure 1).

A. Related Work

In [3]–[5], the target extent is modeled by means of a spatial distribution, i.e., each measurement

source is an independent random draw from a target-dependent probability distribution. Spatial

distribution models have been used in combination with Probability Hyptheses Density (PHD) filters

[6], [7] and in [8] spatial cluster processes are used for extended object tracking. In [2], [9], an

elliptic target extent is modeled with a random matrix that is treated as an additional state variable.

The random matrix approach has also been embedded into the Probabilistic Multiple Hypotheses

Tracker (PMHT) framework [10] in order to track multiple extended objects. In [11]–[14], a so-called

Random Hypersurface Model (RHM), which assumes that each single measurement source lies on

a scaled version of the target boundary, is used for tracking elliptic and star-convex shapes. An

approach for tracking the shape of contaminant clouds is introduced in [15] and down-range extent

measurements are used for instance in [16] for tracking an extended object.

B. Contributions

In many scenarios, it is unreasonable to place any (statistical) restriction on the measurement

sources. For instance, when tracking an aircraft formation, the behavior of a single formation member

is nearly unpredictable due to the high complexity of the group behavior. It is therefore difficult to

determine a reasonable probability distribution for the measurement sources. Furthermore, consider the

tracking of a ship with a high-resolution radar device. Due to the complex character of the surface

of the ship, it is unpredictable which scattering center on the ship is responsible for a particular

measurement. Existing methods for tracking extended objects are not able to incorporate this lack of

knowledge and certainly, wrong assumptions on the measurement sources may lead to poor estimation

results.

The novel approach presented in this article makes no assumption about the measurement sources on

the extended object. In particular no statistical assumptions are made. The only utilized information

about a measurement source is that it lies on the extended target object. As a consequence, the

resulting estimator is robust to systematic errors in the target model, i.e., when the true shape and

distribution of the measurement sources do not coincide with the modeled target, and is thus able to

supply more precise estimation results than standard approaches. At this point, it is important to note

that the measurement noise itself is still assumed to be stochastic. Hence, the uncertainty about the

measurement sources is modeled as a set and the measurement error is assumed to be stochastic.
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= Measurement source

= Measurement

= Approximated shape

Fig. 1: Scenarios: Extended object (left) and group target (right).

A consequence of this set-theoretic target model is that the scaling of the extended object cannot

be estimated only by means of noisy position measurements. In order to estimate the size of the

extended object one has to incorporate further knowledge. In this paper, we assume that the number

of measurements received at a time step depends on the scaling of the extended object.

C. Structure

The remainder of this paper is structured as follows: After a detailed problem description in

Section II, we first restrict the problem in Section III to a static extended object, i.e., a non-moving

target with unknown but fixed location and extent. First, we consider the case of known extent, i.e., the

radius of the smallest enclosing circle of the target object is given. The second step is to construct an

estimator for both the location and radius of the extended object. To this end, a novel outer-bounding

technique based on hyperboloids is developed. It turns out that it is necessary to incorporate further

statistical information in order to estimate the radius of the smallest enclosing disc. In particular,

it is assumed here that the number of measurements received per time step depends on the size of

the object. Details are explained in Section IV and Section V, where the instantaneous tracking of

an extended object whose position and shape changes with time is discussed. The applicability and

advantages of the new approach are shown by means of experiments in Section VI.

This paper is an extended and revised version of the conference paper [17], where the basic idea of

combined set-theoretic and stochastic approach was first introduced for circular discs. The approach

has been applied for tracking axis-aligned rectangles in [18].

II. PROBLEM SETUP

We treat the problem of tracking an extended target object based on noisy position measurements

stemming from the target surface. The target extent is modeled in this paper as a basic geometric

shape, i.e., a circular disc. We assume that the extended target is enclosed at each time step k by a

circular shape

K(p̃
k
)=
{
[x, y]T ∈ IR2 |(x− x̃ck)2 + (y − ỹck)2 ≤ r̃2k

}
,

where p̃
k

= [x̃c, ỹc, r̃]T consists of the center and radius of the circle.
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We aim at estimating the parameter vector p̃
k
, which is not directly observable. Instead, at each

time step k, a finite set of two-dimensional Cartesian position measurements {ẑk,j}nk

j=1 is available.

Each of these individual measurements ẑk,j is the noisy observation of a two-dimensional point z̃k,j ,

named measurement source, which is known to lie in K(p̃
k
), i.e.,

ẑk,j = z̃k,j + wk,j and z̃k,j ∈ K(p̃
k
) , (1)

where wk,j denotes two-dimensional additive white observation noise1 that models a random Cartesian

displacement. The probability distribution of the measurement noise wk,j is assumed to be known.

The measurement source z̃k,j is not known, so that we do not know which point on the extended

object was actually measured by ẑk,j . Note that the measurement sources z̃k,j on the extended object

are not assumed to be drawn from a particular probability distribution. Hence, the measurement model

suffers from both a set-valued uncertainty and a stochastic uncertainty. All told, this is not a classical

state estimation problem, because the hidden state is connected to the observable state with a (random)

many-to-many relation. For each given circular disc, there is a (random) set of possible measurements.

On the other hand, in classical state estimation, the hidden state is related to an observable state by

a (random) function defined by the measurement equation.

The position as well as the shape of the extended object may vary over time. The temporal evolution

of the (smallest) circular disc, which includes the extended object, is modeled by means of a so-called

extended motion model that captures both the motion and the extent of the target object (details are

given in Section IV).

III. STATIC EXTENDED OBJECTS

In this section, we concentrate on a static extended object, i.e., an extended object whose smallest

enclosing circle neither moves nor changes its radius over time. Then, the fixed but unknown parameter

vector p̃ of the extended object O(p̃) is to be estimated. For the sake of simplicity, we assume that

at each time step k, a single position measurement ẑk is given.

A. Circular Discs with Known Radius

In the following, a combined set-theoretic and stochastic estimator for the center of a circular disc

with known radius is constructed. Hence, the true radius r̃ of the smallest enclosing circle of the

target object is given and only the unknown center [x̃c, ỹc]T is desired. According to Equation (1),

we obtain the measurement equation

ẑk = [x̃c, ỹc]T + ek + wk , (2)

1Note that all random variables are printed bold face in this paper.
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(a) A rectangular extended object

and its smallest enclosing circle.

Two position measurements ẑ1

and ẑ2 have been received.

(b) Intersection of the measure-

ment solution sets for ẑ1 and ẑ2.

The intersection can be bounded

by a circle.

Fig. 2: Set-theoretic estimation of the center of the smallest enclosing circle of an extended object

with known radius.

where ek ∈ K(0, 0, r̃) (note that ek := z̃k−[x̃c, ỹc]T ). This measurement equation maps the parameters

[x̃c, ỹc]T to the measurement ẑk, where wk is Gaussian measurement noise and ek is an unknown

but bounded error.

Equation (2) is equivalent to [x̃c, ỹc]T ∈ K([ẑk − wk, r̃]T ). For this reason, all possible centers

[x̃c, ỹc]T that are consistent with measurement ẑk are an element of a circular disc with random center

ẑk −wk and given radius r̃. The set of all possible centers is called measurement solution set and

denoted with r∆m
k := K(ẑk −wk, r̃). 2

Example 1. In Figure 2a, an extended object with a rectangular shape is shown. The true circular disc

whose location is to be estimated is drawn and the first two measurements ẑ1 and ẑ2 are depicted

(we assumed noise-free measurements, i.e., w1 = 0 and w2 = 0). The parameter space consisting of

the location of the true disc is shown in Figure 2b. The measurement solution sets r∆m
1 and r∆m

2 of

the two measurements are circular discs. These sets consist of all feasible locations that enclose the

corresponding measurement. Since ẑ1 and ẑ2 both lie in the true circular disc, the true location is an

element of r∆e
2 =r ∆m

1 ∩r∆m
2 . Note that r∆e

2 is not a circular disc again.

All told, each measurement ẑk yields a random set for the state r∆m
k . A recursive fusion procedure

for the random sets r∆m
k is given by a so-called combined set-theoretic and stochastic estimator (see

[19]–[23] for a detailed description).

A combined set-theoretic and stochastic estimator represents the uncertainty about the tstate at

time step k with a random set r∆e
k (called solution set). At each time step k, a new random set r∆m

k

2The superscript r in r∆m
k emphasizes that the radius is known.
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becomes available (constructed from the measurement), which has to be fused with the prior random

set r∆e
k−1. A natural fusion rule for random sets is intersection (conditioned on non-emptiness), i.e.,

the updated solution set becomes r∆e
k =r ∆e

k−1 ∩r∆m
k . The exact recursive computation of r∆e

k can

be difficult and time consuming. Hence, in order to allow a fast recursive computation, the sets r∆e
k

are usually outer-bounded with supersets that can be described with a (fixed) number of parameters

such as ellipsoids [24].

In this particular case, it is suitable to bound the true solution set r∆e
k with a circular disc again (see

Figure 2b). In doing so, whenever a new measurement is received, the intersection of the corresponding

measurement solution set and the current solution set has to be bounded with a (smallest) circular

disc. Note that the detailed formulas turn out to be a special case of the general problem and can be

found in Remark 3.

Remark 1. Combined set-theoretic and stochastic estimators are a well-known concept in state estima-

tion, where one has to deal with both stochastic and bounded errors [19]–[23]. It is worth mentioning

that combined stochastic and set-theoretic filters turn into a pure set-theoretic filter if the stochastic

noise vanishes. Furthermore, if the bounded noise error is zero, a stochastic filter is obtained. The

fusion of random sets by means of set intersection can also be interpreted as the Dempster-Shafer rule

of combination. Furthermore, the measurement solution set can be seen as a generalized measurement

as described by Mahler in [25].

B. Circular Discs with Unknown Radius

In the following, the goal is to estimate the location of a static extended object with an unknown

but fixed radius. Thus, the estimator has to simultaneously consider all possible radii. Consider a

particular measurement ẑk = [xmk , ymk ]T at time step k. Each parameter vector [xc, yc, r]T specifying

a circular disc that encloses ẑk satisfies the condition ẑk −wk,j ∈ K(xc, yc, r). Hence, for a given

measurement ẑk, the set of all possible parameter vectors can be restricted to

∆m
k :=

{
[xc, yc, r]T ∈ IR3 | ||[xc, yc]T − (ẑk −wk)||22 ≤ r2

}
. (3)

In fact, ∆m
k is a random cone in three-dimensional space, which is oriented along the r-axis with

apex ẑk −wk in the xy-plane and perpendicular cone angle.

Example 2. In Figure 3a, the extended object with a rectangular shape is shown again (but now

the radius is unknown as well). Furthermore, the first two (noise-free) sample measurements ẑ1 and

ẑ2 are depicted. The bounds of the corresponding cones ∆m
1 and ∆m

2 in the parameter-space are

shown in Figure 3b. The entire sets ∆m
1 and ∆m

2 are given by all points that lie “above” the plotted

bounds. Since ẑ1 and ẑ2 both lie in the circular disc, the parameters are elements of ∆e
2 = ∆m

1 ∩ ∆m
2 .

Figure 3c and 3d illustrate an example of the solution set ∆e
4 for four received measurements. The
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Fig. 3: Set-theoretic estimation of an extended object.

discs K(p̃
4
),K(p1

4
) and K(p2

4
) are examples for feasible circular discs. K(p1

4
) represents the smallest

enclosing circle of the given measurements. In this example, K(p̃
4
) is the true disc, since it represents

the smallest enclosing circle of the target object. In Figure 3d, the bound of the set ∆e
4 and the parame-

ters of the example discs are depicted. Furthermore, the corresponding parameters p̃
4
, p1

4
and p2

4
of the

example discs (see Figure 3c) are marked. Note that ∆e
4 is neither a cone nor any other basic geometric

object.

The exact recursive computation of the random set ∆e
k = ∆e

k−1∩∆m
k is computationally intractable.

Unfortunately, there is in general no proper parametric description of the solution set ∆e
k. Note that

the intersection of two cones in the form of Equation (3) is not a cone again. In order to tackle

this problem, we introduce a novel outer-bounding technique based on hyperboloids (see Figure 3e
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and Figure 3f). We make use of the fact that the intersection of a cone and a hyperboloid (see

Definition 1) can be outer-bounded by a hyperboloid again. This approximation technique enables

recursively approximating ∆e
k with hyperboloids.

Definition 1 (Hyperboloid of Revolution). The upper sheet of a two-sheeted circular hyperboloid of

revolution is given by

H(xe, ye, ze, a) :=
{

[xc, yc, r]T ∈ IR3 | r ≥ ze and (xc − xe)2 + (yc − ye)2 + a2 ≤ (r − ze)2
}

with xe, ye, ze ∈ IR and a ∈ IR+.

Remark 2. A hyperboloid H(xe, ye, ze, a) has the following properties (see Figure 4a):

• the focus is F = [xe, ye, ze]T ,

• the apex is located at A = [xe, ye, a + ze]T ,

• the cone angle is orthogonal, and

• the hyperboloid is oriented along the r–axis.

Definition 2. A hyperboloid of the form H(xe, ye, 0, a) is abbreviated with H(xe, ye, a). Furthermore,

the set C(xe, ye) := H(xe, ye, 0, 0) is a cone oriented along the r–axis whose apex lies on the xcyc–

plane.

Theorem 1 in the Appendix gives formulas for outer-bounding the intersection of a cone and

hyperboloid with a hyperboloid. The theorem is based on the observation that the intersection of the

bounds3 ∂H(pe
k−1

) and ∂C(ẑk) is a hyperbola lying in a plane perpendicular to the xcyc-plane (see

Figure 4). Based on Theorem 1, we can define a function G1(·) (see Definition 3 in the Appendix),

which maps the parameters of the hyperboloid H(pe
k−1

) and a cone C(ẑk) to the parameters of the

resulting hyperboloid bounding their intersection.

Equipped with these outer-bounding techniques, we can define a recursive combined set-theoretic

and stochastic estimator, which uses random hyperboloids for expressing the uncertainty about the

location of the circle (for each possible radius).

Set-Theoretic and Stochastic Estimator (SSTE) 1

• Solution Set

Hyperboloid H(pe
k
) with pe

k
= [xe

k,y
e
k,a

e
k]T and pe

k
∼ N (p; p̂e

k
,Ce

k).

• Measurement Solution Set

Cone C(zk) with zk := ẑk −wk and zk ∼ N (z; ẑk,C
z
k).

3The operator ∂ denotes the bound of a set.
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(b) A cone C([2.5, 2]T ) and a

hyperboloid H([4, 2, 1]T ).
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(c) Approximated intersection. (d) xcyc-plane for r = 1.8.

Fig. 4: Approximating the intersection of a cone and a hyperboloid with a hyperboloid.

• Fusion

pe
k

= G1(zk,p
e
k−1

) and pe
1

= [zT
1 , 0]T (4)

The (nonlinear) function G1(·) in Equation (4) has to be evaluated stochastically, i.e., the arguments

are random variables. In general, the distribution of pe
k

cannot be computed in closed form for given

distributions of zk and pe
k−1

, since G1(·) is a nonlinear function. Nevertheless, the distribution of pe
k

can be approximated with a Gaussian distribution by employing the prediction step of a nonlinear

stochastic state estimator such as the Gaussian Filter [26] and the UKF [27].

Remark 3. When the true radius is given, SSTE 1 turns into the SSTE for circular discs with known

radius from Section III-A. The outer-bound of the two-dimensional random solution set r∆e
k for the

desired center results from the random hyperboloid H(pe
k
) and is given by K(xe

k,y
e
k,
√

(r̃)2 − (ae
k)2)

given that ae
k ≤ r̃. If the true radius r̃ is known, the probability density function f(pe

k
) of pe

k
in

SSTE 1 can be restricted (at each time step) to feasible values by computing the posterior density

f(pe
k
|{ae

k ≤ r̃}). Note that if aek > r̃ there is no disc with radius r̃ in H(pe
k
). In this context, see also

Figure 4d. The probability density f(pe
k
|{ae

k ≤ r̃}) is a truncated Gaussian distribution whose first

two moments can be computed according to [28]. Hence, SSTE 1 consists of an SSTE for circular

discs with given radius (see Section III-A) for each possible radius.
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IV. DYNAMIC EXTENDED OBJECTS

In this section, we consider an extended object that moves and changes its shape over time. At each

time step k, the parameters p̃
k

of the smallest shape O(p̃
k
) that includes the true target shape are to be

estimated. Now, at each time step k, a finite set of two-dimensional position measurements {ẑk}nk

j=1

is available. Each of these individual measurements ẑk is the noisy observation of a measurement

source z̃k,j according to Equation (1).

In order to capture translations along the r-axis (which models the scaling of the extended object),

it becomes necessary to represent solution sets with hyperboloids of the form H([xek, y
e
k, z

e
k, a

e
k]T )

instead of H([xek, y
e
k, a

e
k]T ). For this purpose, throughout the rest of this paper, the parameter vector

pe
k

is of the form [xe
k,y

e
k, z

e
k,a

e
k]T .

The parameter vector pe
k

is assumed to evolve according to a so-called extended motion model of

the form

pp
k

=

Ak 0

0 1

pe
k−1

+

Bk

0

 (ûk−1 + vk−1) +
[
0 0 dk 0

]T
(5)

that maps the parameter vector pe
k−1

at time step k − 1 to the predicted parameters pp
k at time

step k. The random vector vk−1 models input noise and ûk−1 denotes the deterministic system input.

The term dk shifts the hyperboloid along the z-axis in order to capture a set-theoretic system error

on the circle center. This model corresponds to a linear motion of the center corrupted by additive

Gaussian noise and a set-theoretic error. Based on this dynamic model, SSTE 1 can be extended to

the dynamic case.

Set-Theoretic and Stochastic Estimator (SSTE) 2

• Solution Set

Hyperboloid H(pe
k
) with pe

k
∼ N (p; p̂e

k
,Ce

k).

• Measurement Solution Set

The measurements {ẑk,j}nk

j=1 yield C(zk,0), . . . ,C(zk,nk
) with zk,j := ẑk,j −wk,j (for all j).

• Prediction

Compute the pp
k based on the estimate H(pe

k−1
) . (see Equation (5)).

• Fusion

H(pe
k
) is the result of outer-bounding

⋂
j C(zk,j)∩H(pp

k) (with pp
1

= [zT
1 , 0, 0]T ). With pe

k,0
:=

pp
k and pe

k,j
= G2(pe

k,j−1
, zk,j) one obtains pe

k
:= pe

k,nk
.

A proper function G2(·) (see Definition 4) for the fusion step in SSTE 2 can be constructed by

means of Theorem 2, which is actually an extension of Theorem 1 to hyperboloids translated along

the r-axis. Theorem 2 is based on the observation that the intersection of ∂C(ẑk,j) and ∂H(pe
k,j−1

)
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(b) Approximated intersection.

Fig. 5: Approximating the intersection of a cone and a hyperboloid with a hyperboloid.

is a hyperbola lying in a plane (see Figure 5). In contrast to Theorem 1, this plane does not have to

be perpendicular to the xcyc-plane.

Remark 4. In analogy to Remark 3, when the true radius is given at time step k, SSTE 2 turns

into a SSTE for circular discs with known radius. The outer-bound of the two-dimensional random

solution set r∆e
k for the desired center results from the random hyperboloid H(pe

k
) and is given by

K(xe
k,y

e
k,
√

(r̃)2 − (ae
k + ze

k)2) given that ae
k +ze

k ≤ r̃. If the true radius r̃ is known, the probability

density function f(pe
k
) of pe

k
in SSTE 2 can be restricted (at each time step) to feasible values by

computing the posterior density f(pe
k
|{ae

k + ze
k ≤ r̃}). Note that if aek + ze

k > r̃ there is no disc with

radius r̃ in H(pe
k
).

V. INCORPORATING FURTHER KNOWLEDGE ABOUT THE RRADIUS

So far, we have assumed that the radius is unknown. Unfortunately, it is not possible to estimate the

radius without further modeling assumptions. In this work, we infer the radius based on the number

of measurements received at a time step.

A realistic assumption, which is often satisfied in scenarios for extended object tracking, is that the

number of measurements received from the target object at a particular time step depends on its size.

For instance, [2] suggests a Poisson distribution with an expectation proportional to the area of the

extended target. Here, we assume that a conditional probability density f(nk|rk), which specifies the

number of measurements depending on the current radius of the extended object is available. This

assumption is justified since the radius is proportional to the perimeter of a circular disc. It would

also be possible to consider the area of the extended object, instead of the perimeter. However, this

would result in nonlinear constraints.

In order to incorporate statistical information about the radius into SSTE 2, we maintain an

additional random variable rek that captures the knowledge about the true radius obtained from the
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number of measurements nk. Hence, the state vector at time step k is given by the random vector

[(pe
k
)T , rek]T . The estimate [(pe

k−1
)T , rek−1]

T at time step k−1 can be propagated through the extended

motion model according to

pp
k

rpk

 =


Ak 0 0

0 1 0

0 0 1

 ·
pe

k−1

rek−1

+


Bk

0

b
(3)
k

 (ûk−1 + vk−1) ,

where b
(3)
k denotes the third row of Bk. Again, we assume that [(pe

k−1)
T , rek−1]

T is Gaussian dis-

tributed such that [pp
k, r

p
k]T is also Gaussian distributed and can be computed with the Kalman filter

formulas for the prediction step.

The prediction [(pp
k)T , rpk]T can be updated with {ẑk,j}nk

j=1 in order to obtain the posteriori pdf of

[(pe
k
)T , rek]T (given nk) in the following way:

1) Starting with pe
k,0

:= pp
k the probability distribution f(pe

k
, rek) of [(pe

k
)T , rek]T := [(pe

k,nk
)T , rek]T ,

where pe
k,j

:= G2(zk,j ,p
e
k,j−1

) for 1 ≤ j ≤ nk can be computed recursively by means

of a nonlinear state estimator. This step recursively intersects the cones resulting from the

measurements (see SSTE 2).

2) Incorporate the information about the radius by computing the posterior density f(pe
k
, rek | nk)

with Bayes’ rule

f(pe
k
, rek | nk) = c · f(nk | rk) · f(pe

k
, rek) ,

where c is a normalization constant.

3) Compute the posterior density

f(pe
k
, rek | nk, {ae

k + ze
k ≤ rek})

what corresponds to truncating infeasible values. This constraint arises from the fact that if

ae
k +ze

k > rek, there is no disc with radius rek in H(pe
k
). Formulas for approximating a truncated

Gaussian with a Gaussian again are given in [28].

A proper point estimate for the radius is given by E[rek] and a point estimate for the center is given

by E[[xe
k,y

e
k]T ] and covariance matrix Cov[[xe

k,y
e
k, r

e
k]T ]. Note that if rek is given, the special case

of known radius is obtained (see Remark 3).

The convergence behavior of the above introduced estimator needs further discussion. If we assume

that the system noise is zero, i.e., Cv
k = 0, and the involved probability densities are computed exactly,

the following holds: First, rek approaches the true radius, due to step 2 and 3 (this is validated by

means of simulations in the following section). Actually, this already follows from step 2, but step 3

further improves the estimation result by providing a lower bound for the radius. As a consequence,

pe
k

approaches the parameter vector of the true circular disc (position and radius). This results from
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the fact that for given pe
k

the special case of known radius is obtained (see Section III-A) and in this

case, the set-valued and stochastic uncertainties vanish.

VI. SIMULATIONS

In this section, the applicability of the novel method for tracking extended objects is demonstrated

by means of simulations. For this purpose, we consider an extended object, whose shape is composed

of two overlapping rectangles (see Figure 6a), which could represent an aircraft. The radius of the

smallest enclosing circle of the target is 2.

Each measurement source z̃k,j is sampled randomly from these two rectangles and the following

three different probability distributions are alternated.

• Measurement sources on the left of the airplane are more likely, which is modeled with the

Gaussian mixture

0.9 · N (x; x̃− [1.8, 0]T ,Σ) + 0.1 · N (x; x̃ + [1.8, 0]T ,Σ) ,

• measurement sources on the right of the airplane are more likely, which is modeled with the

Gaussian mixture

0.1 · N (x; x̃− [1.8, 0]T ,Σ) + 0.9 · N (x; x̃ + [1.8, 0]T ,Σ) ,

• and measurement sources are uniformly distributed on the airplane,

where x̃ denotes the true target center and Σ = diag(0.05, 0.05). In a real-world application, such

a scenario could be caused by a target illumination with a radar device from different views of the

target object.

The measurement noise wk,j is Gaussian with zero mean and covariance matrix diag([0.1, 0.1]T ).

The temporal evolution of the smallest enclosing circle of the extended object is specified by the

extended motion model given by Equation (5) with Ak = Bk = diag([1, 1, 1]T ), input ûk−1 =

[3, 0, 0]T , input noise Cv
k = diag([0.02, 0.02, 0.000001]T ), and no set-theoretic error, i.e., dk = 0.

The system noise for the radius is quite low in order to model that the radius does not vary over

time.

a) Scenario 1: The first scenario demonstrates the benefits of the new approach in comparison

to a spatial distribution model [3], [4] . For this purpose, the radius is assumed to be known and only

the target center is to be estimated.

The spatial distribution model assumes that the measurement sources are drawn from a uniform

distribution on the circle. However, the uniform distribution is approximated with a Gaussian distri-

bution by means of moment matching. By this means, the standard Kalman filter formulas can be

used for tracking the center of the target (the target extend is the reflected as an additional additive
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(a) Example trajectory of an extended target: extended target plus its bounding circles (dashed

lines) and received measurements (dots).
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(b) Estimation results for the spatial distribution model (dashed circles) and corresponding 90%

confidence ellipses (solid ellipses).
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(c) Estimation results for the set-theoretic target extent model (dashed circles) and corresponding

90% confidence ellipses (solid ellipses).
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(d) Mean distance between the estimated and true center averaged over 100

simulations runs. Solide line (set-theoretic target model) and dashed line (spatial

distribution model).
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(e) Unknown Radius: Mean distance between the estimated and true radius

(averaged over 100 simulations runs).

Fig. 6: Tracking an extended object: Simulation results.
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Gaussian noise term). In Figure 6b, the estimation results for an example run for the spatial distribution

model are depicted. The results show that the estimates are good, if the measurement sources are

uniformly distributed on the target. However, if they are not, poor results are obtained. Even worse,

the confidence ellipsoid does not contain the true center of the target. This may cause track loss and

results in too small measurement gates.

The estimation results in Figure 6b show that the estimation quality of the SSTE is good no matter

what the true distribution of the measurement sources is. And most importantly, the confidence ellipse

for the target center does always contain the true target center. The reason is that the new estimator

introduced in this work does not make any assumptions on the distribution of the measurement sources.

Figure 6d shows the estimation errors for the first 100 time steps averaged over 100 simulation runs

for both estimators.

b) Scenario 2: The second scenario shows that the set-theoretic estimator is capable of estimating

the radius if it is unknown. For this purpose, the number of measurements nk produced by the

true circular disc with radius r is assumed to be approximately Gaussian distributed, i.e., nk ∼

N ∗(nk; 7r, 12) with an expectation proportional to r. The symbolN ∗ denotes the Gaussian distribution

with truncated negative values. The a priori distribution of the radius is a Gaussian with mean 5 and

variance 0.005. In Figure 6e, the average radius estimation error is plotted for the first 100 time steps.

Hence, the radius approaches the true radius.

VII. GENERALIZATIONS TO OTHER SHAPES

The combined set-theoretic and stochastic approach for tracking extended objects has been in-

troduced based on circular shapes. The approach has already been used for tracking axis-aligned

rectangles in [18]. In case of axis aligned rectangles, the measurement solution sets ∆m
k are rectangles

as well (for known extent). Hence, uncertain rectangles have to be intersected.

In general, the concept can be used for arbitrary target shapes. The target shape determines the

measurement solution set. It is then necessary to find a proper conservative approximation for recursive

processing of the measurement solution sets. For elliptic target shapes, the approximation techniques

introduced in [29] are suitable.

VIII. CONCLUSIONS AND FUTURE WORK

In this article, a novel method for tracking extended objects based on noisy position measurements

was presented. In contrast to existing approaches, no assumptions about the location of the measure-

ment sources on the extended object have been made. As a consequence, a combined set-theoretic and

stochastic estimation problem is obtained. A particular estimator has been derived for circular discs.

In doing so, a novel combined set-theoretic and stochastic estimator that uses random hyperboloids
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to express the uncertainty about the location and extent of the target object was constructed. Future

work will be concerned with extending the proposed method to higher dimensions and other geometric

objects such as ellipsoids, arbitrary oriented rectangles or polygons. Finally, methods for incorporating

clutter and tracking multiple extended objects will be developed.
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IX. APPENDIX

Theorem 1. Given are a cone C(ẑk) and a hyperboloid H(pe
k−1

). Furthermore, let

d :=
√

(x̂mk − xek−1)
2 + (ŷmk − yek−1)

2

denote the distance between the vectors [x̂mk , ŷmk ]T and [xek−1, y
e
k−1]

T . If the following condition

d > aek−1 (6)
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holds, the hyperboloid H(pe
k
) withxek

yek

 =

x̂mk
ŷmk

+ aek · 1d(

xek−1

yek−1

−
x̂mk
ŷmk

) and (7)

aek = 1
2(d +

(ae
k−1)

2

d ) (8)

has the following properties:

1) The apex of C(ẑk) ∩H(pe
k−1

) coincides with the apex pe
k

of H(pe
k
).

2) The intersection of ∂C(ẑk)∩∂H(pe
k−1

) is a hyperbola that lies in a plane E with normal vector

[xek−1 − x̂mk , yek−1 − ŷmk , 0]T and position vector pe
k
.

3) E ∩ ∂H(pe
k
) = ∂C(ẑk) ∩ ∂H(pe

k−1
)

4) C(ẑk) ∩H(pe
k−1

) ⊆ H(pe
k
)

Proof: Can be shown with basic algebraic rules.

Remark 5. Condition (6) states that the projection of the apex of C(ẑk)∩H(pe
k−1

) onto the xcyc-plane

lies on the segment from [x̂mk , ŷmk , 0]T to [xek−1, y
e
k−1, 0]T . An equivalent condition is the requirement

that the r-coordinate of the apex of C(ẑk) ∩H(pe
k−1

) is greater than aek−1.

Definition 3. The function G1 : IR2 × IR3 → IR3 in Equation (4) is defined as follows

G1(ẑk, pek−1
) =

 G∗1(ẑk, p
e
k−1

) if Condition (6) holds

pe
k−1

otherwise

where G∗1 : IR2 × IR3 → IR3 denotes the total function defined by Equation (7) and (8) that maps ẑk

and pe
k−1

to pe
k
.

Theorem 2. Given are a cone C(ẑk,j) and a hyperboloid H(pe
k,j−1

). Furthermore, let

d :=
√

(x̂mk,j − xek,j−1)
2 + (ŷmk,j − yek,j−1)

2

denote the distance between the vectors [x̂mk,j , ŷ
m
k,j ]

T and [xek,j−1, y
e
k,j−1]

T . If the following condition

d > zek,j−1 + aek,j−1 (9)

holds, then the hyperboloid H(pe
k,j

) withxek,j
yek,j

 =

x̂mk,j
ŷmk,j

+ 1
d(mzapex+c)(

xek,j−1

yek,j−1

−
x̂mk,j
ŷmk,j

) , (10)

zek,j = m2zapex + mc , (11)

aek,j = zapex − zek,j , (12)
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where m =
ze
k,j

d , c = d +
(ae

k,j−1)
2−(ze

k,j−1)
2

2d and

zapex =

 − c
m−1 if m2 − 1 6= 0

− c
2m if m2 − 1 = 0

has the following properties:

1) The apex of C(ẑk,j) ∩H(pe
k,j−1

) is [xek,j , y
e
k,j , zapex]

T , where zapex = aek,j + zek,j .

2) ∂C(ẑk,j) ∩ ∂H(pe
k,j−1

) is a hyperbola that lies in a plane E with normal vector

[xek,j−1 − x̂mk,j , y
e
k,j−1 − ŷmk,j , z

e
k,j ]

T and position vector [xek,j , y
e
k,j , zapex]

T .

3) E ∩ ∂H(pe
k,j

) = ∂C(ẑk,j) ∩ ∂H(pe
k,j−1

)

4) C(ẑk,j) ∩H(pe
k,j−1

) ⊆ H(pe
k,j

)

Proof: Can be shown with basic algebraic rules.

Remark 6. Analog to Condition (6), Condition (9) states that the projection of the apex of C(ẑk,j)∩

H(pe
k,j−1

) onto the xcyc-plane lies on the segment from [x̂mk,j , ŷ
m
k,j , 0]T to [xek,j−1, y

e
k,j−1, 0]T .

Definition 4. The function G2 : IR7 → IR4 is defined as follows

G2(ẑk,j , pek,j−1
) =



G∗2(ẑk,j , p
e
k,j−1

) if (9) holdsẑk,j
0

 if zek,j−1+

aek,j−1< 0

pe
k,j−1

otherwise

where G∗2 : IR7 → IR4 denotes the total function specified by Equations (10) - (12) that maps ẑk,j

and pe
k,j−1

to pe
k,j

.

Marcus Baum received his Dipl.-Inform. in computer science from the the Universitaet Karlsruhe (TH),

Germany, in 2007. Currently, he is working towards a PhD degree at the Intelligent Sensor-Actuator-

Systems Laboratory, Karlsruhe Institute of Technology (KIT), Germany. His research interests are in

the field of extended object and group tracking, nonlinear estimation, and sensor data fusion.

DRAFT



20

Uwe D. Hanebeck received his Dipl.-Ing. in Electrical Engineering, with first-class honors, from the

Ruhr-Universitaet Bochum, Germany, in 1991. He obtained his Dr.-Ing. (Ph.D.) degree in Electrical

Engineering from the Technische Universitaet Muenchen, Germany, in 1997. In 2003 he was appointed

as professor at the Universitaet Karlsruhe (TH). He is the head of the Intelligent Sensor-Actuator-

Systems Laboratory (ISAS), Karlsruhe Institute of Technology (KIT). His research interests are

sensor-actuator-networks, human-centered robotics, and telepresence with emphasis on theory-driven

approaches based on stochastic estimation theory and uncertainty models. Research results are applied to various fields like

human-robot-cooperation, robotic surgery systems, personal assistance systems, and extended-range telepresence.

DRAFT


